1 | /***************************************************************************
|
---|
2 | * blitz/numinquire.h Numeric inquiry functions
|
---|
3 | *
|
---|
4 | * $Id: numinquire.h,v 1.1.1.1 1999-04-09 17:59:02 ansari Exp $
|
---|
5 | *
|
---|
6 | * Copyright (C) 1997,1998 Todd Veldhuizen <tveldhui@seurat.uwaterloo.ca>
|
---|
7 | *
|
---|
8 | * This program is free software; you can redistribute it and/or
|
---|
9 | * modify it under the terms of the GNU General Public License
|
---|
10 | * as published by the Free Software Foundation; either version 2
|
---|
11 | * of the License, or (at your option) any later version.
|
---|
12 | *
|
---|
13 | * This program is distributed in the hope that it will be useful,
|
---|
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | * GNU General Public License for more details.
|
---|
17 | *
|
---|
18 | * Suggestions: blitz-suggest@cybervision.com
|
---|
19 | * Bugs: blitz-bugs@cybervision.com
|
---|
20 | *
|
---|
21 | * For more information, please see the Blitz++ Home Page:
|
---|
22 | * http://seurat.uwaterloo.ca/blitz/
|
---|
23 | *
|
---|
24 | ***************************************************************************
|
---|
25 | * $Log: not supported by cvs2svn $
|
---|
26 | * Revision 1.2 1998/03/14 00:04:47 tveldhui
|
---|
27 | * 0.2-alpha-05
|
---|
28 | *
|
---|
29 | * Revision 1.1 1997/07/16 14:51:20 tveldhui
|
---|
30 | * Update: Alpha release 0.2 (Arrays)
|
---|
31 | *
|
---|
32 | */
|
---|
33 |
|
---|
34 | /*
|
---|
35 | * These numeric inquiry functions are provided as an alternative
|
---|
36 | * to the somewhat klunky numeric_limits<T>::yadda_yadda syntax.
|
---|
37 | * Where a similar Fortran 90 function exists, the same name has
|
---|
38 | * been used.
|
---|
39 | *
|
---|
40 | * The argument in all cases is a dummy of the appropriate type
|
---|
41 | * (double, int, etc.)
|
---|
42 | *
|
---|
43 | * These functions assume that numeric_limits<T> has been specialized
|
---|
44 | * for the appropriate case. If not, the results are not useful.
|
---|
45 | */
|
---|
46 |
|
---|
47 | #ifndef BZ_NUMINQUIRE_H
|
---|
48 | #define BZ_NUMINQUIRE_H
|
---|
49 |
|
---|
50 | #ifndef BZ_HAVE_NUMERIC_LIMITS
|
---|
51 | #error <blitz/numinquire.h> requires <limits> from the ISO/ANSI C++ standard (you may need to rerun the compiler/bzconfig script)
|
---|
52 | #endif
|
---|
53 |
|
---|
54 | #include <limits>
|
---|
55 |
|
---|
56 | #ifndef BZ_RANGE_H
|
---|
57 | #include <blitz/range.h>
|
---|
58 | #endif
|
---|
59 |
|
---|
60 | BZ_NAMESPACE(blitz)
|
---|
61 |
|
---|
62 | /*
|
---|
63 | * This traits class provides zero and one values for numeric
|
---|
64 | * types. This was previously a template function with specializations,
|
---|
65 | * but the specializations were causing multiply-defined symbols
|
---|
66 | * at link time. TV 980226
|
---|
67 | */
|
---|
68 |
|
---|
69 | template<class T_numtype>
|
---|
70 | struct _bz_OneZeroTraits {
|
---|
71 | static inline T_numtype zero() { return 0; }
|
---|
72 | static inline T_numtype one() { return 1; }
|
---|
73 | };
|
---|
74 |
|
---|
75 | #ifdef BZ_HAVE_COMPLEX
|
---|
76 |
|
---|
77 | template<>
|
---|
78 | struct _bz_OneZeroTraits<complex<float> > {
|
---|
79 | static inline complex<float> zero() { return complex<float>(0.0f,0.0f); }
|
---|
80 | static inline complex<float> one() { return complex<float>(1.0f,0.0f); }
