| 1 | #ifndef  IntfLapack_H_SEEN | 
|---|
| 2 | #define  IntfLapack_H_SEEN | 
|---|
| 3 |  | 
|---|
| 4 | #include "machdefs.h" | 
|---|
| 5 | #include "tarray.h" | 
|---|
| 6 | #include "tvector.h" | 
|---|
| 7 |  | 
|---|
| 8 | namespace SOPHYA { | 
|---|
| 9 |  | 
|---|
| 10 | template <class T> | 
|---|
| 11 | class LapackServer { | 
|---|
| 12 | public: | 
|---|
| 13 | LapackServer(bool throw_on_error=false); | 
|---|
| 14 | virtual ~LapackServer(); | 
|---|
| 15 |  | 
|---|
| 16 | virtual int LinSolve(TArray<T>& a, TArray<T> & b); | 
|---|
| 17 | virtual int LinSolveSym(TArray<T>& a, TArray<T> & b); | 
|---|
| 18 | virtual int LeastSquareSolve(TArray<T>& a, TArray<T> & b); | 
|---|
| 19 | virtual int LeastSquareSolveSVD_DC(TMatrix<T>& a,TMatrix<T>& b,TVector<r_8>& s,int_4& rank,r_8 rcond=-1.); | 
|---|
| 20 |  | 
|---|
| 21 | // Calcul de la matrice inverse en utilisant la resolution de syst. lineaire | 
|---|
| 22 | virtual int ComputeInverse(TMatrix<T>& a, TMatrix<T>& ainv); | 
|---|
| 23 |  | 
|---|
| 24 | virtual int SVD(TArray<T>& a, TArray<T> & s); | 
|---|
| 25 | virtual int SVD(TArray<T>& a, TArray<T> & s, TArray<T> & u, TArray<T> & vt); | 
|---|
| 26 | virtual int SVD_DC(TMatrix<T>& a, TVector<r_8>& s, TMatrix<T>& u, TMatrix<T>& vt); | 
|---|
| 27 |  | 
|---|
| 28 | virtual int LapackEigenSym(TArray<T>& a, TVector<r_8>& b, bool eigenvector=true); | 
|---|
| 29 | virtual int LapackEigen(TArray<T>& a, TVector< complex<r_8> >& eval, TMatrix<T>& evec, bool eigenvector); | 
|---|
| 30 |  | 
|---|
| 31 | //! Set the workspace size factor for LAPACK routines | 
|---|
| 32 | inline void SetWorkSpaceSizeFactor(int f = 2) | 
|---|
| 33 | { wspace_size_factor = (f > 1) ? f : 1; } | 
|---|
| 34 |  | 
|---|
| 35 | //! Returns the workspace size factor | 
|---|
| 36 | inline int  GetWorkSpaceSizeFactor() | 
|---|
| 37 | { return wspace_size_factor; } | 
|---|
| 38 |  | 
|---|
| 39 | private: | 
|---|
| 40 | int SVDDriver(TArray<T>& a, TArray<T> & s, | 
|---|
| 41 | TArray<T>* up=NULL, TArray<T> * vtp=NULL); | 
|---|
| 42 | int_4 ilaenv_en_C(int_4 ispec,char *name,char *opts,int_4 n1,int_4 n2,int_4 n3,int_4 n4); | 
|---|
| 43 | int_4 type2i4(void *val,int nbytes); | 
|---|
| 44 |  | 
|---|
| 45 | int wspace_size_factor; | 
|---|
| 46 | bool Throw_On_Error; | 
|---|
| 47 | }; | 
|---|
| 48 |  | 
|---|
| 49 | /*! \ingroup LinAlg | 
|---|
| 50 | \fn LapackLinSolve(TArray<T>&, TArray<T> &) | 
|---|
| 51 | \brief Solves the linear system A*X = B using LapackServer. | 
|---|
| 52 | */ | 
|---|
| 53 | template <class T> | 
|---|
| 54 | inline int LapackLinSolve(TArray<T>& a, TArray<T> & b) | 
|---|
| 55 | { LapackServer<T> lps; return( lps.LinSolve(a, b) );  } | 
|---|
| 56 |  | 
|---|
| 57 | /*! \ingroup LinAlg | 
|---|
| 58 | \fn LapackLinSolveSym(TArray<T>&, TArray<T> &) | 
|---|
| 59 | \brief Solves the linear system A*X = B with A symetric using LapackServer. | 
|---|
| 60 | */ | 
|---|
| 61 | template <class T> | 
|---|
| 62 | inline int LapackLinSolveSym(TArray<T>& a, TArray<T> & b) | 
|---|
| 63 | { LapackServer<T> lps; return( lps.LinSolveSym(a, b) );  } | 
|---|
| 64 |  | 
|---|
| 65 | /*! \ingroup LinAlg | 
|---|
| 66 | \fn LapackLeastSquareSolve(TArray<T>&, TArray<T> &) | 
|---|
| 67 | \brief Solves the linear least squares problem A*X - B | 
|---|
| 68 | */ | 
|---|
| 69 | template <class T> | 
