1 | #include <iostream>
|
---|
2 | #include "intflapack.h"
|
---|
3 | #include "tvector.h"
|
---|
4 | #include "tmatrix.h"
|
---|
5 | #include <typeinfo>
|
---|
6 |
|
---|
7 | /*************** Pour memoire (Christophe) ***************
|
---|
8 | Les dispositions memoires (FORTRAN) pour les vecteurs et matrices LAPACK:
|
---|
9 |
|
---|
10 | 1./ --- REAL X(N):
|
---|
11 | if an array X of dimension (N) holds a vector x,
|
---|
12 | then X(i) holds "x_i" for i=1,...,N
|
---|
13 |
|
---|
14 | 2./ --- REAL A(LDA,N):
|
---|
15 | if a two-dimensional array A of dimension (LDA,N) holds an m-by-n matrix A,
|
---|
16 | then A(i,j) holds "a_ij" for i=1,...,m et j=1,...,n (LDA must be at least m).
|
---|
17 | Note that array arguments are usually declared in the software as assumed-size
|
---|
18 | arrays (last dimension *), for example: REAL A(LDA,*)
|
---|
19 | --- Rangement en memoire:
|
---|
20 | | 11 12 13 14 |
|
---|
21 | Ex: Real A(4,4): A = | 21 22 23 24 |
|
---|
22 | | 31 32 33 34 |
|
---|
23 | | 41 42 43 44 |
|
---|
24 | memoire: {11 21 31 41} {12 22 32 42} {13 23 33 43} {14 24 34 44}
|
---|
25 | First indice (line) "i" varies then the second (column):
|
---|
26 | (put all the first column, then put all the second column,
|
---|
27 | ..., then put all the last column)
|
---|
28 | ***********************************************************/
|
---|
29 |
|
---|
30 | /*!
|
---|
31 | \defgroup LinAlg LinAlg module
|
---|
32 | This module contains classes and functions for complex linear
|
---|
33 | algebra on arrays. This module is intended mainly to have
|
---|
34 | classes implementing C++ interfaces between Sophya objects
|
---|
35 | and external linear algebra libraries, such as LAPACK.
|
---|
36 | */
|
---|
37 |
|
---|
38 | /*!
|
---|
39 | \class SOPHYA::LapackServer
|
---|
40 | \ingroup LinAlg
|
---|
41 | This class implements an interface to LAPACK library driver routines.
|
---|
42 | The LAPACK (Linear Algebra PACKage) is a collection high performance
|
---|
43 | routines to solve common problems in numerical linear algebra.
|
---|
44 | its is available from http://www.netlib.org.
|
---|
45 |
|
---|
46 | The present version of our LapackServer (Feb 2001) provides only
|
---|
47 | interfaces for the linear system solver and singular value
|
---|
48 | decomposition (SVD). Only arrays with BaseArray::FortranMemoryMapping
|
---|
49 | can be handled by LapackServer. LapackServer can be instanciated
|
---|
50 | for simple and double precision real or complex array types.
|
---|
51 |
|
---|
52 | The example below shows solving a linear system A*X = B
|
---|
53 |
|
---|
54 | \code
|
---|
55 | #include "intflapack.h"
|
---|
56 | // ...
|
---|
57 | // Use FortranMemoryMapping as default
|
---|
58 | BaseArray::SetDefaultMemoryMapping(BaseArray::FortranMemoryMapping);
|
---|
59 | // Create an fill the arrays A and B
|
---|
60 | int n = 20;
|
---|
61 | Matrix A(n, n);
|
---|
62 | A = RandomSequence();
|
---|
63 | Vector X(n),B(n);
|
---|
64 | X = RandomSequence();
|
---|
65 | B = A*X;
|
---|
66 | // Solve the linear system A*X = B
|
---|
67 | LapackServer<r_8> lps;
|
---|
68 | lps.LinSolve(A,B);
|
---|
69 | // We get the result in B, which should be equal to X ...
|
---|
70 | // Compute the difference B-X ;
|
---|
71 | Vector diff = B-X;
|
---|
72 | \endcode
|
---|
73 |
|
---|
74 | */
|
---|
75 |
|
---|
76 | ////////////////////////////////////////////////////////////////////////////////////
|
---|
77 | extern "C" {
|
---|
78 | // Le calculateur de workingspace
|
---|
79 | int_4 ilaenv_(int_4 *ispec,char *name,char *opts,int_4 *n1,int_4 *n2,int_4 *n3,int_4 *n4,
|
---|
80 | int_4 nc1,int_4 nc2);
|
---|
81 |
|
---|
82 | // Drivers pour resolution de systemes lineaires
|
---|
83 | void sgesv_(int_4* n, int_4* nrhs, r_4* a, int_4* lda,
|
---|
84 | int_4* ipiv, r_4* b, int_4* ldb, int_4* info);
|
---|
85 | void dgesv_(int_4* n, int_4* nrhs, r_8* a, int_4* lda,
|
---|
86 | int_4* ipiv, r_8* b, int_4* ldb, int_4* info);
|
---|
87 | void cgesv_(int_4* n, int_4* nrhs, complex<r_4>* a, int_4* lda,
|
---|
88 | int_4* ipiv, complex<r_4>* b, int_4* ldb, int_4* info);
|
---|
89 | void zgesv_(int_4* n, int_4* nrhs, complex<r_8>* a, int_4* lda,
|
---|
90 | int_4* ipiv, complex<r_8>* b, int_4* ldb, int_4* info);
|
---|
91 |
|
---|
92 | // Drivers pour resolution de systemes lineaires symetriques
|
---|
93 | void ssysv_(char* uplo, int_4* n, int_4* nrhs, r_4* a, int_4* lda,
|
---|
94 | int_4* ipiv, r_4* b, int_4* ldb,
|
---|
95 | r_4* work, int_4* lwork, int_4* info);
|
---|
96 | void dsysv_(char* uplo, int_4* n, int_4* nrhs, r_8* a, int_4* lda,
|
---|
97 | int_4* ipiv, r_8* b, int_4* ldb,
|
---|
98 | r_8* work, int_4* lwork, int_4* info);
|
---|
99 | void csysv_(char* uplo, int_4* n, int_4* nrhs, complex<r_4>* a, int_4* lda,
|
---|
100 | int_4* ipiv, complex<r_4>* b, int_4* ldb,
|
---|
101 | complex<r_4>* work, int_4* lwork, int_4* info);
|
---|
