source: Sophya/trunk/SophyaExt/MinuitAdapt/testminuit.cc@ 3493

Last change on this file since 3493 was 3075, checked in by cmv, 19 years ago

remplacement nbrandom.h (obsolete) -> srandgen.h cmv 14/09/2006

File size: 9.2 KB
Line 
1/*
2 Fit d'une gaussienne par une methode de chi2
3*/
4#include <machdefs.h>
5#include <stdlib.h>
6#include <stdio.h>
7#include <iostream>
8#include <math.h>
9#include <string.h>
10
11#include "sopnamsp.h"
12#include "srandgen.h"
13#include "minuitadapt.h"
14
15// Ne pas changer NPAR
16#define NPAR 7
17
18const int DIMX = 25;
19const int DIMY = 25;
20const double HAUT=10000.;
21const double X0=0., Y0=0.;
22const double SX=5., SY=5., RHO=0.05;
23const double FOND=100.;
24// vol x0 y0 sx sy rho fond
25const bool FIX[NPAR]={false,false,false,false,false,false,false};
26const double ERR=5.;
27const double ERRMIN=ERR*sqrt(FOND);
28const double nSX=7., nSY=5.;
29const bool USERGRAD=false;
30const bool DOIMPROVE=true;
31const bool DOMINOS=true;
32const bool DOCONT=true;
33const bool DOSCAN=true;
34#define VARAND (drandpm1())
35//#define VARAND 1.
36#define MAXCALL 99999
37
38void fcn(int_4 *,double *,double *,double *,int_4 *,double futils(double *));
39double futils(double *x) {return 0.;}
40double Gauss2D(double x,double y,double *param);
41double dGauss2D(double x,double y,double *param,double *dparam);
42
43double X[DIMX], Y[DIMY], Z[DIMX][DIMY], EZ[DIMX][DIMY];
44int_4 IFLAG[10]={0,0,0,0,0,0,0,0,0,0};
45
46/*==========================================================================*/
47int main(int nargv, char *argv[])
48{
49 /* initialisation */
50 if(DIMX*DIMY<=NPAR) exit(-1);
51
52 int nran=0;
53 if(nargv>1) nran=atoi(argv[1]);
54 for(int i=0;i<nran;i++) drand01();
55
56 /* compute volume */
57 double vol=HAUT*(2*M_PI*SX*SY)/sqrt(1.-RHO*RHO);
58 cout<<"haut="<<HAUT<<" vol="<<vol<<endl;
59 cout<<"Fond="<<FOND<<endl;
60
61 /* remplissage de la densite de probabilite a fiter */
62 double par[NPAR],epar[NPAR];
63 printf("Donnees a fiter %d :\n",DIMX*DIMY);
64 par[0]=vol; par[1]=X0; par[2]=Y0;
65 par[3]=SX; par[4]=SY; par[5]=RHO;
66 par[6]=FOND;
67 for(int i=0;i<DIMX;i++) {
68 X[i] = X0 +nSX*SX*(2.*(i+0.5)/DIMX-1.);
69 for(int j=0;j<DIMY;j++) {
70 Y[j] = Y0 +nSY*SY*(2.*(j+0.5)/DIMY-1.);
71 double f = Gauss2D(X[i],Y[j],par);
72 Z[i][j] = f;
73 double ef = (fabs(f)>1.) ? ERR*sqrt(fabs(f)): ERR;
74 EZ[i][j] = (ef>ERRMIN)? ef: ERRMIN;
75 Z[i][j] += EZ[i][j]*NorRand();
76 }
77 }
78
79/*********************** minuit minimisation ***********************/
80 printf("\n\n");
81 MinuitAdapt MMM(fcn,futils);
