[814] | 1 | #include <iostream.h>
|
---|
[775] | 2 | #include "intflapack.h"
|
---|
[1342] | 3 | #include "tvector.h"
|
---|
| 4 | #include "tmatrix.h"
|
---|
[814] | 5 | #include <typeinfo>
|
---|
[775] | 6 |
|
---|
[1424] | 7 | /*!
|
---|
| 8 | \defgroup LinAlg LinAlg module
|
---|
| 9 | This module contains classes and functions for complex linear
|
---|
| 10 | algebra on arrays. This module is intended mainly to have
|
---|
| 11 | classes implementing C++ interfaces between Sophya objects
|
---|
| 12 | and external linear algebra libraries, such as LAPACK.
|
---|
| 13 | */
|
---|
| 14 |
|
---|
| 15 | /*!
|
---|
| 16 | \class SOPHYA::LapackServer
|
---|
| 17 | \ingroup LinAlg
|
---|
| 18 | This class implements an interface to LAPACK library driver routines.
|
---|
| 19 | The LAPACK (Linear Algebra PACKage) is a collection high performance
|
---|
| 20 | routines to solve common problems in numerical linear algebra.
|
---|
| 21 | its is available from http://www.netlib.org.
|
---|
| 22 |
|
---|
| 23 | The present version of our LapackServer (Feb 2001) provides only
|
---|
| 24 | interfaces for the linear system solver and singular value
|
---|
| 25 | decomposition (SVD). Only arrays with BaseArray::FortranMemoryMapping
|
---|
| 26 | can be handled by LapackServer. LapackServer can be instanciated
|
---|
| 27 | for simple and double precision real or complex array types.
|
---|
| 28 |
|
---|
| 29 | The example below shows solving a linear system A*X = B
|
---|
| 30 |
|
---|
| 31 | \code
|
---|
| 32 | #include "intflapack.h"
|
---|
| 33 | // ...
|
---|
| 34 | // Use FortranMemoryMapping as default
|
---|
| 35 | BaseArray::SetDefaultMemoryMapping(BaseArray::FortranMemoryMapping);
|
---|
| 36 | // Create an fill the arrays A and B
|
---|
| 37 | int n = 20;
|
---|
| 38 | Matrix A(n, n);
|
---|
| 39 | A = RandomSequence();
|
---|
| 40 | Vector X(n),B(n);
|
---|
| 41 | X = RandomSequence();
|
---|
| 42 | B = A*X;
|
---|
| 43 | // Solve the linear system A*X = B
|
---|
| 44 | LapackServer<r_8> lps;
|
---|
| 45 | lps.LinSolve(A,B);
|
---|
| 46 | // We get the result in B, which should be equal to X ...
|
---|
| 47 | // Compute the difference B-X ;
|
---|
| 48 | Vector diff = B-X;
|
---|
| 49 | \endcode
|
---|
| 50 |
|
---|
| 51 | */
|
---|
| 52 |
|
---|
[775] | 53 | extern "C" {
|
---|
[1342] | 54 | // Drivers pour resolution de systemes lineaires
|
---|
| 55 | void sgesv_(int_4* n, int_4* nrhs, r_4* a, int_4* lda,
|
---|
| 56 | int_4* ipiv, r_4* b, int_4* ldb, int_4* info);
|
---|
| 57 | void dgesv_(int_4* n, int_4* nrhs, r_8* a, int_4* lda,
|
---|
| 58 | int_4* ipiv, r_8* b, int_4* ldb, int_4* info);
|
---|
| 59 | void cgesv_(int_4* n, int_4* nrhs, complex<r_4>* a, int_4* lda,
|
