1 | #ifndef IntfLapack_H_SEEN
|
---|
2 | #define IntfLapack_H_SEEN
|
---|
3 |
|
---|
4 | #include "machdefs.h"
|
---|
5 | #include "tarray.h"
|
---|
6 | #include "tvector.h"
|
---|
7 |
|
---|
8 | namespace SOPHYA {
|
---|
9 |
|
---|
10 | template <class T>
|
---|
11 | class LapackServer {
|
---|
12 | public:
|
---|
13 | LapackServer(bool throw_on_error=false);
|
---|
14 | virtual ~LapackServer();
|
---|
15 |
|
---|
16 | virtual int LinSolve(TArray<T>& a, TArray<T> & b);
|
---|
17 | virtual int LinSolveSym(TArray<T>& a, TArray<T> & b);
|
---|
18 | virtual int LeastSquareSolve(TArray<T>& a, TArray<T> & b);
|
---|
19 | virtual int LeastSquareSolveSVD_DC(TMatrix<T>& a,TMatrix<T>& b,TVector<r_8>& s,int_4& rank,r_8 rcond=-1.);
|
---|
20 |
|
---|
21 | // Calcul de la matrice inverse en utilisant la resolution de syst. lineaire
|
---|
22 | virtual int ComputeInverse(TMatrix<T>& a, TMatrix<T>& ainv);
|
---|
23 |
|
---|
24 | virtual int SVD(TArray<T>& a, TArray<T> & s);
|
---|
25 | virtual int SVD(TArray<T>& a, TArray<T> & s, TArray<T> & u, TArray<T> & vt);
|
---|
26 | virtual int SVD_DC(TMatrix<T>& a, TVector<r_8>& s, TMatrix<T>& u, TMatrix<T>& vt);
|
---|
27 |
|
---|
28 | virtual int LapackEigenSym(TArray<T>& a, TVector<r_8>& b, bool eigenvector=true);
|
---|
29 | virtual int LapackEigen(TArray<T>& a, TVector< complex<r_8> >& eval, TMatrix<T>& evec, bool eigenvector);
|
---|
30 |
|
---|
31 | //! Set the workspace size factor for LAPACK routines
|
---|
32 | inline void SetWorkSpaceSizeFactor(int f = 2)
|
---|
33 | { wspace_size_factor = (f > 1) ? f : 1; }
|
---|
34 |
|
---|
35 | //! Returns the workspace size factor
|
---|
36 | inline int GetWorkSpaceSizeFactor()
|
---|
37 | { return wspace_size_factor; }
|
---|
38 |
|
---|
39 | private:
|
---|
40 | int SVDDriver(TArray<T>& a, TArray<T> & s,
|
---|
41 | TArray<T>* up=NULL, TArray<T> * vtp=NULL);
|
---|
42 | int_4 ilaenv_en_C(int_4 ispec,const char *name,const char *opts,int_4 n1,int_4 n2,int_4 n3,int_4 n4);
|
---|
43 | int_4 type2i4(void *val,int nbytes);
|
---|
44 |
|
---|
45 | int wspace_size_factor;
|
---|
46 | bool Throw_On_Error;
|
---|
47 | };
|
---|
48 |
|
---|
49 | /*! \ingroup LinAlg
|
---|
50 | \fn LapackLinSolve(TArray<T>&, TArray<T> &)
|
---|
51 | \brief Solves the linear system A*X = B using LapackServer.
|
---|
52 | */
|
---|
53 | template <class T>
|
---|
54 | inline int LapackLinSolve(TArray<T>& a, TArray<T> & b)
|
---|
55 | { LapackServer<T> lps; return( lps.LinSolve(a, b) ); }
|
---|
56 |
|
---|
57 | /*! \ingroup LinAlg
|
---|
58 | \fn LapackLinSolveSym(TArray<T>&, TArray<T> &)
|
---|
59 | \brief Solves the linear system A*X = B with A symetric using LapackServer.
|
---|
60 | */
|
---|
61 | template <class T>
|
---|
62 | inline int LapackLinSolveSym(TArray<T>& a, TArray<T> & b)
|
---|
63 | { LapackServer<T> lps; return( lps.LinSolveSym(a, b) ); }
|
---|
64 |
|
---|
65 | /*! \ingroup LinAlg
|
---|
66 | \fn LapackLeastSquareSolve(TArray<T>&, TArray<T> &)
|
---|
67 | \brief Solves the linear least squares problem A*X - B
|
---|
68 | */
|
---|
69 | template <class T>
|
---|
70 | inline int LapackLeastSquareSolve(TArray<T>& a, TArray<T> & b)
|
---|
71 | { LapackServer<T> lps; return( lps.LeastSquareSolve(a, b) ); }
|
---|
72 |
|
---|
73 | /*! \ingroup LinAlg
|
---|
74 | \fn LapackInverse(TMatrix<T>&)
|
---|
75 | \brief Computes the inverse matrix using linear system solver LapackServer::LinSolve.