|
---|
81 | };
|
---|
82 |
|
---|
83 | template<>
|
---|
84 | struct _bz_OneZeroTraits<complex<double> > {
|
---|
85 | static inline complex<double> zero() { return complex<double>(0.0,0.0); }
|
---|
86 | static inline complex<double> one() { return complex<double>(1.0,0.0); }
|
---|
87 | };
|
---|
88 |
|
---|
89 | template<>
|
---|
90 | struct _bz_OneZeroTraits<complex<long double> > {
|
---|
91 | static inline complex<long double> zero()
|
---|
92 | { return complex<long double>(0.0,0.0); }
|
---|
93 |
|
---|
94 | static inline complex<long double> one()
|
---|
95 | { return complex<long double>(1.0,0.0); }
|
---|
96 | };
|
---|
97 |
|
---|
98 | #endif // BZ_HAVE_COMPLEX
|
---|
99 |
|
---|
100 | template<class T>
|
---|
101 | inline T zero(T)
|
---|
102 | {
|
---|
103 | return _bz_OneZeroTraits<T>::zero();
|
---|
104 | }
|
---|
105 |
|
---|
106 | template<class T>
|
---|
107 | inline T one(T)
|
---|
108 | {
|
---|
109 | return _bz_OneZeroTraits<T>::one();
|
---|
110 | }
|
---|
111 |
|
---|
112 | template<class T>
|
---|
113 | inline int digits(T)
|
---|
114 | {
|
---|
115 | return numeric_limits<T>::digits;
|
---|
116 | }
|
---|
117 |
|
---|
118 | template<class T>
|
---|
119 | inline int digits10(T)
|
---|
120 | {
|
---|
121 | return numeric_limits<T>::digits10;
|
---|
122 | }
|
---|
123 |
|
---|
124 | template<class T>
|
---|
125 | inline T epsilon(T) BZ_THROW
|
---|
126 | {
|
---|
127 | return numeric_limits<T>::epsilon();
|
---|
128 | }
|
---|
129 |
|
---|
130 | template<class T>
|
---|
131 | inline T huge(T) BZ_THROW
|
---|
132 | {
|
---|
133 | return numeric_limits<T>::max();
|
---|
134 | }
|
---|
135 |
|
---|
136 | template<class T>
|
---|
137 | inline T tiny(T) BZ_THROW
|
---|
138 | {
|
---|
139 | return numeric_limits<T>::min();
|
---|
140 | }
|
---|
141 |
|
---|
142 | template<class T>
|
---|
143 | inline int max_exponent(T)
|
---|
144 | {
|
---|
145 | return numeric_limits<T>::max_exponent;
|
---|
146 | }
|
---|
147 |
|
---|
148 | template<class T>
|
---|
149 | inline int min_exponent(T)
|
---|
150 | {
|
---|
151 | return numeric_limits<T>::min_exponent;
|
---|
152 | }
|
---|
153 |
|
---|
154 | template<class T>
|
---|
155 | inline int min_exponent10(T)
|
---|
156 | {
|
---|
157 | return numeric_limits<T>::min_exponent10;
|
---|
158 | }
|
---|
159 |
|
---|
160 | template<class T>
|
---|
161 | inline int max_exponent10(T)
|
---|
162 | {
|
---|
163 | return numeric_limits<T>::max_exponent10;
|
---|
164 | }
|
---|
165 |
|
---|
166 | template<class T>
|
---|
167 | inline int precision(T)
|
---|
168 | {
|
---|
169 | return numeric_limits<T>::digits10;
|
---|
170 | }
|
---|
171 |
|
---|
172 | template<class T>
|
---|
173 | inline int radix(T)
|
---|
174 | {
|
---|
175 | return numeric_limits<T>::radix;
|
---|
176 | }
|
---|
177 |
|
---|
178 | template<class T>
|
---|
179 | inline Range range(T)
|
---|
180 | {
|
---|
181 | return Range(numeric_limits<T>::min_exponent10,
|
---|
182 | numeric_limits<T>::max_exponent10);
|
---|
183 | }
|
---|
184 |
|
---|
185 | template<class T>
|
---|
186 | inline bool is_signed(T)
|
---|
187 | {
|
---|
188 | return numeric_limits<T>::is_signed;
|
---|
189 | }
|
---|
190 |
|
---|
191 | template<class T>
|
---|
192 | inline bool is_integer(T)
|
---|
193 | {
|
---|
194 | return numeric_limits<T>::is_integer;
|
---|
195 | }
|
---|
196 |
|
---|
197 | template<class T>