|---|
| 70 | inline int LapackLeastSquareSolve(TArray<T>& a, TArray<T> & b) | 
|---|
| 71 | { LapackServer<T> lps; return( lps.LeastSquareSolve(a, b) );  } | 
|---|
| 72 |  | 
|---|
| 73 | /*! \ingroup LinAlg | 
|---|
| 74 | \fn LapackInverse(TMatrix<T>&) | 
|---|
| 75 | \brief Computes the inverse matrix using linear system solver LapackServer::LinSolve. | 
|---|
| 76 | */ | 
|---|
| 77 | template <class T> | 
|---|
| 78 | inline TMatrix<T> LapackInverse(TMatrix<T>& a) | 
|---|
| 79 | { LapackServer<T> lps; TMatrix<T> ainv; lps.ComputeInverse(a, ainv);  return ainv; } | 
|---|
| 80 |  | 
|---|
| 81 | /*! \ingroup LinAlg | 
|---|
| 82 | \fn LapackLeastSquareSolveSVD_DC | 
|---|
| 83 | \brief Solves the linear least squares problem A*X = B by SVD | 
|---|
| 84 | */ | 
|---|
| 85 | template <class T> | 
|---|
| 86 | inline int LapackLeastSquareSolveSVD_DC(TMatrix<T>& a,TMatrix<T>& b,TVector<r_8>& s,int_4& rank,r_8 rcond=-1.) | 
|---|
| 87 | { LapackServer<T> lps; return( lps.LeastSquareSolveSVD_DC(a,b,s,rank,rcond) );  } | 
|---|
| 88 |  | 
|---|
| 89 | /*! \ingroup LinAlg | 
|---|
| 90 | \fn LapackSVD(TArray<T>&, TArray<T> &) | 
|---|
| 91 | \brief SVD decomposition using LapackServer. | 
|---|
| 92 | */ | 
|---|
| 93 | template <class T> | 
|---|
| 94 | inline int LapackSVD(TArray<T>& a, TArray<T> & s) | 
|---|
| 95 | { LapackServer<T> lps; return( lps.SVD(a, s) ); } | 
|---|
| 96 |  | 
|---|
| 97 |  | 
|---|
| 98 | /*! \ingroup LinAlg | 
|---|
| 99 | \fn LapackSVD(TArray<T>&, TArray<T> &, TArray<T> &, TArray<T> &) | 
|---|
| 100 | \brief SVD decomposition using LapackServer. | 
|---|
| 101 | */ | 
|---|
| 102 | template <class T> | 
|---|
| 103 | inline int LapackSVD(TArray<T>& a, TArray<T> & s, TArray<T> & u, TArray<T> & vt) | 
|---|
| 104 | { LapackServer<T> lps; return( lps.SVD(a, s, u, vt) ); } | 
|---|
| 105 |  | 
|---|
| 106 |  | 
|---|
| 107 | /*! \ingroup LinAlg | 
|---|
| 108 | \fn LapackSVD_DC(TMatrix<T>&, TVector<r_8>&, TMatrix<T>&, TMatrix<T>&) | 
|---|
| 109 | \brief SVD decomposition DC using LapackServer. | 
|---|
| 110 | */ | 
|---|
| 111 | template <class T> | 
|---|
| 112 | inline int LapackSVD_DC(TMatrix<T>& a, TVector<r_8>& s, TMatrix<T>& u, TMatrix<T>& vt) | 
|---|
| 113 | { LapackServer<T> lps; return( lps.SVD_DC(a, s, u, vt) ); } | 
|---|
| 114 |  | 
|---|
| 115 |  | 
|---|
| 116 | /*! \ingroup LinAlg | 
|---|
| 117 | \fn LapackEigenSym(TArray<T>&, TArray<T> &) | 
|---|
| 118 | \brief Compute the eigenvalues and eigenvectors of A (symetric or hermitian). | 
|---|
| 119 | */ | 
|---|
| 120 | template <class T> | 
|---|
| 121 | inline int LapackEigenSym(TArray<T>& a, TVector<r_8>& b, bool eigenvector=true) | 
|---|
| 122 | { LapackServer<T> lps; return( lps.LapackEigenSym(a,b,eigenvector) );  } | 
|---|
| 123 |  | 
|---|
| 124 | /*! \ingroup LinAlg | 
|---|
| 125 | \fn LapackEigen(TArray<T>&, TArray<T> &) | 
|---|
| 126 | \brief Compute the eigenvalues and (right) eigenvectors of A (general square matrix). | 
|---|
| 127 | */ | 
|---|
| 128 | template <class T> | 
|---|
| 129 | inline int LapackEigen(TArray<T>& a, TVector< complex<r_8> >& eval, TMatrix<T>& evec, bool eigenvector=true) | 
|---|
| 130 | { LapackServer<T> lps; return( lps.LapackEigen(a,eval,evec,eigenvector) );  } | 
|---|
| 131 |  | 
|---|
| 132 | } // Fin du namespace | 
|---|
| 133 |  | 
|---|
| 134 | #endif | 
|---|