1 | /*
|
---|
2 | Fit d'une gaussienne par une methode de chi2
|
---|
3 | */
|
---|
4 | #include <machdefs.h>
|
---|
5 | #include <stdlib.h>
|
---|
6 | #include <stdio.h>
|
---|
7 | #include <iostream>
|
---|
8 | #include <math.h>
|
---|
9 | #include <string.h>
|
---|
10 |
|
---|
11 | #include "sopnamsp.h"
|
---|
12 | #include "srandgen.h"
|
---|
13 | #include "minuitadapt.h"
|
---|
14 |
|
---|
15 | // Ne pas changer NPAR
|
---|
16 | #define NPAR 7
|
---|
17 |
|
---|
18 | const int DIMX = 25;
|
---|
19 | const int DIMY = 25;
|
---|
20 | const double HAUT=10000.;
|
---|
21 | const double X0=0., Y0=0.;
|
---|
22 | const double SX=5., SY=5., RHO=0.05;
|
---|
23 | const double FOND=100.;
|
---|
24 | // vol x0 y0 sx sy rho fond
|
---|
25 | const bool FIX[NPAR]={false,false,false,false,false,false,false};
|
---|
26 | const double ERR=5.;
|
---|
27 | const double ERRMIN=ERR*sqrt(FOND);
|
---|
28 | const double nSX=7., nSY=5.;
|
---|
29 | const bool USERGRAD=false;
|
---|
30 | const bool DOIMPROVE=true;
|
---|
31 | const bool DOMINOS=true;
|
---|
32 | const bool DOCONT=true;
|
---|
33 | const bool DOSCAN=true;
|
---|
34 | #define VARAND (drandpm1())
|
---|
35 | //#define VARAND 1.
|
---|
36 | #define MAXCALL 99999
|
---|
37 |
|
---|
38 | void fcn(int_4 *,double *,double *,double *,int_4 *,double futils(double *));
|
---|
39 | double futils(double *x) {return 0.;}
|
---|
40 | double Gauss2D(double x,double y,double *param);
|
---|
41 | double dGauss2D(double x,double y,double *param,double *dparam);
|
---|
42 |
|
---|
43 | double X[DIMX], Y[DIMY], Z[DIMX][DIMY], EZ[DIMX][DIMY];
|
---|
44 | int_4 IFLAG[10]={0,0,0,0,0,0,0,0,0,0};
|
---|
45 |
|
---|
46 | /*==========================================================================*/
|
---|
47 | int main(int nargv, char *argv[])
|
---|
48 | {
|
---|
49 | /* initialisation */
|
---|
50 | if(DIMX*DIMY<=NPAR) exit(-1);
|
---|
51 |
|
---|
52 | int nran=0;
|
---|
53 | if(nargv>1) nran=atoi(argv[1]);
|
---|
54 | for(int i=0;i<nran;i++) drand01();
|
---|
55 |
|
---|
56 | /* compute volume */
|
---|
57 | double vol=HAUT*(2*M_PI*SX*SY)/sqrt(1.-RHO*RHO);
|
---|
58 | cout<<"haut="<<HAUT<<" vol="<<vol<<endl;
|
---|
59 | cout<<"Fond="<<FOND<<endl;
|
---|
60 |
|
---|
61 | /* remplissage de la densite de probabilite a fiter */
|
---|
62 | double par[NPAR],epar[NPAR];
|
---|
63 | printf("Donnees a fiter %d :\n",DIMX*DIMY);
|
---|
64 | par[0]=vol; par[1]=X0; par[2]=Y0;
|
---|
65 | par[3]=SX; par[4]=SY; par[5]=RHO;
|
---|
66 | par[6]=FOND;
|
---|
67 | for(int i=0;i<DIMX;i++) {
|
---|
68 | X[i] = X0 +nSX*SX*(2.*(i+0.5)/DIMX-1.);
|
---|
69 | for(int j=0;j<DIMY;j++) {
|
---|
70 | Y[j] = Y0 +nSY*SY*(2.*(j+0.5)/DIMY-1.);
|
---|
71 | double f = Gauss2D(X[i],Y[j],par);
|
---|
72 | Z[i][j] = f;
|
---|
73 | double ef = (fabs(f)>1.) ? ERR*sqrt(fabs(f)): ERR;
|
---|
74 | EZ[i][j] = (ef>ERRMIN)? ef: ERRMIN;