102 | void zsysv_(char* uplo, int_4* n, int_4* nrhs, complex<r_8>* a, int_4* lda,
|
---|
103 | int_4* ipiv, complex<r_8>* b, int_4* ldb,
|
---|
104 | complex<r_8>* work, int_4* lwork, int_4* info);
|
---|
105 |
|
---|
106 | // Driver pour resolution de systemes au sens de Xi2
|
---|
107 | void sgels_(char * trans, int_4* m, int_4* n, int_4* nrhs, r_4* a, int_4* lda,
|
---|
108 | r_4* b, int_4* ldb, r_4* work, int_4* lwork, int_4* info);
|
---|
109 | void dgels_(char * trans, int_4* m, int_4* n, int_4* nrhs, r_8* a, int_4* lda,
|
---|
110 | r_8* b, int_4* ldb, r_8* work, int_4* lwork, int_4* info);
|
---|
111 | void cgels_(char * trans, int_4* m, int_4* n, int_4* nrhs, complex<r_4>* a, int_4* lda,
|
---|
112 | complex<r_4>* b, int_4* ldb, complex<r_4>* work, int_4* lwork, int_4* info);
|
---|
113 | void zgels_(char * trans, int_4* m, int_4* n, int_4* nrhs, complex<r_8>* a, int_4* lda,
|
---|
114 | complex<r_8>* b, int_4* ldb, complex<r_8>* work, int_4* lwork, int_4* info);
|
---|
115 |
|
---|
116 | // Driver pour decomposition SVD
|
---|
117 | void sgesvd_(char* jobu, char* jobvt, int_4* m, int_4* n, r_4* a, int_4* lda,
|
---|
118 | r_4* s, r_4* u, int_4* ldu, r_4* vt, int_4* ldvt,
|
---|
119 | r_4* work, int_4* lwork, int_4* info);
|
---|
120 | void dgesvd_(char* jobu, char* jobvt, int_4* m, int_4* n, r_8* a, int_4* lda,
|
---|
121 | r_8* s, r_8* u, int_4* ldu, r_8* vt, int_4* ldvt,
|
---|
122 | r_8* work, int_4* lwork, int_4* info);
|
---|
123 | void cgesvd_(char* jobu, char* jobvt, int_4* m, int_4* n, complex<r_4>* a, int_4* lda,
|
---|
124 | complex<r_4>* s, complex<r_4>* u, int_4* ldu, complex<r_4>* vt, int_4* ldvt,
|
---|
125 | complex<r_4>* work, int_4* lwork, int_4* info);
|
---|
126 | void zgesvd_(char* jobu, char* jobvt, int_4* m, int_4* n, complex<r_8>* a, int_4* lda,
|
---|
127 | complex<r_8>* s, complex<r_8>* u, int_4* ldu, complex<r_8>* vt, int_4* ldvt,
|
---|
128 | complex<r_8>* work, int_4* lwork, int_4* info);
|
---|
129 |
|
---|
130 | // Driver pour eigen decomposition for symetric/hermitian matrices
|
---|
131 | void ssyev_(char* jobz, char* uplo, int_4* n, r_4* a, int_4* lda, r_4* w,
|
---|
132 | r_4* work, int_4 *lwork, int_4* info);
|
---|
133 | void dsyev_(char* jobz, char* uplo, int_4* n, r_8* a, int_4* lda, r_8* w,
|
---|
134 | r_8* work, int_4 *lwork, int_4* info);
|
---|
135 | void cheev_(char* jobz, char* uplo, int_4* n, complex<r_4>* a, int_4* lda, r_4* w,
|
---|
136 | complex<r_4>* work, int_4 *lwork, r_4* rwork, int_4* info);
|
---|
137 | void zheev_(char* jobz, char* uplo, int_4* n, complex<r_8>* a, int_4* lda, r_8* w,
|
---|
138 | complex<r_8>* work, int_4 *lwork, r_8* rwork, int_4* info);
|
---|
139 |
|
---|
140 | // Driver pour eigen decomposition for general squared matrices
|
---|
141 | void sgeev_(char* jobl, char* jobvr, int_4* n, r_4* a, int_4* lda, r_4* wr, r_4* wi,
|
---|
142 | r_4* vl, int_4* ldvl, r_4* vr, int_4* ldvr,
|
---|
143 | r_4* work, int_4 *lwork, int_4* info);
|
---|
144 | void dgeev_(char* jobl, char* jobvr, int_4* n, r_8* a, int_4* lda, r_8* wr, r_8* wi,
|
---|
145 | r_8* vl, int_4* ldvl, r_8* vr, int_4* ldvr,
|
---|
146 | r_8* work, int_4 *lwork, int_4* info);
|
---|
147 | void cgeev_(char* jobl, char* jobvr, int_4* n, complex<r_4>* a, int_4* lda, complex<r_4>* w,
|
---|
148 | complex<r_4>* vl, int_4* ldvl, complex<r_4>* vr, int_4* ldvr,
|
---|
149 | complex<r_4>* work, int_4 *lwork, r_4* rwork, int_4* info);
|
---|
150 | void zgeev_(char* jobl, char* jobvr, int_4* n, complex<r_8>* a, int_4* lda, complex<r_8>* w,
|
---|
151 | complex<r_8>* vl, int_4* ldvl, complex<r_8>* vr, int_4* ldvr,
|
---|
152 | complex<r_8>* work, int_4 *lwork, r_8* rwork, int_4* info);
|
---|
153 |
|
---|
154 | }
|
---|
155 |
|
---|
156 | // -------------- Classe LapackServer<T> --------------
|
---|
157 |
|
---|
158 | ////////////////////////////////////////////////////////////////////////////////////
|
---|
159 | template <class T>
|
---|
160 | LapackServer<T>::LapackServer()
|
---|
161 | {
|
---|
162 | SetWorkSpaceSizeFactor();
|
---|
163 | }
|
---|
164 |
|
---|
165 | template <class T>
|
---|
166 | LapackServer<T>::~LapackServer()
|
---|
167 | {
|
---|
168 | }
|
---|
169 |
|
---|
170 | // --- ATTENTION BUG POSSIBLE dans l'avenir (CMV) --- REZA A LIRE S.T.P.
|
---|
171 | // -> Cette connerie de Fortran/C interface
|
---|
172 | // Dans les routines fortran de lapack:
|
---|
173 | // Appel depuis le C avec:
|
---|
174 | // int_4 lwork = -1;
|
---|
175 | // SUBROUTINE SSYSV( UPLO,N,NRHS,A,LDA,IPIV,B,LDB,WORK,LWORK,INFO)
|
---|
176 | // INTEGER INFO, LDA, LDB, LWORK, N, NRHS
|
---|
177 | // LOGICAL LQUERY
|
---|
178 | // LQUERY = ( LWORK.EQ.-1 )
|
---|
179 | // ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
|
---|
180 | // ==> le test est bien interprete sous Linux mais pas sous OSF
|
---|
181 | // ==> Sous OSF "LWORK.EQ.-1" est FALSE quand on passe lwork=-1 par argument
|
---|
182 | // ==> POUR REZA: confusion entier 4 / 8 bits ??? (bizarre on l'aurait vu avant?)
