| [775] | 1 | #ifndef  IntfLapack_H_SEEN | 
|---|
|  | 2 | #define  IntfLapack_H_SEEN | 
|---|
|  | 3 |  | 
|---|
|  | 4 | #include "machdefs.h" | 
|---|
|  | 5 | #include "tarray.h" | 
|---|
| [2556] | 6 | #include "tvector.h" | 
|---|
| [775] | 7 |  | 
|---|
| [814] | 8 | namespace SOPHYA { | 
|---|
| [775] | 9 |  | 
|---|
| [814] | 10 | template <class T> | 
|---|
|  | 11 | class LapackServer { | 
|---|
|  | 12 | public: | 
|---|
| [2906] | 13 | LapackServer(bool throw_on_error=false); | 
|---|
| [1342] | 14 | virtual ~LapackServer(); | 
|---|
|  | 15 |  | 
|---|
|  | 16 | virtual int LinSolve(TArray<T>& a, TArray<T> & b); | 
|---|
| [2554] | 17 | virtual int LinSolveSym(TArray<T>& a, TArray<T> & b); | 
|---|
| [1494] | 18 | virtual int LeastSquareSolve(TArray<T>& a, TArray<T> & b); | 
|---|
| [2567] | 19 | virtual int LeastSquareSolveSVD_DC(TMatrix<T>& a,TMatrix<T>& b,TVector<r_8>& s,int_4& rank,r_8 rcond=-1.); | 
|---|
| [1494] | 20 |  | 
|---|
| [2646] | 21 | // Calcul de la matrice inverse en utilisant la resolution de syst. lineaire | 
|---|
|  | 22 | virtual int ComputeInverse(TMatrix<T>& a, TMatrix<T>& ainv); | 
|---|
|  | 23 |  | 
|---|
| [1342] | 24 | virtual int SVD(TArray<T>& a, TArray<T> & s); | 
|---|
| [2556] | 25 | virtual int SVD(TArray<T>& a, TArray<T> & s, TArray<T> & u, TArray<T> & vt); | 
|---|
| [2563] | 26 | virtual int SVD_DC(TMatrix<T>& a, TVector<r_8>& s, TMatrix<T>& u, TMatrix<T>& vt); | 
|---|
| [2556] | 27 |  | 
|---|
|  | 28 | virtual int LapackEigenSym(TArray<T>& a, TVector<r_8>& b, bool eigenvector=true); | 
|---|
|  | 29 | virtual int LapackEigen(TArray<T>& a, TVector< complex<r_8> >& eval, TMatrix<T>& evec, bool eigenvector); | 
|---|
| [1342] | 30 |  | 
|---|
| [1424] | 31 | //! Set the workspace size factor for LAPACK routines | 
|---|
| [1342] | 32 | inline void SetWorkSpaceSizeFactor(int f = 2) | 
|---|
|  | 33 | { wspace_size_factor = (f > 1) ? f : 1; } | 
|---|
| [1424] | 34 |  | 
|---|
|  | 35 | //! Returns the workspace size factor | 
|---|
| [1342] | 36 | inline int  GetWorkSpaceSizeFactor() | 
|---|
|  | 37 | { return wspace_size_factor; } | 
|---|
|  | 38 |  | 
|---|
|  | 39 | private: | 
|---|
|  | 40 | int SVDDriver(TArray<T>& a, TArray<T> & s, | 
|---|
|  | 41 | TArray<T>* up=NULL, TArray<T> * vtp=NULL); | 
|---|
| [2554] | 42 | int_4 ilaenv_en_C(int_4 ispec,char *name,char *opts,int_4 n1,int_4 n2,int_4 n3,int_4 n4); | 
|---|
| [2572] | 43 | int_4 type2i4(void *val,int nbytes); | 
|---|
| [1342] | 44 |  | 
|---|
|  | 45 | int wspace_size_factor; | 
|---|
| [2906] | 46 | bool Throw_On_Error; | 
|---|
| [814] | 47 | }; | 
|---|
|  | 48 |  | 
|---|
| [1424] | 49 | /*! \ingroup LinAlg | 
|---|
|  | 50 | \fn LapackLinSolve(TArray<T>&, TArray<T> &) | 
|---|
|  | 51 | \brief Solves the linear system A*X = B using LapackServer. | 
|---|
|  | 52 | */ | 
|---|
| [814] | 53 | template <class T> | 
|---|
| [1042] | 54 | inline int LapackLinSolve(TArray<T>& a, TArray<T> & b) | 
|---|
| [1342] | 55 | { LapackServer<T> lps; return( lps.LinSolve(a, b) );  } | 
|---|
| [814] | 56 |  | 
|---|
| [1566] | 57 | /*! \ingroup LinAlg | 
|---|
| [2554] | 58 | \fn LapackLinSolveSym(TArray<T>&, TArray<T> &) | 
|---|
|  | 59 | \brief Solves the linear system A*X = B with A symetric using LapackServer. | 
|---|
|  | 60 | */ | 
|---|
|  | 61 | template <class T> | 
|---|
|  | 62 | inline int LapackLinSolveSym(TArray<T>& a, TArray<T> & b) | 
|---|
|  | 63 | { LapackServer<T> lps; return( lps.LinSolveSym(a, b) );  } | 
|---|
|  | 64 |  | 
|---|
|  | 65 | /*! \ingroup LinAlg | 
|---|
| [1566] | 66 | \fn LapackLeastSquareSolve(TArray<T>&, TArray<T> &) | 
|---|
|  | 67 | \brief Solves the linear least squares problem A*X - B | 
|---|