---|
| 60 | int_4* ipiv, complex<r_4>* b, int_4* ldb, int_4* info);
|
---|
| 61 | void zgesv_(int_4* n, int_4* nrhs, complex<r_8>* a, int_4* lda,
|
---|
| 62 | int_4* ipiv, complex<r_8>* b, int_4* ldb, int_4* info);
|
---|
| 63 |
|
---|
[1494] | 64 | // Driver pour resolution de systemes au sens de Xi2
|
---|
| 65 | void sgels_(char * trans, int_4* m, int_4* n, int_4* nrhs, r_4* a, int_4* lda,
|
---|
| 66 | r_4* b, int_4* ldb, r_4* work, int_4* lwork, int_4* info);
|
---|
| 67 | void dgels_(char * trans, int_4* m, int_4* n, int_4* nrhs, r_8* a, int_4* lda,
|
---|
| 68 | r_8* b, int_4* ldb, r_8* work, int_4* lwork, int_4* info);
|
---|
| 69 | void cgels_(char * trans, int_4* m, int_4* n, int_4* nrhs, complex<r_4>* a, int_4* lda,
|
---|
| 70 | complex<r_4>* b, int_4* ldb, complex<r_4>* work, int_4* lwork, int_4* info);
|
---|
| 71 | void zgels_(char * trans, int_4* m, int_4* n, int_4* nrhs, complex<r_8>* a, int_4* lda,
|
---|
| 72 | complex<r_8>* b, int_4* ldb, complex<r_8>* work, int_4* lwork, int_4* info);
|
---|
| 73 |
|
---|
[1342] | 74 | // Driver pour decomposition SVD
|
---|
| 75 | void sgesvd_(char* jobu, char* jobvt, int_4* m, int_4* n, r_4* a, int_4* lda,
|
---|
| 76 | r_4* s, r_4* u, int_4* ldu, r_4* vt, int_4* ldvt,
|
---|
| 77 | r_4* work, int_4* lwork, int_4* info);
|
---|
| 78 | void dgesvd_(char* jobu, char* jobvt, int_4* m, int_4* n, r_8* a, int_4* lda,
|
---|
| 79 | r_8* s, r_8* u, int_4* ldu, r_8* vt, int_4* ldvt,
|
---|
| 80 | r_8* work, int_4* lwork, int_4* info);
|
---|
| 81 | void cgesvd_(char* jobu, char* jobvt, int_4* m, int_4* n, complex<r_4>* a, int_4* lda,
|
---|
| 82 | complex<r_4>* s, complex<r_4>* u, int_4* ldu, complex<r_4>* vt, int_4* ldvt,
|
---|
| 83 | complex<r_4>* work, int_4* lwork, int_4* info);
|
---|
| 84 | void zgesvd_(char* jobu, char* jobvt, int_4* m, int_4* n, complex<r_8>* a, int_4* lda,
|
---|
| 85 | complex<r_8>* s, complex<r_8>* u, int_4* ldu, complex<r_8>* vt, int_4* ldvt,
|
---|
| 86 | complex<r_8>* work, int_4* lwork, int_4* info);
|
---|
| 87 |
|
---|
[775] | 88 | }
|
---|
| 89 |
|
---|
[1342] | 90 |
|
---|
| 91 | // -------------- Classe LapackServer<T> --------------
|
---|
| 92 |
|
---|
[814] | 93 | template <class T>
|
---|
[1344] | 94 | LapackServer<T>::LapackServer()
|
---|
[1342] | 95 | {
|
---|
| 96 | SetWorkSpaceSizeFactor();
|
---|
| 97 | }
|
---|
| 98 |
|
---|
| 99 | template <class T>
|
---|
[1344] | 100 | LapackServer<T>::~LapackServer()
|
---|
[1342] | 101 | {
|
---|
| 102 | }
|
---|
| 103 |
|
---|
[1424] | 104 | //! Interface to Lapack linear system solver driver s/d/c/zgesvd().
|
---|
| 105 | /*! Solve the linear system a * x = b. Input arrays
|
---|
| 106 | should have FortranMemory mapping (column packed).