|
---|
183 | ////////////////////////////////////////////////////////////////////////////////////
|
---|
184 | template <class T>
|
---|
185 | int_4 LapackServer<T>::ilaenv_en_C(int_4 ispec,char *name,char *opts,int_4 n1,int_4 n2,int_4 n3,int_4 n4)
|
---|
186 | {
|
---|
187 | int_4 nc1 = strlen(name);
|
---|
188 | int_4 nc2 = strlen(opts);
|
---|
189 | int_4 rc=0;
|
---|
190 | rc = ilaenv_(&ispec,name,opts,&n1,&n2,&n3,&n4,nc1,nc2);
|
---|
191 | //cout<<"ilaenv_en_C("<<ispec<<","<<name<<"("<<nc1<<"),"<<opts<<"("<<nc2<<"),"
|
---|
192 | // <<n1<<","<<n2<<","<<n3<<","<<n4<<") = "<<rc<<endl;
|
---|
193 | return rc;
|
---|
194 | }
|
---|
195 |
|
---|
196 | ////////////////////////////////////////////////////////////////////////////////////
|
---|
197 | //! Interface to Lapack linear system solver driver s/d/c/zgesvd().
|
---|
198 | /*! Solve the linear system a * x = b. Input arrays
|
---|
199 | should have FortranMemory mapping (column packed).
|
---|
200 | \param a : input matrix, overwritten on output
|
---|
201 | \param b : input-output, input vector b, contains x on exit
|
---|
202 | \return : return code from lapack driver _gesv()
|
---|
203 | */
|
---|
204 | template <class T>
|
---|
205 | int LapackServer<T>::LinSolve(TArray<T>& a, TArray<T> & b)
|
---|
206 | {
|
---|
207 | if ( ( a.NbDimensions() != 2 ) || ( b.NbDimensions() != 2 ) )
|
---|
208 | throw(SzMismatchError("LapackServer::LinSolve(a,b) a Or b NbDimensions() != 2"));
|
---|
209 |
|
---|
210 | int_4 rowa = a.RowsKA();
|
---|
211 | int_4 cola = a.ColsKA();
|
---|
212 | int_4 rowb = b.RowsKA();
|
---|
213 | int_4 colb = b.ColsKA();
|
---|
214 | if ( a.Size(rowa) != a.Size(cola))
|
---|
215 | throw(SzMismatchError("LapackServer::LinSolve(a,b) a Not a square Array"));
|
---|
216 | if ( a.Size(rowa) != b.Size(rowb))
|
---|
217 | throw(SzMismatchError("LapackServer::LinSolve(a,b) RowSize(a <> b) "));
|
---|
218 |
|
---|
219 | if (!a.IsPacked(rowa) || !b.IsPacked(rowb))
|
---|
220 | throw(SzMismatchError("LapackServer::LinSolve(a,b) a Or b Not Column Packed"));
|
---|
221 |
|
---|
222 | int_4 n = a.Size(rowa);
|
---|
223 | int_4 nrhs = b.Size(colb);
|
---|
224 | int_4 lda = a.Step(cola);
|
---|
225 | int_4 ldb = b.Step(colb);
|
---|
226 | int_4 info;
|
---|
227 | int_4* ipiv = new int_4[n];
|
---|
228 |
|
---|
229 | if (typeid(T) == typeid(r_4) )
|
---|
230 | sgesv_(&n, &nrhs, (r_4 *)a.Data(), &lda, ipiv, (r_4 *)b.Data(), &ldb, &info);
|
---|
231 | else if (typeid(T) == typeid(r_8) )
|
---|
232 | dgesv_(&n, &nrhs, (r_8 *)a.Data(), &lda, ipiv, (r_8 *)b.Data(), &ldb, &info);
|
---|
233 | else if (typeid(T) == typeid(complex<r_4>) )
|
---|
234 | cgesv_(&n, &nrhs, (complex<r_4> *)a.Data(), &lda, ipiv,
|
---|
235 | (complex<r_4> *)b.Data(), &ldb, &info);
|
---|
236 | else if (typeid(T) == typeid(complex<r_8>) )
|
---|
237 | zgesv_(&n, &nrhs, (complex<r_8> *)a.Data(), &lda, ipiv,
|
---|
238 | (complex<r_8> *)b.Data(), &ldb, &info);
|
---|
239 | else {
|
---|
240 | delete[] ipiv;
|
---|
241 | string tn = typeid(T).name();
|
---|
242 | cerr << " LapackServer::LinSolve(a,b) - Unsupported DataType T = " << tn << endl;
|
---|
243 | throw TypeMismatchExc("LapackServer::LinSolve(a,b) - Unsupported DataType (T)");
|
---|
244 | }
|
---|
245 | delete[] ipiv;
|
---|
246 | return(info);
|
---|
247 | }
|
---|
248 |
|
---|
249 | ////////////////////////////////////////////////////////////////////////////////////
|
---|
250 | //! Interface to Lapack linear system solver driver s/d/c/zsysvd().
|
---|
251 | /*! Solve the linear system a * x = b with a symetric. Input arrays
|
---|
252 | should have FortranMemory mapping (column packed).
|
---|
253 | \param a : input matrix symetric , overwritten on output
|
---|
254 | \param b : input-output, input vector b, contains x on exit
|
---|
255 | \return : return code from lapack driver _gesv()
|
---|
256 | */
|
---|
257 | template <class T>
|
---|
258 | int LapackServer<T>::LinSolveSym(TArray<T>& a, TArray<T> & b)
|
---|
259 | // --- REMARQUES DE CMV ---
|
---|
260 | // 1./ contrairement a ce qui est dit dans la doc, il s'agit
|
---|
261 | // de matrices SYMETRIQUES complexes et non HERMITIENNES !!!
|
---|
262 | // 2./ pourquoi les routines de LinSolve pour des matrices symetriques
|
---|
263 | // sont plus de deux fois plus lentes que les LinSolve generales sur OSF
|
---|
264 | // et sensiblement plus lentes sous Linux ???
