[775] | 1 | #ifndef IntfLapack_H_SEEN
|
---|
| 2 | #define IntfLapack_H_SEEN
|
---|
| 3 |
|
---|
| 4 | #include "machdefs.h"
|
---|
| 5 | #include "tarray.h"
|
---|
[2556] | 6 | #include "tvector.h"
|
---|
[775] | 7 |
|
---|
[814] | 8 | namespace SOPHYA {
|
---|
[775] | 9 |
|
---|
[814] | 10 | template <class T>
|
---|
| 11 | class LapackServer {
|
---|
| 12 | public:
|
---|
[2906] | 13 | LapackServer(bool throw_on_error=false);
|
---|
[1342] | 14 | virtual ~LapackServer();
|
---|
| 15 |
|
---|
| 16 | virtual int LinSolve(TArray<T>& a, TArray<T> & b);
|
---|
[2554] | 17 | virtual int LinSolveSym(TArray<T>& a, TArray<T> & b);
|
---|
[1494] | 18 | virtual int LeastSquareSolve(TArray<T>& a, TArray<T> & b);
|
---|
[2567] | 19 | virtual int LeastSquareSolveSVD_DC(TMatrix<T>& a,TMatrix<T>& b,TVector<r_8>& s,int_4& rank,r_8 rcond=-1.);
|
---|
[1494] | 20 |
|
---|
[2646] | 21 | // Calcul de la matrice inverse en utilisant la resolution de syst. lineaire
|
---|
| 22 | virtual int ComputeInverse(TMatrix<T>& a, TMatrix<T>& ainv);
|
---|
| 23 |
|
---|
[1342] | 24 | virtual int SVD(TArray<T>& a, TArray<T> & s);
|
---|
[2556] | 25 | virtual int SVD(TArray<T>& a, TArray<T> & s, TArray<T> & u, TArray<T> & vt);
|
---|
[2563] | 26 | virtual int SVD_DC(TMatrix<T>& a, TVector<r_8>& s, TMatrix<T>& u, TMatrix<T>& vt);
|
---|
[2556] | 27 |
|
---|
| 28 | virtual int LapackEigenSym(TArray<T>& a, TVector<r_8>& b, bool eigenvector=true);
|
---|
| 29 | virtual int LapackEigen(TArray<T>& a, TVector< complex<r_8> >& eval, TMatrix<T>& evec, bool eigenvector);
|
---|
[1342] | 30 |
|
---|
[1424] | 31 | //! Set the workspace size factor for LAPACK routines
|
---|
[1342] | 32 | inline void SetWorkSpaceSizeFactor(int f = 2)
|
---|
| 33 | { wspace_size_factor = (f > 1) ? f : 1; }
|
---|
[1424] | 34 |
|
---|
| 35 | //! Returns the workspace size factor
|
---|
[1342] | 36 | inline int GetWorkSpaceSizeFactor()
|
---|
| 37 | { return wspace_size_factor; }
|
---|
| 38 |
|
---|
| 39 | private:
|
---|
| 40 | int SVDDriver(TArray<T>& a, TArray<T> & s,
|
---|
| 41 | TArray<T>* up=NULL, TArray<T> * vtp=NULL);
|
---|
[2554] | 42 | int_4 ilaenv_en_C(int_4 ispec,char *name,char *opts,int_4 n1,int_4 n2,int_4 n3,int_4 n4);
|
---|
[2572] | 43 | int_4 type2i4(void *val,int nbytes);
|
---|
[1342] | 44 |
|
---|
| 45 | int wspace_size_factor;
|
---|
[2906] | 46 | bool Throw_On_Error;
|
---|
[814] | 47 | };
|
---|
| 48 |
|
---|
[1424] | 49 | /*! \ingroup LinAlg
|
---|
| 50 | \fn LapackLinSolve(TArray<T>&, TArray<T> &)
|
---|
| 51 | \brief Solves the linear system A*X = B using LapackServer.
|
---|
| 52 | */
|
---|
[814] | 53 | template <class T>
|
---|
[1042] | 54 | inline int LapackLinSolve(TArray<T>& a, TArray<T> & b)
|
---|
[1342] | 55 | { LapackServer<T> lps; return( lps.LinSolve(a, b) ); }
|
---|
[814] | 56 |
|
---|
[1566] | 57 | /*! \ingroup LinAlg
|
---|
[2554] | 58 | \fn LapackLinSolveSym(TArray<T>&, TArray<T> &)
|
---|
| 59 | \brief Solves the linear system A*X = B with A symetric using LapackServer.