|
---|
| 107 | \param a : input matrix, overwritten on output
|
---|
| 108 | \param b : input-output, input vector b, contains x on exit
|
---|
| 109 | \return : return code from lapack driver _gesv()
|
---|
| 110 | */
|
---|
[1342] | 111 | template <class T>
|
---|
[1042] | 112 | int LapackServer<T>::LinSolve(TArray<T>& a, TArray<T> & b)
|
---|
[814] | 113 | {
|
---|
| 114 | if ( ( a.NbDimensions() != 2 ) || ( b.NbDimensions() != 2 ) )
|
---|
| 115 | throw(SzMismatchError("LapackServer::LinSolve(a,b) a Or b NbDimensions() != 2"));
|
---|
| 116 |
|
---|
[1342] | 117 | int_4 rowa = a.RowsKA();
|
---|
| 118 | int_4 cola = a.ColsKA();
|
---|
| 119 | int_4 rowb = b.RowsKA();
|
---|
| 120 | int_4 colb = b.ColsKA();
|
---|
[814] | 121 | if ( a.Size(rowa) != a.Size(cola))
|
---|
| 122 | throw(SzMismatchError("LapackServer::LinSolve(a,b) a Not a square Array"));
|
---|
[1042] | 123 | if ( a.Size(rowa) != b.Size(rowb))
|
---|
[814] | 124 | throw(SzMismatchError("LapackServer::LinSolve(a,b) RowSize(a <> b) "));
|
---|
| 125 |
|
---|
| 126 | if (!a.IsPacked(rowa) || !b.IsPacked(rowb))
|
---|
[1342] | 127 | throw(SzMismatchError("LapackServer::LinSolve(a,b) a Or b Not Column Packed"));
|
---|
[814] | 128 |
|
---|
| 129 | int_4 n = a.Size(rowa);
|
---|
| 130 | int_4 nrhs = b.Size(colb);
|
---|
| 131 | int_4 lda = a.Step(cola);
|
---|
| 132 | int_4 ldb = b.Step(colb);
|
---|
| 133 | int_4 info;
|
---|
| 134 | int_4* ipiv = new int_4[n];
|
---|
| 135 |
|
---|
| 136 | if (typeid(T) == typeid(r_4) )
|
---|
| 137 | sgesv_(&n, &nrhs, (r_4 *)a.Data(), &lda, ipiv, (r_4 *)b.Data(), &ldb, &info);
|
---|
| 138 | else if (typeid(T) == typeid(r_8) )
|
---|
| 139 | dgesv_(&n, &nrhs, (r_8 *)a.Data(), &lda, ipiv, (r_8 *)b.Data(), &ldb, &info);
|
---|
| 140 | else if (typeid(T) == typeid(complex<r_4>) )
|
---|
| 141 | cgesv_(&n, &nrhs, (complex<r_4> *)a.Data(), &lda, ipiv,
|
---|
| 142 | (complex<r_4> *)b.Data(), &ldb, &info);
|
---|
| 143 | else if (typeid(T) == typeid(complex<r_8>) )
|
---|
| 144 | zgesv_(&n, &nrhs, (complex<r_8> *)a.Data(), &lda, ipiv,
|
---|
| 145 | (complex<r_8> *)b.Data(), &ldb, &info);
|
---|
| 146 | else {
|
---|
| 147 | delete[] ipiv;
|
---|
| 148 | string tn = typeid(T).name();
|
---|
| 149 | cerr << " LapackServer::LinSolve(a,b) - Unsupported DataType T = " << tn << endl;
|
---|
| 150 | throw TypeMismatchExc("LapackServer::LinSolve(a,b) - Unsupported DataType (T)");
|
---|
| 151 | }
|
---|
| 152 | delete[] ipiv;
|
---|
[1042] | 153 | return(info);
|
---|
[814] | 154 | }
|
---|
| 155 |
|
---|
[1566] | 156 | //! Interface to Lapack least squares solver driver s/d/c/zgels().
|
---|
| 157 | /*! Solves the linear least squares problem defined by an m-by-n matrix
|
---|
| 158 | \b a and an m element vector \b b .
|
---|
| 159 | A solution \b x to the overdetermined system of linear equations
|
---|
| 160 | b = a * x is computed, minimizing the norm of b-a*x.
|
---|
| 161 | Underdetermined systems (m<n) are not yet handled.
|
---|
| 162 | Inout arrays should have FortranMemory mapping (column packed).
|
---|
| 163 | \param a : input matrix, overwritten on output
|
---|
| 164 | \param b : input-output, input vector b, contains x on exit.
|
---|
| 165 | \return : return code from lapack driver _gels()
|
---|
| 166 | \warning : b is not resized.
|
---|
| 167 | */
|
---|
| 168 | /*
|
---|
| 169 | $CHECK$ - A faire - cas m<n
|
---|
| 170 | If the linear system is underdetermined, the minimum norm
|
---|
| 171 | solution is computed.