|
---|
265 | {
|
---|
266 | if ( ( a.NbDimensions() != 2 ) || ( b.NbDimensions() != 2 ) )
|
---|
267 | throw(SzMismatchError("LapackServer::LinSolveSym(a,b) a Or b NbDimensions() != 2"));
|
---|
268 | int_4 rowa = a.RowsKA();
|
---|
269 | int_4 cola = a.ColsKA();
|
---|
270 | int_4 rowb = b.RowsKA();
|
---|
271 | int_4 colb = b.ColsKA();
|
---|
272 | if ( a.Size(rowa) != a.Size(cola))
|
---|
273 | throw(SzMismatchError("LapackServer::LinSolveSym(a,b) a Not a square Array"));
|
---|
274 | if ( a.Size(rowa) != b.Size(rowb))
|
---|
275 | throw(SzMismatchError("LapackServer::LinSolveSym(a,b) RowSize(a <> b) "));
|
---|
276 |
|
---|
277 | if (!a.IsPacked(rowa) || !b.IsPacked(rowb))
|
---|
278 | throw(SzMismatchError("LapackServer::LinSolveSym(a,b) a Or b Not Column Packed"));
|
---|
279 |
|
---|
280 | int_4 n = a.Size(rowa);
|
---|
281 | int_4 nrhs = b.Size(colb);
|
---|
282 | int_4 lda = a.Step(cola);
|
---|
283 | int_4 ldb = b.Step(colb);
|
---|
284 | int_4 info = 0;
|
---|
285 | int_4* ipiv = new int_4[n];
|
---|
286 | int_4 lwork = -1;
|
---|
287 | T * work = NULL;
|
---|
288 |
|
---|
289 | char uplo = 'U'; // char uplo = 'L';
|
---|
290 | char struplo[5]; struplo[0] = uplo; struplo[1] = '\0';
|
---|
291 |
|
---|
292 | if (typeid(T) == typeid(r_4) ) {
|
---|
293 | lwork = ilaenv_en_C(1,"SSYTRF",struplo,n,-1,-1,-1) * n +5;
|
---|
294 | work = new T[lwork];
|
---|
295 | ssysv_(&uplo, &n, &nrhs, (r_4 *)a.Data(), &lda, ipiv, (r_4 *)b.Data(), &ldb,
|
---|
296 | (r_4 *)work, &lwork, &info);
|
---|
297 | } else if (typeid(T) == typeid(r_8) ) {
|
---|
298 | lwork = ilaenv_en_C(1,"DSYTRF",struplo,n,-1,-1,-1) * n +5;
|
---|
299 | work = new T[lwork];
|
---|
300 | dsysv_(&uplo, &n, &nrhs, (r_8 *)a.Data(), &lda, ipiv, (r_8 *)b.Data(), &ldb,
|
---|
301 | (r_8 *)work, &lwork, &info);
|
---|
302 | } else if (typeid(T) == typeid(complex<r_4>) ) {
|
---|
303 | lwork = ilaenv_en_C(1,"CSYTRF",struplo,n,-1,-1,-1) * n +5;
|
---|
304 | work = new T[lwork];
|
---|
305 | csysv_(&uplo, &n, &nrhs, (complex<r_4> *)a.Data(), &lda, ipiv,
|
---|
306 | (complex<r_4> *)b.Data(), &ldb,
|
---|
307 | (complex<r_4> *)work, &lwork, &info);
|
---|
308 | } else if (typeid(T) == typeid(complex<r_8>) ) {
|
---|
309 | lwork = ilaenv_en_C(1,"ZSYTRF",struplo,n,-1,-1,-1) * n +5;
|
---|
310 | work = new T[lwork];
|
---|
311 | zsysv_(&uplo, &n, &nrhs, (complex<r_8> *)a.Data(), &lda, ipiv,
|
---|
312 | (complex<r_8> *)b.Data(), &ldb,
|
---|
313 | (complex<r_8> *)work, &lwork, &info);
|
---|
314 | } else {
|
---|
315 | if(work) delete[] work;
|
---|
316 | delete[] ipiv;
|
---|
317 | string tn = typeid(T).name();
|
---|
318 | cerr << " LapackServer::LinSolveSym(a,b) - Unsupported DataType T = " << tn << endl;
|
---|
319 | throw TypeMismatchExc("LapackServer::LinSolveSym(a,b) - Unsupported DataType (T)");
|
---|
320 | }
|
---|
321 | if(work) delete[] work;
|
---|
322 | delete[] ipiv;
|
---|
323 | return(info);
|
---|
324 | }
|
---|
325 |
|
---|
326 | ////////////////////////////////////////////////////////////////////////////////////
|
---|
327 | //! Interface to Lapack least squares solver driver s/d/c/zgels().
|
---|
328 | /*! Solves the linear least squares problem defined by an m-by-n matrix
|
---|
329 | \b a and an m element vector \b b .
|
---|
330 | A solution \b x to the overdetermined system of linear equations
|
---|
331 | b = a * x is computed, minimizing the norm of b-a*x.
|
---|
332 | Underdetermined systems (m<n) are not yet handled.
|
---|
333 | Inout arrays should have FortranMemory mapping (column packed).
|
---|
334 | \param a : input matrix, overwritten on output
|
---|
335 | \param b : input-output, input vector b, contains x on exit.
|
---|
336 | \return : return code from lapack driver _gels()
|
---|
337 | \warning : b is not resized.
|
---|
338 | */
|
---|
339 | /*
|
---|
340 | $CHECK$ - A faire - cas m<n
|
---|
341 | If the linear system is underdetermined, the minimum norm
|
---|
342 | solution is computed.