82
83 /* initialise */
84 MMM.SetTitle("Minuit fit Gaussienne 2D+Fond");
85 MMM.Clear();
86 MMM.SetRandom(1000000);
87
88 /* set print and warning level, precision etc... (-1,0,1,2,3) */
89 MMM.PrintLevel(1);
90 MMM.SetWidthPage(120);
91 MMM.SetWarnings(true);
92 MMM.SetErrorDef(1.);
93 MMM.SetEpsMachine(1.e-13);
94 MMM.SetStrategy(1);
95 if(USERGRAD) MMM.SetGradient(1); else MMM.SetGradient(-1);
96
97 /* set parameters */
98 MMM.DefineParameter(1,"Vol",vol,fabs(vol)/50.);
99 MMM.DefineParameter(2,"X0",X0,SX/5.);
100 MMM.DefineParameter(3,"Y0",Y0,SY/5.);
101 MMM.DefineParameter(4,"Sx",SX,SX/5.,0.01*SX,10.*SX);
102 MMM.DefineParameter(5,"Sy",SY,SY/5.,0.01*SY,10.*SY);
103 MMM.DefineParameter(6,"Rho",RHO,0.0001,-1.,1.);
104 double x=(FOND!=0.)? fabs(FOND)/10.: 0.01;
105 MMM.DefineParameter(7,"Fond",FOND,x);
106
107 /* set parameters */
108 x = (FIX[0])? vol: vol+VARAND*vol/5.;
109 MMM.SetParameter(1,x);
110 x = (FIX[1])? X0: X0+VARAND*SX;
111 MMM.SetParameter(2,x);
112 x=(FIX[2])? Y0: Y0+VARAND*SY;
113 MMM.SetParameter(3,x);
114 x=(FIX[3])? SX: SX+VARAND*SX/2.;
115 MMM.SetParameter(4,x);
116 x=(FIX[4])? SY: SY+VARAND*SY/2.;
117 MMM.SetParameter(5,x);
118 x=(FIX[5])? RHO: 0.;
119 MMM.SetParameter(6,x);
120 x=(FIX[6])? FOND: FOND+VARAND*FOND/3.;
121 MMM.SetParameter(7,x);
122
123 /* fix parameters */
124 for(int i=0;i<NPAR;i++) if(FIX[i]) MMM.SetFix(i+1);
125 MMM.ShowParameter();
126
127 /* minimize */
128 MMM.Migrad(MAXCALL,0.01);
129 //MMM.Minimize(MAXCALL,0.01);
130 //MMM.Simplex(MAXCALL,0.01);
131 //MMM.Seek(MAXCALL,5.);
132 MMM.ShowFcnValue();
133
134 if(DOIMPROVE) MMM.Improve(MAXCALL);
135 MMM.ShowFcnValue();
136
137 if(DOMINOS) MMM.Minos(MAXCALL);
138 MMM.ShowFcnValue();
139
140 /* get parameters and errors */
141 cout<<endl;
142 for(int i=0;i<NPAR;i++) {
143 string dum; int_4 ivarbl;
144 double b1,b2,eparab,eplus,eminus,globcc;
145 MMM.GetParameter(i+1,dum,par[i],epar[i],b1,b2,ivarbl);
146 MMM.GetErrors(i+1,eplus,eminus,eparab,globcc);
147 printf("> parameter %d \"%s\" = %g %g (%g,%g) int var=%d\n"
148 ,i+1,dum.c_str(),par[i],epar[i],b1,b2,ivarbl);
149 printf(" e+=%g e-=%g eparab=%g globcc=%g\n"
150 ,eplus,eminus,eparab,globcc);
151 }
152 fflush(stdout);
153 cout<<"haut(sig)="<<par[0]*sqrt(1-RHO*RHO)/(2*M_PI*SX*SY)
154 <<" haut(sig_fit)="<<par[0]*sqrt(1-par[5]*par[5])/(2*M_PI*par[3]*par[4])<<endl;
155
156 TMatrix<r_8> emat = MMM.GetErrorsMatrix();
157 cout<<"GetErrorsMatrix:"<<emat<<endl;
158
159 /* get covariance matrix */
160 MMM.ShowCovariance();
161 MMM.ShowCorrelations();
162 MMM.ShowEigenValues();