|
---|
| 172 | */
|
---|
| 173 |
|
---|
[1494] | 174 | template <class T>
|
---|
| 175 | int LapackServer<T>::LeastSquareSolve(TArray<T>& a, TArray<T> & b)
|
---|
| 176 | {
|
---|
| 177 | if ( ( a.NbDimensions() != 2 ) || ( b.NbDimensions() != 2 ) )
|
---|
| 178 | throw(SzMismatchError("LapackServer::LinSolve(a,b) a Or b NbDimensions() != 2"));
|
---|
| 179 |
|
---|
| 180 | int_4 rowa = a.RowsKA();
|
---|
| 181 | int_4 cola = a.ColsKA();
|
---|
| 182 | int_4 rowb = b.RowsKA();
|
---|
| 183 | int_4 colb = b.ColsKA();
|
---|
| 184 |
|
---|
| 185 |
|
---|
| 186 | if ( a.Size(rowa) != b.Size(rowb))
|
---|
| 187 | throw(SzMismatchError("LapackServer::LeastSquareSolve(a,b) RowSize(a <> b) "));
|
---|
| 188 |
|
---|
| 189 | if (!a.IsPacked(rowa) || !b.IsPacked(rowb))
|
---|
[1566] | 190 | throw(SzMismatchError("LapackServer::LeastSquareSolve(a,b) a Or b Not Column Packed"));
|
---|
[1494] | 191 |
|
---|
[1566] | 192 | if ( a.Size(rowa) < a.Size(cola)) { // $CHECK$ - m<n a changer
|
---|
| 193 | cout << " LapackServer<T>::LeastSquareSolve() - m<n - Not yet implemented for "
|
---|
| 194 | << " underdetermined systems ! " << endl;
|
---|
| 195 | throw(SzMismatchError("LapackServer::LeastSquareSolve(a,b) NRows<NCols - "));
|
---|
| 196 | }
|
---|
[1494] | 197 | int_4 m = a.Size(rowa);
|
---|
| 198 | int_4 n = a.Size(cola);
|
---|
| 199 | int_4 nrhs = b.Size(colb);
|
---|
| 200 |
|
---|
| 201 | int_4 lda = a.Step(cola);
|
---|
| 202 | int_4 ldb = b.Step(colb);
|
---|
| 203 | int_4 info;
|
---|
| 204 |
|
---|
| 205 | int_4 minmn = (m < n) ? m : n;
|
---|
| 206 | int_4 maxmn = (m > n) ? m : n;
|
---|
| 207 | int_4 maxmnrhs = (nrhs > maxmn) ? nrhs : maxmn;
|
---|
| 208 | if (maxmnrhs < 1) maxmnrhs = 1;
|
---|
| 209 |
|
---|
| 210 | int_4 lwork = minmn+maxmnrhs*5;
|
---|
| 211 | T * work = new T[lwork];
|
---|
| 212 |
|
---|
| 213 | char trans = 'N';
|
---|
| 214 |
|
---|
| 215 | if (typeid(T) == typeid(r_4) )
|
---|
| 216 | sgels_(&trans, &m, &n, &nrhs, (r_4 *)a.Data(), &lda,
|
---|
| 217 | (r_4 *)b.Data(), &ldb, (r_4 *)work, &lwork, &info);
|
---|
| 218 | else if (typeid(T) == typeid(r_8) )
|
---|
| 219 | dgels_(&trans, &m, &n, &nrhs, (r_8 *)a.Data(), &lda,
|
---|
| 220 | (r_8 *)b.Data(), &ldb, (r_8 *)work, &lwork, &info);
|
---|
| 221 | else if (typeid(T) == typeid(complex<r_4>) )
|
---|
| 222 | cgels_(&trans, &m, &n, &nrhs, (complex<r_4> *)a.Data(), &lda,
|
---|
| 223 | (complex<r_4> *)b.Data(), &ldb, (complex<r_4> *)work, &lwork, &info);
|
---|
| 224 | else if (typeid(T) == typeid(complex<r_8>) )
|
---|
| 225 | zgels_(&trans, &m, &n, &nrhs, (complex<r_8> *)a.Data(), &lda,
|
---|
| 226 | (complex<r_8> *)b.Data(), &ldb, (complex<r_8> *)work, &lwork, &info);
|
---|
| 227 | else {
|
---|
| 228 | delete[] work;
|
---|
| 229 | string tn = typeid(T).name();
|
---|
| 230 | cerr << " LapackServer::LeastSquareSolve(a,b) - Unsupported DataType T = " << tn << endl;
|
---|
| 231 | throw TypeMismatchExc("LapackServer::LeastSquareSolve(a,b) - Unsupported DataType (T)");
|
---|
| 232 | }
|
---|
| 233 | delete[] work;
|
---|
| 234 | return(info);
|
---|
| 235 | }
|
---|
| 236 |
|
---|
| 237 |
|
---|
[1424] | 238 | //! Interface to Lapack SVD driver s/d/c/zgesv().