|  | 68 | */ | 
|---|
| [1494] | 69 | template <class T> | 
|---|
|  | 70 | inline int LapackLeastSquareSolve(TArray<T>& a, TArray<T> & b) | 
|---|
|  | 71 | { LapackServer<T> lps; return( lps.LeastSquareSolve(a, b) );  } | 
|---|
|  | 72 |  | 
|---|
| [1424] | 73 | /*! \ingroup LinAlg | 
|---|
| [2646] | 74 | \fn LapackInverse(TMatrix<T>&) | 
|---|
|  | 75 | \brief Computes the inverse matrix using linear system solver LapackServer::LinSolve. | 
|---|
|  | 76 | */ | 
|---|
|  | 77 | template <class T> | 
|---|
|  | 78 | inline TMatrix<T> LapackInverse(TMatrix<T>& a) | 
|---|
|  | 79 | { LapackServer<T> lps; TMatrix<T> ainv; lps.ComputeInverse(a, ainv);  return ainv; } | 
|---|
|  | 80 |  | 
|---|
|  | 81 | /*! \ingroup LinAlg | 
|---|
| [2567] | 82 | \fn LapackLeastSquareSolveSVD_DC | 
|---|
|  | 83 | \brief Solves the linear least squares problem A*X = B by SVD | 
|---|
|  | 84 | */ | 
|---|
|  | 85 | template <class T> | 
|---|
|  | 86 | inline int LapackLeastSquareSolveSVD_DC(TMatrix<T>& a,TMatrix<T>& b,TVector<r_8>& s,int_4& rank,r_8 rcond=-1.) | 
|---|
|  | 87 | { LapackServer<T> lps; return( lps.LeastSquareSolveSVD_DC(a,b,s,rank,rcond) );  } | 
|---|
|  | 88 |  | 
|---|
|  | 89 | /*! \ingroup LinAlg | 
|---|
| [1424] | 90 | \fn LapackSVD(TArray<T>&, TArray<T> &) | 
|---|
|  | 91 | \brief SVD decomposition using LapackServer. | 
|---|
|  | 92 | */ | 
|---|
| [1342] | 93 | template <class T> | 
|---|
|  | 94 | inline int LapackSVD(TArray<T>& a, TArray<T> & s) | 
|---|
|  | 95 | { LapackServer<T> lps; return( lps.SVD(a, s) ); } | 
|---|
| [814] | 96 |  | 
|---|
| [1424] | 97 |  | 
|---|
|  | 98 | /*! \ingroup LinAlg | 
|---|
|  | 99 | \fn LapackSVD(TArray<T>&, TArray<T> &, TArray<T> &, TArray<T> &) | 
|---|
|  | 100 | \brief SVD decomposition using LapackServer. | 
|---|
|  | 101 | */ | 
|---|
| [1342] | 102 | template <class T> | 
|---|
|  | 103 | inline int LapackSVD(TArray<T>& a, TArray<T> & s, TArray<T> & u, TArray<T> & vt) | 
|---|
|  | 104 | { LapackServer<T> lps; return( lps.SVD(a, s, u, vt) ); } | 
|---|
|  | 105 |  | 
|---|
|  | 106 |  | 
|---|
| [2556] | 107 | /*! \ingroup LinAlg | 
|---|
| [2563] | 108 | \fn LapackSVD_DC(TMatrix<T>&, TVector<r_8>&, TMatrix<T>&, TMatrix<T>&) | 
|---|
| [2561] | 109 | \brief SVD decomposition DC using LapackServer. | 
|---|
|  | 110 | */ | 
|---|
|  | 111 | template <class T> | 
|---|
| [2563] | 112 | inline int LapackSVD_DC(TMatrix<T>& a, TVector<r_8>& s, TMatrix<T>& u, TMatrix<T>& vt) | 
|---|
| [2561] | 113 | { LapackServer<T> lps; return( lps.SVD_DC(a, s, u, vt) ); } | 
|---|
|  | 114 |  | 
|---|
|  | 115 |  | 
|---|
|  | 116 | /*! \ingroup LinAlg | 
|---|
| [2556] | 117 | \fn LapackEigenSym(TArray<T>&, TArray<T> &) | 
|---|
|  | 118 | \brief Compute the eigenvalues and eigenvectors of A (symetric or hermitian). | 
|---|
|  | 119 | */ | 
|---|
|  | 120 | template <class T> | 
|---|
|  | 121 | inline int LapackEigenSym(TArray<T>& a, TVector<r_8>& b, bool eigenvector=true) | 
|---|
|  | 122 | { LapackServer<T> lps; return( lps.LapackEigenSym(a,b,eigenvector) );  } | 
|---|
|  | 123 |  | 
|---|
|  | 124 | /*! \ingroup LinAlg | 
|---|
|  | 125 | \fn LapackEigen(TArray<T>&, TArray<T> &) | 
|---|
|  | 126 | \brief Compute the eigenvalues and (right) eigenvectors of A (general square matrix). | 
|---|
|  | 127 | */ | 
|---|
|  | 128 | template <class T> | 
|---|
|  | 129 | inline int LapackEigen(TArray<T>& a, TVector< complex<r_8> >& eval, TMatrix<T>& evec, bool eigenvector=true) | 
|---|
|  | 130 | { LapackServer<T> lps; return( lps.LapackEigen(a,eval,evec,eigenvector) );  } | 
|---|
|  | 131 |  | 
|---|
| [814] | 132 | } // Fin du namespace | 
|---|
|  | 133 |  | 
|---|
| [775] | 134 | #endif | 
|---|