|
---|
343 | */
|
---|
344 |
|
---|
345 | template <class T>
|
---|
346 | int LapackServer<T>::LeastSquareSolve(TArray<T>& a, TArray<T> & b)
|
---|
347 | {
|
---|
348 | if ( ( a.NbDimensions() != 2 ) || ( b.NbDimensions() != 2 ) )
|
---|
349 | throw(SzMismatchError("LapackServer::LinSolve(a,b) a Or b NbDimensions() != 2"));
|
---|
350 |
|
---|
351 | int_4 rowa = a.RowsKA();
|
---|
352 | int_4 cola = a.ColsKA();
|
---|
353 | int_4 rowb = b.RowsKA();
|
---|
354 | int_4 colb = b.ColsKA();
|
---|
355 |
|
---|
356 |
|
---|
357 | if ( a.Size(rowa) != b.Size(rowb))
|
---|
358 | throw(SzMismatchError("LapackServer::LeastSquareSolve(a,b) RowSize(a <> b) "));
|
---|
359 |
|
---|
360 | if (!a.IsPacked(rowa) || !b.IsPacked(rowb))
|
---|
361 | throw(SzMismatchError("LapackServer::LeastSquareSolve(a,b) a Or b Not Column Packed"));
|
---|
362 |
|
---|
363 | if ( a.Size(rowa) < a.Size(cola)) { // $CHECK$ - m<n a changer
|
---|
364 | cout << " LapackServer<T>::LeastSquareSolve() - m<n - Not yet implemented for "
|
---|
365 | << " underdetermined systems ! " << endl;
|
---|
366 | throw(SzMismatchError("LapackServer::LeastSquareSolve(a,b) NRows<NCols - "));
|
---|
367 | }
|
---|
368 | int_4 m = a.Size(rowa);
|
---|
369 | int_4 n = a.Size(cola);
|
---|
370 | int_4 nrhs = b.Size(colb);
|
---|
371 |
|
---|
372 | int_4 lda = a.Step(cola);
|
---|
373 | int_4 ldb = b.Step(colb);
|
---|
374 | int_4 info;
|
---|
375 |
|
---|
376 | int_4 minmn = (m < n) ? m : n;
|
---|
377 | int_4 maxmn = (m > n) ? m : n;
|
---|
378 | int_4 maxmnrhs = (nrhs > maxmn) ? nrhs : maxmn;
|
---|
379 | if (maxmnrhs < 1) maxmnrhs = 1;
|
---|
380 |
|
---|
381 | int_4 lwork = minmn+maxmnrhs*5;
|
---|
382 | T * work = new T[lwork];
|
---|
383 |
|
---|
384 | char trans = 'N';
|
---|
385 |
|
---|
386 | if (typeid(T) == typeid(r_4) )
|
---|
387 | sgels_(&trans, &m, &n, &nrhs, (r_4 *)a.Data(), &lda,
|
---|
388 | (r_4 *)b.Data(), &ldb, (r_4 *)work, &lwork, &info);
|
---|
389 | else if (typeid(T) == typeid(r_8) )
|
---|
390 | dgels_(&trans, &m, &n, &nrhs, (r_8 *)a.Data(), &lda,
|
---|
391 | (r_8 *)b.Data(), &ldb, (r_8 *)work, &lwork, &info);
|
---|
392 | else if (typeid(T) == typeid(complex<r_4>) )
|
---|
393 | cgels_(&trans, &m, &n, &nrhs, (complex<r_4> *)a.Data(), &lda,
|
---|
394 | (complex<r_4> *)b.Data(), &ldb, (complex<r_4> *)work, &lwork, &info);
|
---|
395 | else if (typeid(T) == typeid(complex<r_8>) )
|
---|
396 | zgels_(&trans, &m, &n, &nrhs, (complex<r_8> *)a.Data(), &lda,
|
---|
397 | (complex<r_8> *)b.Data(), &ldb, (complex<r_8> *)work, &lwork, &info);
|
---|
398 | else {
|
---|
399 | delete[] work;
|
---|
400 | string tn = typeid(T).name();
|
---|
401 | cerr << " LapackServer::LeastSquareSolve(a,b) - Unsupported DataType T = " << tn << endl;
|
---|
402 | throw TypeMismatchExc("LapackServer::LeastSquareSolve(a,b) - Unsupported DataType (T)");
|
---|
403 | }
|
---|
404 | delete[] work;
|
---|
405 | return(info);
|
---|
406 | }
|
---|
407 |
|
---|
408 |
|
---|
409 | ////////////////////////////////////////////////////////////////////////////////////
|
---|
410 | //! Interface to Lapack SVD driver s/d/c/zgesv().
|
---|
411 | /*! Computes the vector of singular values of \b a. Input arrays
|
---|
412 | should have FortranMemoryMapping (column packed).
|
---|
413 | \param a : input m-by-n matrix
|
---|
414 | \param s : Vector of min(m,n) singular values (descending order)
|
---|
415 | \return : return code from lapack driver _gesvd()
|
---|
416 | */
|
---|
417 |
|
---|
418 | template <class T>
|
---|
419 | int LapackServer<T>::SVD(TArray<T>& a, TArray<T> & s)
|
---|
420 | {
|
---|
421 | return (SVDDriver(a, s, NULL, NULL) );
|
---|
422 | }
|
---|
423 |
|
---|
424 | //! Interface to Lapack SVD driver s/d/c/zgesv().
|
---|
425 | /*! Computes the vector of singular values of \b a, as well as
|
---|
426 | right and left singular vectors of \b a.
|
---|
427 | \f[
|
---|
428 | A = U \Sigma V^T , ( A = U \Sigma V^H \ complex)
|
---|
429 | \f]
|
---|
430 | \f[
|
---|
431 | A v_i = \sigma_i u_i \ and A^T u_i = \sigma_i v_i \ (A^H \ complex)
|
---|
432 | \f]
|
---|
433 | U and V are orthogonal (unitary) matrices.
|
---|
434 | \param a : input m-by-n matrix (in FotranMemoryMapping)
|
---|
435 | \param s : Vector of min(m,n) singular values (descending order)
|
---|
436 | \param u : Matrix of left singular vectors
|
---|
437 | \param vt : Transpose of right singular vectors.
|
---|
438 | \return : return code from lapack driver _gesvd()
|
---|
439 | */
|
---|
440 | template <class T>
|
---|
441 | int LapackServer<T>::SVD(TArray<T>& a, TArray<T> & s, TArray<T> & u, TArray<T> & vt)
|
---|
442 | {
|
---|
443 | return (SVDDriver(a, s, &u, &vt) );
|
---|
444 | }
|
---|
445 |
|
---|
446 |
|
---|
447 | //! Interface to Lapack SVD driver s/d/c/zgesv().