|
---|
198 | inline bool is_exact(T)
|
---|
199 | {
|
---|
200 | return numeric_limits<T>::is_exact;
|
---|
201 | }
|
---|
202 |
|
---|
203 | template<class T>
|
---|
204 | inline T round_error(T) BZ_THROW
|
---|
205 | {
|
---|
206 | return numeric_limits<T>::round_error();
|
---|
207 | }
|
---|
208 |
|
---|
209 | template<class T>
|
---|
210 | inline bool has_infinity(T)
|
---|
211 | {
|
---|
212 | return numeric_limits<T>::has_infinity;
|
---|
213 | }
|
---|
214 |
|
---|
215 | template<class T>
|
---|
216 | inline bool has_quiet_NaN(T)
|
---|
217 | {
|
---|
218 | return numeric_limits<T>::has_quiet_NaN;
|
---|
219 | }
|
---|
220 |
|
---|
221 | template<class T>
|
---|
222 | inline bool has_signaling_NaN(T)
|
---|
223 | {
|
---|
224 | return numeric_limits<T>::has_signaling_NaN;
|
---|
225 | }
|
---|
226 |
|
---|
227 | // Provided for non-US english users
|
---|
228 | template<class T>
|
---|
229 | inline bool has_signalling_NaN(T)
|
---|
230 | {
|
---|
231 | return numeric_limits<T>::has_signaling_NaN;
|
---|
232 | }
|
---|
233 |
|
---|
234 | template<class T>
|
---|
235 | inline bool has_denorm(T)
|
---|
236 | {
|
---|
237 | return numeric_limits<T>::has_denorm;
|
---|
238 | }
|
---|
239 |
|
---|
240 | template<class T>
|
---|
241 | inline bool has_denorm_loss(T)
|
---|
242 | {
|
---|
243 | return numeric_limits<T>::has_denorm_loss;
|
---|
244 | }
|
---|
245 |
|
---|
246 | template<class T>
|
---|
247 | inline T infinity(T) BZ_THROW
|
---|
248 | {
|
---|
249 | return numeric_limits<T>::infinity();
|
---|
250 | }
|
---|
251 |
|
---|
252 | template<class T>
|
---|
253 | inline T quiet_NaN(T) BZ_THROW
|
---|
254 | {
|
---|
255 | return numeric_limits<T>::quiet_NaN();
|
---|
256 | }
|
---|
257 |
|
---|
258 | template<class T>
|
---|
259 | inline T signaling_NaN(T) BZ_THROW
|
---|
260 | {
|
---|
261 | return numeric_limits<T>::signaling_NaN();
|
---|
262 | }
|
---|
263 |
|
---|
264 | template<class T>
|
---|
265 | inline T signalling_NaN(T) BZ_THROW
|
---|
266 | {
|
---|
267 | return numeric_limits<T>::signaling_NaN();
|
---|
268 | }
|
---|
269 |
|
---|
270 | template<class T>
|
---|
271 | inline T denorm_min(T) BZ_THROW
|
---|
272 | {
|
---|
273 | return numeric_limits<T>::denorm_min();
|
---|
274 | }
|
---|
275 |
|
---|
276 | template<class T>
|
---|
277 | inline bool is_iec559(T)
|
---|
278 | {
|
---|
279 | return numeric_limits<T>::is_iec559;
|
---|
280 | }
|
---|
281 |
|
---|
282 | template<class T>
|
---|
283 | inline bool is_bounded(T)
|
---|
284 | {
|
---|
285 | return numeric_limits<T>::is_bounded;
|
---|
286 | }
|
---|
287 |
|
---|
288 | template<class T>
|
---|
289 | inline bool is_modulo(T)
|
---|
290 | {
|
---|
291 | return numeric_limits<T>::is_modulo;
|
---|
292 | }
|
---|
293 |
|
---|
294 | template<class T>
|
---|
295 | inline bool traps(T)
|
---|
296 | {
|
---|
297 | return numeric_limits<T>::traps;
|
---|
298 | }
|
---|
299 |
|
---|
300 | template<class T>
|
---|
301 | inline bool tinyness_before(T)
|
---|
302 | {
|
---|
303 | return numeric_limits<T>::tinyness_before;
|
---|
304 | }
|
---|
305 |
|
---|
306 | template<class T>
|
---|
307 | inline std::float_round_style round_style(T)
|
---|
308 | {
|
---|
309 | return numeric_limits<T>::round_style;
|
---|
310 | }
|
---|
311 |
|
---|
312 | BZ_NAMESPACE_END
|
---|
313 |
|
---|
314 | #endif // BZ_NUMINQUIRE_H
|
---|
315 |
|
---|