163
164 /* contour plot */
165 if(DOCONT) {
166 for(int i=1;i<NPAR;i++) {
167 if(FIX[i]) continue;
168 for(int j=i+1;j<=NPAR;j++) {
169 if(FIX[j]) continue;
170 //MMM.DrawContour(i,j,20);
171 TVector<r_8> xcont,ycont;
172 int_4 ncontok = MMM.GetContour(i,j,20,xcont,ycont);
173 cout<<"Contour "<<i<<" "<<j<<" ncontok="<<ncontok<<endl;
174 if(ncontok<1) continue;
175 for(int k=0;k<ncontok;k++) cout<<" ("<<xcont[k]<<","<<ycont[k]<<")";
176 cout<<endl;
177 }
178 }
179 }
180
181 /* scan parameters */
182 if(DOSCAN) {
183 MMM.ShowFcnValue();
184 for(int i=0;i<NPAR;i++) {
185 if(FIX[i]) continue;
186 MMM.Scan(i+1,par[i]-2.*epar[i],par[i]+2.*epar[i],20);
187 }
188 MMM.ShowFcnValue();
189 }
190
191 /* end */
192 MMM.ShowRandom();
193 MMM.Return();
194
195 printf("\n\n");
196/*******************************************************************/
197
198 /* fin de minimisation, print ! */
199 double xi2=0.;
200 for(int i=0;i<DIMX;i++) for(int j=0;j<DIMY;j++) {
201 double f = Z[i][j]-Gauss2D(X[i],Y[j],par);
202 xi2 += f*f/(EZ[i][j]*EZ[i][j]);
203 }
204 cout<<"1: "<<vol<<"\tfit="<<par[0]<<"\tefit="<<epar[0]<<"\td="<<par[0]-vol;
205 if(epar[0]>0.) cout<<"\td/e="<<(par[0]-vol)/epar[0]; cout<<endl;
206 cout<<"2: "<<X0<<"\tfit="<<par[1]<<"\tefit="<<epar[1]<<"\td="<<par[1]-X0;
207 if(epar[1]>0.) cout<<"\td/e="<<(par[1]-X0)/epar[1]; cout<<endl;
208 cout<<"3: "<<Y0<<"\tfit="<<par[2]<<"\tefit="<<epar[2]<<"\td="<<par[2]-Y0;
209 if(epar[2]>0.) cout<<"\td/e="<<(par[2]-Y0)/epar[2]; cout<<endl;
210 cout<<"4: "<<SX<<"\tfit="<<par[3]<<"\tefit="<<epar[3]<<"\td="<<par[3]-SX;
211 if(epar[3]>0.) cout<<"\td/e="<<(par[3]-SX)/epar[3]; cout<<endl;
212 cout<<"5: "<<SY<<"\tfit="<<par[4]<<"\tefit="<<epar[4]<<"\td="<<par[4]-SY;
213 if(epar[4]>0.) cout<<"\td/e="<<(par[4]-SY)/epar[4]; cout<<endl;
214 cout<<"6: "<<RHO<<"\tfit="<<par[5]<<"\tefit="<<epar[5]<<"\td="<<par[5]-RHO;
215 if(epar[5]>0.) cout<<"\td/e="<<(par[5]-RHO)/epar[5]; cout<<endl;
216 cout<<"7: "<<FOND<<"\tfit="<<par[6]<<"\tefit="<<epar[6]<<"\td="<<par[6]-FOND;
217 if(epar[6]>0.) cout<<"\td/e="<<(par[6]-FOND)/epar[6]; cout<<endl;
218 cout<<"Xi2="<<xi2<<"\txi2/n="<<xi2/(DIMX*DIMY-NPAR)<<endl;
219
220 exit(0);
221}
222
223void fcn(int_4 *npar,double *grad,double *fval,double *xval
224 ,int_4 *iflag,double futils(double *))
225{
226 //cout<<"iflag="<<*iflag<<endl;
227 IFLAG[0]++;
228 if(*iflag>0 && *iflag<10) IFLAG[*iflag]++;
229
230 // Read input,init,... data values
231 // if(*iflag==1) {...}
232
233 // Instruct Minuit to redefine the problem
234 // and forget about previously best fitted values.