|
---|
| 239 | /*! Computes the vector of singular values of \b a. Input arrays
|
---|
| 240 | should have FortranMemoryMapping (column packed).
|
---|
| 241 | \param a : input m-by-n matrix
|
---|
| 242 | \param s : Vector of min(m,n) singular values (descending order)
|
---|
| 243 | \return : return code from lapack driver _gesvd()
|
---|
| 244 | */
|
---|
| 245 |
|
---|
[1342] | 246 | template <class T>
|
---|
| 247 | int LapackServer<T>::SVD(TArray<T>& a, TArray<T> & s)
|
---|
| 248 | {
|
---|
| 249 | return (SVDDriver(a, s, NULL, NULL) );
|
---|
| 250 | }
|
---|
| 251 |
|
---|
[1424] | 252 | //! Interface to Lapack SVD driver s/d/c/zgesv().
|
---|
| 253 | /*! Computes the vector of singular values of \b a, as well as
|
---|
| 254 | right and left singular vectors of \b a.
|
---|
| 255 | \f[
|
---|
| 256 | A = U \Sigma V^T , ( A = U \Sigma V^H \ complex)
|
---|
| 257 | \f]
|
---|
| 258 | \f[
|
---|
| 259 | A v_i = \sigma_i u_i \ and A^T u_i = \sigma_i v_i \ (A^H \ complex)
|
---|
| 260 | \f]
|
---|
| 261 | U and V are orthogonal (unitary) matrices.
|
---|
| 262 | \param a : input m-by-n matrix (in FotranMemoryMapping)
|
---|
| 263 | \param s : Vector of min(m,n) singular values (descending order)
|
---|
| 264 | \param u : Matrix of left singular vectors
|
---|
| 265 | \param vt : Transpose of right singular vectors.
|
---|
| 266 | \return : return code from lapack driver _gesvd()
|
---|
| 267 | */
|
---|
[1342] | 268 | template <class T>
|
---|
| 269 | int LapackServer<T>::SVD(TArray<T>& a, TArray<T> & s, TArray<T> & u, TArray<T> & vt)
|
---|
| 270 | {
|
---|
| 271 | return (SVDDriver(a, s, &u, &vt) );
|
---|
| 272 | }
|
---|
| 273 |
|
---|
[1424] | 274 |
|
---|
| 275 | //! Interface to Lapack SVD driver s/d/c/zgesv().
|
---|
[1342] | 276 | template <class T>
|
---|
| 277 | int LapackServer<T>::SVDDriver(TArray<T>& a, TArray<T> & s, TArray<T>* up, TArray<T>* vtp)
|
---|
| 278 | {
|
---|
| 279 | if ( ( a.NbDimensions() != 2 ) )
|
---|
| 280 | throw(SzMismatchError("LapackServer::SVD(a, ...) a.NbDimensions() != 2"));
|
---|
| 281 |
|
---|
| 282 | int_4 rowa = a.RowsKA();
|
---|
| 283 | int_4 cola = a.ColsKA();
|
---|
| 284 |
|
---|
| 285 | if ( !a.IsPacked(rowa) )
|
---|
| 286 | throw(SzMismatchError("LapackServer::SVD(a, ...) a Not Column Packed "));
|
---|
| 287 |
|
---|
| 288 | int_4 m = a.Size(rowa);
|
---|
| 289 | int_4 n = a.Size(cola);
|
---|
| 290 | int_4 maxmn = (m > n) ? m : n;
|
---|
| 291 | int_4 minmn = (m < n) ? m : n;
|
---|
| 292 |
|
---|
| 293 | char jobu, jobvt;
|
---|
| 294 | jobu = 'N';
|
---|
| 295 | jobvt = 'N';
|
---|
| 296 |
|
---|
| 297 | sa_size_t sz[2];
|
---|
| 298 | if ( up != NULL) {
|
---|
| 299 | if ( dynamic_cast< TVector<T> * > (vtp) )
|
---|
| 300 | throw( TypeMismatchExc("LapackServer::SVD() Wrong type (=TVector<T>) for u !") );
|