|
---|
448 | template <class T>
|
---|
449 | int LapackServer<T>::SVDDriver(TArray<T>& a, TArray<T> & s, TArray<T>* up, TArray<T>* vtp)
|
---|
450 | {
|
---|
451 | if ( ( a.NbDimensions() != 2 ) )
|
---|
452 | throw(SzMismatchError("LapackServer::SVD(a, ...) a.NbDimensions() != 2"));
|
---|
453 |
|
---|
454 | int_4 rowa = a.RowsKA();
|
---|
455 | int_4 cola = a.ColsKA();
|
---|
456 |
|
---|
457 | if ( !a.IsPacked(rowa) )
|
---|
458 | throw(SzMismatchError("LapackServer::SVD(a, ...) a Not Column Packed "));
|
---|
459 |
|
---|
460 | int_4 m = a.Size(rowa);
|
---|
461 | int_4 n = a.Size(cola);
|
---|
462 | int_4 maxmn = (m > n) ? m : n;
|
---|
463 | int_4 minmn = (m < n) ? m : n;
|
---|
464 |
|
---|
465 | char jobu, jobvt;
|
---|
466 | jobu = 'N';
|
---|
467 | jobvt = 'N';
|
---|
468 |
|
---|
469 | sa_size_t sz[2];
|
---|
470 | if ( up != NULL) {
|
---|
471 | if ( dynamic_cast< TVector<T> * > (vtp) )
|
---|
472 | throw( TypeMismatchExc("LapackServer::SVD() Wrong type (=TVector<T>) for u !") );
|
---|
473 | up->SetMemoryMapping(BaseArray::FortranMemoryMapping);
|
---|
474 | sz[0] = sz[1] = m;
|
---|
475 | up->ReSize(2, sz );
|
---|
476 | jobu = 'A';
|
---|
477 | }
|
---|
478 | else {
|
---|
479 | up = new TMatrix<T>(1,1);
|
---|
480 | jobu = 'N';
|
---|
481 | }
|
---|
482 | if ( vtp != NULL) {
|
---|
483 | if ( dynamic_cast< TVector<T> * > (vtp) )
|
---|
484 | throw( TypeMismatchExc("LapackServer::SVD() Wrong type (=TVector<T>) for vt !") );
|
---|
485 | vtp->SetMemoryMapping(BaseArray::FortranMemoryMapping);
|
---|
486 | sz[0] = sz[1] = n;
|
---|
487 | vtp->ReSize(2, sz );
|
---|
488 | jobvt = 'A';
|
---|
489 | }
|
---|
490 | else {
|
---|
491 | vtp = new TMatrix<T>(1,1);
|
---|
492 | jobvt = 'N';
|
---|
493 | }
|
---|
494 |
|
---|
495 | TVector<T> *vs = dynamic_cast< TVector<T> * > (&s);
|
---|
496 | if (vs) vs->ReSize(minmn);
|
---|
497 | else {
|
---|
498 | TMatrix<T> *ms = dynamic_cast< TMatrix<T> * > (&s);
|
---|
499 | if (ms) ms->ReSize(minmn,1);
|
---|
500 | else {
|
---|
501 | sz[0] = minmn; sz[1] = 1;
|
---|
502 | s.ReSize(1, sz);
|
---|
503 | }
|
---|
504 | }
|
---|
505 |
|
---|
506 | int_4 lda = a.Step(a.ColsKA());
|
---|
507 | int_4 ldu = up->Step(up->ColsKA());
|
---|
508 | int_4 ldvt = vtp->Step(vtp->ColsKA());
|
---|
509 |
|
---|
510 | int_4 lwork = maxmn*5*wspace_size_factor;
|
---|
511 | T * work = new T[lwork];
|
---|
512 | int_4 info;
|
---|
513 |
|
---|
514 | if (typeid(T) == typeid(r_4) )
|
---|
515 | sgesvd_(&jobu, &jobvt, &m, &n, (r_4 *)a.Data(), &lda,
|
---|
516 | (r_4 *)s.Data(), (r_4 *) up->Data(), &ldu, (r_4 *)vtp->Data(), &ldvt,
|
---|
517 | (r_4 *)work, &lwork, &info);
|
---|
518 | else if (typeid(T) == typeid(r_8) )
|
---|
519 | dgesvd_(&jobu, &jobvt, &m, &n, (r_8 *)a.Data(), &lda,
|
---|
520 | (r_8 *)s.Data(), (r_8 *) up->Data(), &ldu, (r_8 *)vtp->Data(), &ldvt,
|
---|
521 | (r_8 *)work, &lwork, &info);
|
---|
522 | else if (typeid(T) == typeid(complex<r_4>) )
|
---|
523 | cgesvd_(&jobu, &jobvt, &m, &n, (complex<r_4> *)a.Data(), &lda,
|
---|
524 | (complex<r_4> *)s.Data(), (complex<r_4> *) up->Data(), &ldu,
|
---|
525 | (complex<r_4> *)vtp->Data(), &ldvt,
|
---|
526 | (complex<r_4> *)work, &lwork, &info);
|
---|
527 | else if (typeid(T) == typeid(complex<r_8>) )
|
---|
528 | zgesvd_(&jobu, &jobvt, &m, &n, (complex<r_8> *)a.Data(), &lda,
|
---|
529 | (complex<r_8> *)s.Data(), (complex<r_8> *) up->Data(), &ldu,
|
---|
530 | (complex<r_8> *)vtp->Data(), &ldvt,
|
---|
531 | (complex<r_8> *)work, &lwork, &info);
|
---|
532 | else {
|
---|
533 | if (jobu == 'N') delete up;
|
---|
534 | if (jobvt == 'N') delete vtp;
|
---|
535 | string tn = typeid(T).name();
|
---|
536 | cerr << " LapackServer::SVDDriver(...) - Unsupported DataType T = " << tn << endl;
|
---|
537 | throw TypeMismatchExc("LapackServer::LinSolve(a,b) - Unsupported DataType (T)");
|
---|
538 | }
|
---|
539 |
|
---|
540 | if (jobu == 'N') delete up;
|
---|
541 | if (jobvt == 'N') delete vtp;
|
---|
542 | return(info);
|
---|
543 | }
|
---|
544 |
|
---|
545 |
|
---|
546 | ////////////////////////////////////////////////////////////////////////////////////
|
---|
547 | /*! Computes the eigen values and eigen vectors of a symetric (or hermitian) matrix \b a.
|
---|
548 | Input arrays should have FortranMemoryMapping (column packed).
|
---|
549 | \param a : input symetric (or hermitian) n-by-n matrix
|
---|
550 | \param b : Vector of eigenvalues (descending order)
|
---|
551 | \param eigenvector : if true compute eigenvectors, if not only eigenvalues
|
---|
552 | \param a : on return array of eigenvectors (same order than eval, one vector = one column)
|
---|
553 | \return : return code from lapack driver _gesvd()
|
---|
554 | */
|
---|
555 |
|
---|
556 | template <class T>
|
---|
557 | int LapackServer<T>::LapackEigenSym(TArray<T>& a, TVector<r_8>& b, bool eigenvector)
|
---|
558 | {
|
---|
559 | if ( a.NbDimensions() != 2 )
|
---|
560 | throw(SzMismatchError("LapackServer::LapackEigenSym(a,b) a NbDimensions() != 2"));
|
---|
561 | int_4 rowa = a.RowsKA();
|
---|
562 | int_4 cola = a.ColsKA();
|
---|
563 | if ( a.Size(rowa) != a.Size(cola))