235 // if(*iflag==5) {...}
236
237 // Always compute Chi2 or Likelyhood (here iflag==4)
238 *fval=0.;
239 for(int i=0;i<DIMX;i++) for(int j=0;j<DIMY;j++) {
240 double f = Z[i][j]-Gauss2D(X[i],Y[j],xval);
241 *fval += f*f/(EZ[i][j]*EZ[i][j]);
242 }
243
244 // Compute (optionnal) the first derivative of Chi2 / parameters
245 if(*iflag==2) {
246 // Return gradient of chi2 (if SET GRA called)
247 // C'est DChi2/DPi = -2*sum{(Yi-F(Xi))/EYi^2 * dF/dPi(Xi)}
248 double dpar[NPAR];
249 for(int j=0;j<NPAR;j++) grad[j]=0.;
250 for(int i=0;i<DIMX;i++) for(int j=0;j<DIMY;j++) {
251 double f=-2.*(Z[i][j]-Gauss2D(X[i],Y[j],xval))/(EZ[i][j]*EZ[i][j]);
252 dGauss2D(X[i],Y[j],xval,dpar);
253 for(int k=0;k<NPAR;k++) grad[k]+= f*dpar[k];
254 }
255 }
256
257 // Called at the end of the fit (on the Minuit RETURN)
258 if(*iflag==3) {
259 cout<<"Call fcn iflag="<<*iflag<<" npar="<<*npar<<endl;
260 for(int k=0;k<NPAR;k++) cout<<" P"<<k+1<<"="<<xval[k];
261 cout<<endl;
262 cout<<"Number of fcn calls="<<IFLAG[0]<<endl;
263 for(int k=1;k<10;k++)
264 cout<<" iflag="<<k<<" number of calls="<<IFLAG[k]<<endl;
265 }
266}
267
268double Gauss2D(double x,double y,double *param)
269// xc = (x-p1)/p3 ; yc = (y-p2)/p4
270// f(x) = p0*(1-rho^2)/(2*Pi*p3*p4) * exp(-0.5*(xc^2+yc^2-2*p5*xc*yc))
271{
272 double N = sqrt(1.-param[5]*param[5])/(2*M_PI*param[3]*param[4]);
273 double X = (x-param[1])/param[3];
274 double Y = (y-param[2])/param[4];
275 double z2 = (X*X + Y*Y - 2.*param[5]*X*Y)/2.;
276 if(z2<100.) z2=exp(-z2); else z2=0.;
277 return param[0]*N*z2 + param[6];
278}
279
280double dGauss2D(double x,double y,double *param,double *dparam)
281{
282 double unmr2 = 1.-param[5]*param[5];
283 double N = sqrt(unmr2)/(2*M_PI*param[3]*param[4]);
284 double X = (x-param[1])/param[3];
285 double Y = (y-param[2])/param[4];
286
287 double XmrY = X-param[5]*Y;
288 double YmrX = Y-param[5]*X;
289 double z2 = (X*(XmrY-param[5]*Y)+Y*Y)/2.;
290
291 /* g(x,y) */
292 double PSF = 0.;
293 if(z2<100.) PSF = N * exp(-z2);
294 /* dg(x,y)/d(Vol) */
295 dparam[0] = PSF;
296 /* dg(x,y)/d(x0) */
297 dparam[1] = param[0]* PSF* XmrY/param[3];
298 /* dg(x,y)/d(y0) */
299 dparam[2] = param[0]* PSF* YmrX/param[4];
300 /* dg(x,y)/d(sx)*/
301 dparam[3] = param[0]* PSF* (X*XmrY-1.)/param[3];
302 /* dg(x,y)/d(sy) */
303 dparam[4] = param[0]* PSF* (Y*YmrX-1.)/param[4];
304 /* dg(x,y)/d(rho) */
305 dparam[5] = param[0]* PSF* (X*Y-2.*param[5]/unmr2);
306 /* dg(x,y)/d(Fond) */
307 dparam[6] = 1.;
308
309 return param[0] * PSF + param[6];
310}
Note: See TracBrowser for help on using the repository browser.