---|
| 301 | up->SetMemoryMapping(BaseArray::FortranMemoryMapping);
|
---|
| 302 | sz[0] = sz[1] = m;
|
---|
| 303 | up->ReSize(2, sz );
|
---|
| 304 | jobu = 'A';
|
---|
| 305 | }
|
---|
| 306 | else {
|
---|
| 307 | up = new TMatrix<T>(1,1);
|
---|
| 308 | jobu = 'N';
|
---|
| 309 | }
|
---|
| 310 | if ( vtp != NULL) {
|
---|
| 311 | if ( dynamic_cast< TVector<T> * > (vtp) )
|
---|
| 312 | throw( TypeMismatchExc("LapackServer::SVD() Wrong type (=TVector<T>) for vt !") );
|
---|
| 313 | vtp->SetMemoryMapping(BaseArray::FortranMemoryMapping);
|
---|
| 314 | sz[0] = sz[1] = n;
|
---|
| 315 | vtp->ReSize(2, sz );
|
---|
| 316 | jobvt = 'A';
|
---|
| 317 | }
|
---|
| 318 | else {
|
---|
| 319 | vtp = new TMatrix<T>(1,1);
|
---|
| 320 | jobvt = 'N';
|
---|
| 321 | }
|
---|
| 322 |
|
---|
| 323 | TVector<T> *vs = dynamic_cast< TVector<T> * > (&s);
|
---|
| 324 | if (vs) vs->ReSize(minmn);
|
---|
| 325 | else {
|
---|
| 326 | TMatrix<T> *ms = dynamic_cast< TMatrix<T> * > (&s);
|
---|
| 327 | if (ms) ms->ReSize(minmn,1);
|
---|
| 328 | else {
|
---|
| 329 | sz[0] = minmn; sz[1] = 1;
|
---|
| 330 | s.ReSize(1, sz);
|
---|
| 331 | }
|
---|
| 332 | }
|
---|
| 333 |
|
---|
| 334 | int_4 lda = a.Step(a.ColsKA());
|
---|
| 335 | int_4 ldu = up->Step(up->ColsKA());
|
---|
| 336 | int_4 ldvt = vtp->Step(vtp->ColsKA());
|
---|
| 337 |
|
---|
| 338 | int_4 lwork = maxmn*5*wspace_size_factor;
|
---|
| 339 | T * work = new T[lwork];
|
---|
| 340 | int_4 info;
|
---|
| 341 |
|
---|
| 342 | if (typeid(T) == typeid(r_4) )
|
---|
| 343 | sgesvd_(&jobu, &jobvt, &m, &n, (r_4 *)a.Data(), &lda,
|
---|
| 344 | (r_4 *)s.Data(), (r_4 *) up->Data(), &ldu, (r_4 *)vtp->Data(), &ldvt,
|
---|
| 345 | (r_4 *)work, &lwork, &info);
|
---|
| 346 | else if (typeid(T) == typeid(r_8) )
|
---|
| 347 | dgesvd_(&jobu, &jobvt, &m, &n, (r_8 *)a.Data(), &lda,
|
---|
| 348 | (r_8 *)s.Data(), (r_8 *) up->Data(), &ldu, (r_8 *)vtp->Data(), &ldvt,
|
---|
| 349 | (r_8 *)work, &lwork, &info);
|
---|
| 350 | else if (typeid(T) == typeid(complex<r_4>) )
|
---|
| 351 | cgesvd_(&jobu, &jobvt, &m, &n, (complex<r_4> *)a.Data(), &lda,
|
---|
| 352 | (complex<r_4> *)s.Data(), (complex<r_4> *) up->Data(), &ldu,
|
---|
| 353 | (complex<r_4> *)vtp->Data(), &ldvt,
|
---|
| 354 | (complex<r_4> *)work, &lwork, &info);
|
---|
| 355 | else if (typeid(T) == typeid(complex<r_8>) )
|
---|
| 356 | zgesvd_(&jobu, &jobvt, &m, &n, (complex<r_8> *)a.Data(), &lda,
|
---|
| 357 | (complex<r_8> *)s.Data(), (complex<r_8> *) up->Data(), &ldu,
|
---|
| 358 | (complex<r_8> *)vtp->Data(), &ldvt,
|
---|
| 359 | (complex<r_8> *)work, &lwork, &info);
|
---|
| 360 | else {
|
---|
| 361 | if (jobu == 'N') delete up;
|
---|
| 362 | if (jobvt == 'N') delete vtp;
|
---|
| 363 | string tn = typeid(T).name();
|
---|
| 364 | cerr << " LapackServer::SVDDriver(...) - Unsupported DataType T = " << tn << endl;