|
---|
564 | throw(SzMismatchError("LapackServer::LapackEigenSym(a,b) a Not a square Array"));
|
---|
565 | if (!a.IsPacked(rowa))
|
---|
566 | throw(SzMismatchError("LapackServer::LapackEigenSym(a,b) a Not Column Packed"));
|
---|
567 |
|
---|
568 | char uplo='U'; char struplo[5]; struplo[0]=uplo; struplo[1]='\0';
|
---|
569 | char jobz='N'; if(eigenvector) jobz='V';
|
---|
570 | char strjobz[5]; strjobz[0]=jobz; strjobz[1]='\0';
|
---|
571 |
|
---|
572 | int_4 n = a.Size(rowa);
|
---|
573 | int_4 lda = a.Step(cola);
|
---|
574 | int_4 info = 0;
|
---|
575 |
|
---|
576 | b.ReSize(n); b = 0.;
|
---|
577 |
|
---|
578 | if (typeid(T) == typeid(r_4) ) {
|
---|
579 | int_4 lwork = 3*n-1 +5; r_4* work = new r_4[lwork];
|
---|
580 | r_4* w = new r_4[n];
|
---|
581 | ssyev_(strjobz,struplo,&n,(r_4 *)a.Data(),&lda,(r_4 *)w,(r_4 *)work,&lwork,&info);
|
---|
582 | if(info==0) for(int i=0;i<n;i++) b(i) = w[i];
|
---|
583 | delete [] work; delete [] w;
|
---|
584 | } else if (typeid(T) == typeid(r_8) ) {
|
---|
585 | int_4 lwork = 3*n-1 +5; r_8* work = new r_8[lwork];
|
---|
586 | r_8* w = new r_8[n];
|
---|
587 | dsyev_(strjobz,struplo,&n,(r_8 *)a.Data(),&lda,(r_8 *)w,(r_8 *)work,&lwork,&info);
|
---|
588 | if(info==0) for(int i=0;i<n;i++) b(i) = w[i];
|
---|
589 | delete [] work; delete [] w;
|
---|
590 | } else if (typeid(T) == typeid(complex<r_4>) ) {
|
---|
591 | int_4 lwork = 2*n-1 +5; complex<r_4>* work = new complex<r_4>[lwork];
|
---|
592 | r_4* rwork = new r_4[3*n-2 +5]; r_4* w = new r_4[n];
|
---|
593 | cheev_(strjobz,struplo,&n,(complex<r_4> *)a.Data(),&lda,(r_4 *)w
|
---|
594 | ,(complex<r_4> *)work,&lwork,(r_4 *)rwork,&info);
|
---|
595 | if(info==0) for(int i=0;i<n;i++) b(i) = w[i];
|
---|
596 | delete [] work; delete [] rwork; delete [] w;
|
---|
597 | } else if (typeid(T) == typeid(complex<r_8>) ) {
|
---|
598 | int_4 lwork = 2*n-1 +5; complex<r_8>* work = new complex<r_8>[lwork];
|
---|
599 | r_8* rwork = new r_8[3*n-2 +5]; r_8* w = new r_8[n];
|
---|
600 | zheev_(strjobz,struplo,&n,(complex<r_8> *)a.Data(),&lda,(r_8 *)w
|
---|
601 | ,(complex<r_8> *)work,&lwork,(r_8 *)rwork,&info);
|
---|
602 | if(info==0) for(int i=0;i<n;i++) b(i) = w[i];
|
---|
603 | delete [] work; delete [] rwork; delete [] w;
|
---|
604 | } else {
|
---|
605 | string tn = typeid(T).name();
|
---|
606 | cerr << " LapackServer::LapackEigenSym(a,b) - Unsupported DataType T = " << tn << endl;
|
---|
607 | throw TypeMismatchExc("LapackServer::LapackEigenSym(a,b) - Unsupported DataType (T)");
|
---|
608 | }
|
---|
609 |
|
---|
610 | return(info);
|
---|
611 | }
|
---|
612 |
|
---|
613 | ////////////////////////////////////////////////////////////////////////////////////
|
---|
614 | /*! Computes the eigen values and eigen vectors of a general squared matrix \b a.
|
---|
615 | Input arrays should have FortranMemoryMapping (column packed).
|
---|
616 | \param a : input general n-by-n matrix
|
---|
617 | \param eval : Vector of eigenvalues (complex double precision)
|
---|
618 | \param evec : Matrix of eigenvector (same order than eval, one vector = one column)
|
---|
619 | \param eigenvector : if true compute (right) eigenvectors, if not only eigenvalues
|
---|
620 | \param a : on return array of eigenvectors
|
---|
621 | \return : return code from lapack driver _gesvd()
|
---|
622 | \verbatim
|
---|
623 | eval : contains the computed eigenvalues.
|
---|
624 | --- For real matrices "a" :
|
---|
625 | Complex conjugate pairs of eigenvalues appear consecutively
|
---|
626 | with the eigenvalue having the positive imaginary part first.
|
---|
627 | evec : the right eigenvectors v(j) are stored one after another
|
---|
628 | in the columns of evec, in the same order as their eigenvalues.
|
---|
629 | --- For real matrices "a" :
|
---|
630 | If the j-th eigenvalue is real, then v(j) = evec(:,j),
|
---|
631 | the j-th column of evec.
|
---|
632 | If the j-th and (j+1)-st eigenvalues form a complex
|
---|
633 | conjugate pair, then v(j) = evec(:,j) + i*evec(:,j+1) and
|
---|
634 | v(j+1) = evec(:,j) - i*evec(:,j+1).
|
---|
635 | \endverbatim
|
---|
636 | */
|
---|
637 |
|
---|
638 | template <class T>
|
---|
639 | int LapackServer<T>::LapackEigen(TArray<T>& a, TVector< complex<r_8> >& eval, TMatrix<T>& evec, bool eigenvector)
|
---|
640 | {
|
---|
641 | if ( a.NbDimensions() != 2 )
|
---|
642 | throw(SzMismatchError("LapackServer::LapackEigen(a,b) a NbDimensions() != 2"));
|
---|
643 | int_4 rowa = a.RowsKA();
|
---|
644 | int_4 cola = a.ColsKA();
|
---|
645 | if ( a.Size(rowa) != a.Size(cola))
|
---|
646 | throw(SzMismatchError("LapackServer::LapackEigen(a,b) a Not a square Array"));
|
---|
647 | if (!a.IsPacked(rowa))
|
---|
648 | throw(SzMismatchError("LapackServer::LapackEigen(a,b) a Not Column Packed"));
|
---|
649 |
|
---|
650 | char jobvl = 'N'; char strjobvl[5]; strjobvl[0] = jobvl; strjobvl[1] = '\0';
|
---|
651 | char jobvr = 'N'; if(eigenvector) jobvr='V';
|
---|
652 | char strjobvr[5]; strjobvr[0] = jobvr; strjobvr[1] = '\0';
|
---|
653 |
|
---|
654 | int_4 n = a.Size(rowa);
|
---|
655 | int_4 lda = a.Step(cola);
|