|
---|
| 60 | */
|
---|
| 61 | template <class T>
|
---|
| 62 | inline int LapackLinSolveSym(TArray<T>& a, TArray<T> & b)
|
---|
| 63 | { LapackServer<T> lps; return( lps.LinSolveSym(a, b) ); }
|
---|
| 64 |
|
---|
| 65 | /*! \ingroup LinAlg
|
---|
[1566] | 66 | \fn LapackLeastSquareSolve(TArray<T>&, TArray<T> &)
|
---|
| 67 | \brief Solves the linear least squares problem A*X - B
|
---|
| 68 | */
|
---|
[1494] | 69 | template <class T>
|
---|
| 70 | inline int LapackLeastSquareSolve(TArray<T>& a, TArray<T> & b)
|
---|
| 71 | { LapackServer<T> lps; return( lps.LeastSquareSolve(a, b) ); }
|
---|
| 72 |
|
---|
[1424] | 73 | /*! \ingroup LinAlg
|
---|
[2646] | 74 | \fn LapackInverse(TMatrix<T>&)
|
---|
| 75 | \brief Computes the inverse matrix using linear system solver LapackServer::LinSolve.
|
---|
| 76 | */
|
---|
| 77 | template <class T>
|
---|
| 78 | inline TMatrix<T> LapackInverse(TMatrix<T>& a)
|
---|
| 79 | { LapackServer<T> lps; TMatrix<T> ainv; lps.ComputeInverse(a, ainv); return ainv; }
|
---|
| 80 |
|
---|
| 81 | /*! \ingroup LinAlg
|
---|
[2567] | 82 | \fn LapackLeastSquareSolveSVD_DC
|
---|
| 83 | \brief Solves the linear least squares problem A*X = B by SVD
|
---|
| 84 | */
|
---|
| 85 | template <class T>
|
---|
| 86 | inline int LapackLeastSquareSolveSVD_DC(TMatrix<T>& a,TMatrix<T>& b,TVector<r_8>& s,int_4& rank,r_8 rcond=-1.)
|
---|
| 87 | { LapackServer<T> lps; return( lps.LeastSquareSolveSVD_DC(a,b,s,rank,rcond) ); }
|
---|
| 88 |
|
---|
| 89 | /*! \ingroup LinAlg
|
---|
[1424] | 90 | \fn LapackSVD(TArray<T>&, TArray<T> &)
|
---|
| 91 | \brief SVD decomposition using LapackServer.
|
---|
| 92 | */
|
---|
[1342] | 93 | template <class T>
|
---|
| 94 | inline int LapackSVD(TArray<T>& a, TArray<T> & s)
|
---|
| 95 | { LapackServer<T> lps; return( lps.SVD(a, s) ); }
|
---|
[814] | 96 |
|
---|
[1424] | 97 |
|
---|
| 98 | /*! \ingroup LinAlg
|
---|
| 99 | \fn LapackSVD(TArray<T>&, TArray<T> &, TArray<T> &, TArray<T> &)
|
---|
| 100 | \brief SVD decomposition using LapackServer.
|
---|
| 101 | */
|
---|
[1342] | 102 | template <class T>
|
---|
| 103 | inline int LapackSVD(TArray<T>& a, TArray<T> & s, TArray<T> & u, TArray<T> & vt)
|
---|
| 104 | { LapackServer<T> lps; return( lps.SVD(a, s, u, vt) ); }
|
---|
| 105 |
|
---|
| 106 |
|
---|
[2556] | 107 | /*! \ingroup LinAlg
|
---|
[2563] | 108 | \fn LapackSVD_DC(TMatrix<T>&, TVector<r_8>&, TMatrix<T>&, TMatrix<T>&)
|
---|
[2561] | 109 | \brief SVD decomposition DC using LapackServer.
|
---|
| 110 | */
|
---|
| 111 | template <class T>
|
---|
[2563] | 112 | inline int LapackSVD_DC(TMatrix<T>& a, TVector<r_8>& s, TMatrix<T>& u, TMatrix<T>& vt)
|
---|
[2561] | 113 | { LapackServer<T> lps; return( lps.SVD_DC(a, s, u, vt) ); }
|
---|
| 114 |
|
---|
| 115 |
|
---|
| 116 | /*! \ingroup LinAlg
|
---|
[2556] | 117 | \fn LapackEigenSym(TArray<T>&, TArray<T> &)
|
---|
| 118 | \brief Compute the eigenvalues and eigenvectors of A (symetric or hermitian).
|
---|
| 119 | */
|
---|
| 120 | template <class T>
|
---|
| 121 | inline int LapackEigenSym(TArray<T>& a, TVector<r_8>& b, bool eigenvector=true)
|
---|
| 122 | { LapackServer<T> lps; return( lps.LapackEigenSym(a,b,eigenvector) ); }
|
---|
| 123 |
|
---|
| 124 | /*! \ingroup LinAlg
|
---|
| 125 | \fn LapackEigen(TArray<T>&, TArray<T> &)
|
---|
| 126 | \brief Compute the eigenvalues and (right) eigenvectors of A (general square matrix).
|
---|
| 127 | */
|
---|
| 128 | template <class T>
|
---|
| 129 | inline int LapackEigen(TArray<T>& a, TVector< complex<r_8> >& eval, TMatrix<T>& evec, bool eigenvector=true)
|
---|
| 130 | { LapackServer<T> lps; return( lps.LapackEigen(a,eval,evec,eigenvector) ); }
|
---|
| 131 |
|
---|
[814] | 132 | } // Fin du namespace
|
---|
| 133 |
|
---|
[775] | 134 | #endif
|
---|