|
---|
| 365 | throw TypeMismatchExc("LapackServer::LinSolve(a,b) - Unsupported DataType (T)");
|
---|
| 366 | }
|
---|
| 367 |
|
---|
| 368 | if (jobu == 'N') delete up;
|
---|
| 369 | if (jobvt == 'N') delete vtp;
|
---|
| 370 | return(info);
|
---|
| 371 | }
|
---|
| 372 |
|
---|
[775] | 373 | void rztest_lapack(TArray<r_4>& aa, TArray<r_4>& bb)
|
---|
| 374 | {
|
---|
| 375 | if ( aa.NbDimensions() != 2 ) throw(SzMismatchError("rztest_lapack(TMatrix<r_4> A Not a Matrix"));
|
---|
| 376 | if ( aa.SizeX() != aa.SizeY()) throw(SzMismatchError("rztest_lapack(TMatrix<r_4> A Not a square Matrix"));
|
---|
| 377 | if ( bb.NbDimensions() != 2 ) throw(SzMismatchError("rztest_lapack(TMatrix<r_4> A Not a Matrix"));
|
---|
[788] | 378 | if ( bb.SizeX() != aa.SizeX() ) throw(SzMismatchError("rztest_lapack(TMatrix<r_4> A <> B "));
|
---|
[775] | 379 | if ( !bb.IsPacked() || !bb.IsPacked() )
|
---|
| 380 | throw(SzMismatchError("rztest_lapack(TMatrix<r_4> Not packed A or B "));
|
---|
| 381 |
|
---|
[788] | 382 | int_4 n = aa.SizeX();
|
---|
| 383 | int_4 nrhs = bb.SizeY();
|
---|
[775] | 384 | int_4 lda = n;
|
---|
[788] | 385 | int_4 ldb = bb.SizeX();
|
---|
[775] | 386 | int_4 info;
|
---|
| 387 | int_4* ipiv = new int_4[n];
|
---|
| 388 | sgesv_(&n, &nrhs, aa.Data(), &lda, ipiv, bb.Data(), &ldb, &info);
|
---|
[814] | 389 | delete[] ipiv;
|
---|
[775] | 390 | cout << "rztest_lapack/Info= " << info << endl;
|
---|
| 391 | cout << aa << "\n" << bb << endl;
|
---|
| 392 | return;
|
---|
| 393 | }
|
---|
[814] | 394 |
|
---|
| 395 | ///////////////////////////////////////////////////////////////
|
---|
| 396 | #ifdef __CXX_PRAGMA_TEMPLATES__
|
---|
| 397 | #pragma define_template LapackServer<r_4>
|
---|
| 398 | #pragma define_template LapackServer<r_8>
|
---|
| 399 | #pragma define_template LapackServer< complex<r_4> >
|
---|
| 400 | #pragma define_template LapackServer< complex<r_8> >
|
---|
| 401 | #endif
|
---|
| 402 |
|
---|
| 403 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
|
---|
| 404 | template class LapackServer<r_4>;
|
---|
| 405 | template class LapackServer<r_8>;
|
---|
| 406 | template class LapackServer< complex<r_4> >;
|
---|
| 407 | template class LapackServer< complex<r_8> >;
|
---|
| 408 | #endif
|
---|
| 409 |
|
---|
| 410 | #if defined(OS_LINUX)
|
---|
| 411 | // Pour le link avec f2c sous Linux
|
---|
| 412 | extern "C" {
|
---|
| 413 | void MAIN__();
|
---|
| 414 | }
|
---|
| 415 |
|
---|
| 416 | void MAIN__()
|
---|
| 417 | {
|
---|
| 418 | cerr << "MAIN__() function for linking with libf2c.a " << endl;
|
---|
| 419 | cerr << " This function should never be called !!! " << endl;
|
---|
| 420 | throw PError("MAIN__() should not be called - see intflapack.cc");
|
---|
| 421 | }
|
---|
| 422 | #endif
|
---|