---|
656 | int_4 info = 0;
|
---|
657 |
|
---|
658 | eval.ReSize(n); eval = complex<r_8>(0.,0.);
|
---|
659 | if(eigenvector) {evec.ReSize(n,n); evec = (T) 0.;}
|
---|
660 | int_4 ldvr = n, ldvl = 1;
|
---|
661 |
|
---|
662 | if (typeid(T) == typeid(r_4) ) {
|
---|
663 | int_4 lwork = 4*n +5; r_4* work = new r_4[lwork];
|
---|
664 | r_4* wr = new r_4[n]; r_4* wi = new r_4[n]; r_4* vl = NULL;
|
---|
665 | sgeev_(strjobvl,strjobvr,&n,(r_4 *)a.Data(),&lda,(r_4 *)wr,(r_4 *)wi,
|
---|
666 | (r_4 *)vl,&ldvl,(r_4 *)evec.Data(),&ldvr,
|
---|
667 | (r_4 *)work,&lwork,&info);
|
---|
668 | if(info==0) for(int i=0;i<n;i++) eval(i) = complex<r_8>(wr[i],wi[i]);
|
---|
669 | delete [] work; delete [] wr; delete [] wi;
|
---|
670 | } else if (typeid(T) == typeid(r_8) ) {
|
---|
671 | int_4 lwork = 4*n +5; r_8* work = new r_8[lwork];
|
---|
672 | r_8* wr = new r_8[n]; r_8* wi = new r_8[n]; r_8* vl = NULL;
|
---|
673 | dgeev_(strjobvl,strjobvr,&n,(r_8 *)a.Data(),&lda,(r_8 *)wr,(r_8 *)wi,
|
---|
674 | (r_8 *)vl,&ldvl,(r_8 *)evec.Data(),&ldvr,
|
---|
675 | (r_8 *)work,&lwork,&info);
|
---|
676 | if(info==0) for(int i=0;i<n;i++) eval(i) = complex<r_8>(wr[i],wi[i]);
|
---|
677 | delete [] work; delete [] wr; delete [] wi;
|
---|
678 | } else if (typeid(T) == typeid(complex<r_4>) ) {
|
---|
679 | int_4 lwork = 2*n +5; complex<r_4>* work = new complex<r_4>[lwork];
|
---|
680 | r_4* rwork = new r_4[2*n+5]; r_4* vl = NULL; TVector< complex<r_4> > w(n);
|
---|
681 | cgeev_(strjobvl,strjobvr,&n,(complex<r_4> *)a.Data(),&lda,(complex<r_4> *)w.Data(),
|
---|
682 | (complex<r_4> *)vl,&ldvl,(complex<r_4> *)evec.Data(),&ldvr,
|
---|
683 | (complex<r_4> *)work,&lwork,(r_4 *)rwork,&info);
|
---|
684 | if(info==0) for(int i=0;i<n;i++) eval(i) = w(i);
|
---|
685 | delete [] work; delete [] rwork;
|
---|
686 | } else if (typeid(T) == typeid(complex<r_8>) ) {
|
---|
687 | int_4 lwork = 2*n +5; complex<r_8>* work = new complex<r_8>[lwork];
|
---|
688 | r_8* rwork = new r_8[2*n+5]; r_8* vl = NULL;
|
---|
689 | zgeev_(strjobvl,strjobvr,&n,(complex<r_8> *)a.Data(),&lda,(complex<r_8> *)eval.Data(),
|
---|
690 | (complex<r_8> *)vl,&ldvl,(complex<r_8> *)evec.Data(),&ldvr,
|
---|
691 | (complex<r_8> *)work,&lwork,(r_8 *)rwork,&info);
|
---|
692 | delete [] work; delete [] rwork;
|
---|
693 | } else {
|
---|
694 | string tn = typeid(T).name();
|
---|
695 | cerr << " LapackServer::LapackEigen(a,b) - Unsupported DataType T = " << tn << endl;
|
---|
696 | throw TypeMismatchExc("LapackServer::LapackEigen(a,b) - Unsupported DataType (T)");
|
---|
697 | }
|
---|
698 |
|
---|
699 | return(info);
|
---|
700 | }
|
---|
701 |
|
---|
702 |
|
---|
703 |
|
---|
704 |
|
---|
705 |
|
---|
706 | ////////////////////////////////////////////////////////////////////////////////////
|
---|
707 | void rztest_lapack(TArray<r_4>& aa, TArray<r_4>& bb)
|
---|
708 | {
|
---|
709 | if ( aa.NbDimensions() != 2 ) throw(SzMismatchError("rztest_lapack(TMatrix<r_4> A Not a Matrix"));
|
---|
710 | if ( aa.SizeX() != aa.SizeY()) throw(SzMismatchError("rztest_lapack(TMatrix<r_4> A Not a square Matrix"));
|
---|
711 | if ( bb.NbDimensions() != 2 ) throw(SzMismatchError("rztest_lapack(TMatrix<r_4> A Not a Matrix"));
|
---|
712 | if ( bb.SizeX() != aa.SizeX() ) throw(SzMismatchError("rztest_lapack(TMatrix<r_4> A <> B "));
|
---|
713 | if ( !bb.IsPacked() || !bb.IsPacked() )
|
---|
714 | throw(SzMismatchError("rztest_lapack(TMatrix<r_4> Not packed A or B "));
|
---|
715 |
|
---|
716 | int_4 n = aa.SizeX();
|
---|
717 | int_4 nrhs = bb.SizeY();
|
---|
718 | int_4 lda = n;
|
---|
719 | int_4 ldb = bb.SizeX();
|
---|
720 | int_4 info;
|
---|
721 | int_4* ipiv = new int_4[n];
|
---|
722 | sgesv_(&n, &nrhs, aa.Data(), &lda, ipiv, bb.Data(), &ldb, &info);
|
---|
723 | delete[] ipiv;
|
---|
724 | cout << "rztest_lapack/Info= " << info << endl;
|
---|
725 | cout << aa << "\n" << bb << endl;
|
---|
726 | return;
|
---|
727 | }
|
---|
728 |
|
---|
729 | ///////////////////////////////////////////////////////////////
|
---|
730 | #ifdef __CXX_PRAGMA_TEMPLATES__
|
---|
731 | #pragma define_template LapackServer<r_4>
|
---|
732 | #pragma define_template LapackServer<r_8>
|
---|
733 | #pragma define_template LapackServer< complex<r_4> >
|
---|
734 | #pragma define_template LapackServer< complex<r_8> >
|
---|
735 | #endif
|
---|
736 |
|
---|
737 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
|
---|
738 | template class LapackServer<r_4>;
|
---|
739 | template class LapackServer<r_8>;
|
---|
740 | template class LapackServer< complex<r_4> >;
|
---|
741 | template class LapackServer< complex<r_8> >;
|
---|
742 | #endif
|
---|
743 |
|
---|
744 | #if defined(OS_LINUX)
|
---|
745 | // Pour le link avec f2c sous Linux
|
---|
746 | extern "C" {
|
---|
747 | void MAIN__();
|
---|
748 | }
|
---|
749 |
|
---|
750 | void MAIN__()
|
---|
751 | {
|
---|
752 | cerr << "MAIN__() function for linking with libf2c.a " << endl;
|
---|
753 | cerr << " This function should never be called !!! " << endl;
|
---|
754 | throw PError("MAIN__() should not be called - see intflapack.cc");
|
---|
755 | }
|
---|
756 | #endif
|
---|