|
---|
76 | */
|
---|
77 | template <class T>
|
---|
78 | inline TMatrix<T> LapackInverse(TMatrix<T>& a)
|
---|
79 | { LapackServer<T> lps; TMatrix<T> ainv; lps.ComputeInverse(a, ainv); return ainv; }
|
---|
80 |
|
---|
81 | /*! \ingroup LinAlg
|
---|
82 | \fn LapackLeastSquareSolveSVD_DC
|
---|
83 | \brief Solves the linear least squares problem A*X = B by SVD
|
---|
84 | */
|
---|
85 | template <class T>
|
---|
86 | inline int LapackLeastSquareSolveSVD_DC(TMatrix<T>& a,TMatrix<T>& b,TVector<r_8>& s,int_4& rank,r_8 rcond=-1.)
|
---|
87 | { LapackServer<T> lps; return( lps.LeastSquareSolveSVD_DC(a,b,s,rank,rcond) ); }
|
---|
88 |
|
---|
89 | /*! \ingroup LinAlg
|
---|
90 | \fn LapackSVD(TArray<T>&, TArray<T> &)
|
---|
91 | \brief SVD decomposition using LapackServer.
|
---|
92 | */
|
---|
93 | template <class T>
|
---|
94 | inline int LapackSVD(TArray<T>& a, TArray<T> & s)
|
---|
95 | { LapackServer<T> lps; return( lps.SVD(a, s) ); }
|
---|
96 |
|
---|
97 |
|
---|
98 | /*! \ingroup LinAlg
|
---|
99 | \fn LapackSVD(TArray<T>&, TArray<T> &, TArray<T> &, TArray<T> &)
|
---|
100 | \brief SVD decomposition using LapackServer.
|
---|
101 | */
|
---|
102 | template <class T>
|
---|
103 | inline int LapackSVD(TArray<T>& a, TArray<T> & s, TArray<T> & u, TArray<T> & vt)
|
---|
104 | { LapackServer<T> lps; return( lps.SVD(a, s, u, vt) ); }
|
---|
105 |
|
---|
106 |
|
---|
107 | /*! \ingroup LinAlg
|
---|
108 | \fn LapackSVD_DC(TMatrix<T>&, TVector<r_8>&, TMatrix<T>&, TMatrix<T>&)
|
---|
109 | \brief SVD decomposition DC using LapackServer.
|
---|
110 | */
|
---|
111 | template <class T>
|
---|
112 | inline int LapackSVD_DC(TMatrix<T>& a, TVector<r_8>& s, TMatrix<T>& u, TMatrix<T>& vt)
|
---|
113 | { LapackServer<T> lps; return( lps.SVD_DC(a, s, u, vt) ); }
|
---|
114 |
|
---|
115 |
|
---|
116 | /*! \ingroup LinAlg
|
---|
117 | \fn LapackEigenSym(TArray<T>&, TArray<T> &)
|
---|
118 | \brief Compute the eigenvalues and eigenvectors of A (symetric or hermitian).
|
---|
119 | */
|
---|
120 | template <class T>
|
---|
121 | inline int LapackEigenSym(TArray<T>& a, TVector<r_8>& b, bool eigenvector=true)
|
---|
122 | { LapackServer<T> lps; return( lps.LapackEigenSym(a,b,eigenvector) ); }
|
---|
123 |
|
---|
124 | /*! \ingroup LinAlg
|
---|
125 | \fn LapackEigen(TArray<T>&, TArray<T> &)
|
---|
126 | \brief Compute the eigenvalues and (right) eigenvectors of A (general square matrix).
|
---|
127 | */
|
---|
128 | template <class T>
|
---|
129 | inline int LapackEigen(TArray<T>& a, TVector< complex<r_8> >& eval, TMatrix<T>& evec, bool eigenvector=true)
|
---|
130 | { LapackServer<T> lps; return( lps.LapackEigen(a,eval,evec,eigenvector) ); }
|
---|
131 |
|
---|
132 | } // Fin du namespace
|
---|
133 |
|
---|
134 | #endif
|
---|