|
---|
75 | Z[i][j] += EZ[i][j]*NorRand();
|
---|
76 | }
|
---|
77 | }
|
---|
78 |
|
---|
79 | /*********************** minuit minimisation ***********************/
|
---|
80 | printf("\n\n");
|
---|
81 | MinuitAdapt MMM(fcn,futils);
|
---|
82 |
|
---|
83 | /* initialise */
|
---|
84 | MMM.SetTitle("Minuit fit Gaussienne 2D+Fond");
|
---|
85 | MMM.Clear();
|
---|
86 | MMM.SetRandom(1000000);
|
---|
87 |
|
---|
88 | /* set print and warning level, precision etc... (-1,0,1,2,3) */
|
---|
89 | MMM.PrintLevel(1);
|
---|
90 | MMM.SetWidthPage(120);
|
---|
91 | MMM.SetWarnings(true);
|
---|
92 | MMM.SetErrorDef(1.);
|
---|
93 | MMM.SetEpsMachine(1.e-13);
|
---|
94 | MMM.SetStrategy(1);
|
---|
95 | if(USERGRAD) MMM.SetGradient(1); else MMM.SetGradient(-1);
|
---|
96 |
|
---|
97 | /* set parameters */
|
---|
98 | MMM.DefineParameter(1,"Vol",vol,fabs(vol)/50.);
|
---|
99 | MMM.DefineParameter(2,"X0",X0,SX/5.);
|
---|
100 | MMM.DefineParameter(3,"Y0",Y0,SY/5.);
|
---|
101 | MMM.DefineParameter(4,"Sx",SX,SX/5.,0.01*SX,10.*SX);
|
---|
102 | MMM.DefineParameter(5,"Sy",SY,SY/5.,0.01*SY,10.*SY);
|
---|
103 | MMM.DefineParameter(6,"Rho",RHO,0.0001,-1.,1.);
|
---|
104 | double x=(FOND!=0.)? fabs(FOND)/10.: 0.01;
|
---|
105 | MMM.DefineParameter(7,"Fond",FOND,x);
|
---|
106 |
|
---|
107 | /* set parameters */
|
---|
108 | x = (FIX[0])? vol: vol+VARAND*vol/5.;
|
---|
109 | MMM.SetParameter(1,x);
|
---|
110 | x = (FIX[1])? X0: X0+VARAND*SX;
|
---|
111 | MMM.SetParameter(2,x);
|
---|
112 | x=(FIX[2])? Y0: Y0+VARAND*SY;
|
---|
113 | MMM.SetParameter(3,x);
|
---|
114 | x=(FIX[3])? SX: SX+VARAND*SX/2.;
|
---|
115 | MMM.SetParameter(4,x);
|
---|
116 | x=(FIX[4])? SY: SY+VARAND*SY/2.;
|
---|
117 | MMM.SetParameter(5,x);
|
---|
118 | x=(FIX[5])? RHO: 0.;
|
---|
119 | MMM.SetParameter(6,x);
|
---|
120 | x=(FIX[6])? FOND: FOND+VARAND*FOND/3.;
|
---|
121 | MMM.SetParameter(7,x);
|
---|
122 |
|
---|
123 | /* fix parameters */
|
---|
124 | for(int i=0;i<NPAR;i++) if(FIX[i]) MMM.SetFix(i+1);
|
---|
125 | MMM.ShowParameter();
|
---|
126 |
|
---|
127 | /* minimize */
|
---|
128 | MMM.Migrad(MAXCALL,0.01);
|
---|
129 | //MMM.Minimize(MAXCALL,0.01);
|
---|
130 | //MMM.Simplex(MAXCALL,0.01);
|
---|
131 | //MMM.Seek(MAXCALL,5.);
|
---|
132 | MMM.ShowFcnValue();
|
---|
133 |
|
---|
134 | if(DOIMPROVE) MMM.Improve(MAXCALL);
|
---|
135 | MMM.ShowFcnValue();
|
---|
136 |
|
---|
137 | if(DOMINOS) MMM.Minos(MAXCALL);
|
---|
138 | MMM.ShowFcnValue();
|
---|
139 |
|
---|
140 | /* get parameters and errors */
|
---|
141 | cout<<endl;
|
---|
142 | for(int i=0;i<NPAR;i++) {
|
---|
143 | string dum; int_4 ivarbl;
|
---|
144 | double b1,b2,eparab,eplus,eminus,globcc;
|
---|
145 | MMM.GetParameter(i+1,dum,par[i],epar[i],b1,b2,ivarbl);
|
---|
146 | MMM.GetErrors(i+1,eplus,eminus,eparab,globcc);
|
---|
147 | printf("> parameter %d \"%s\" = %g %g (%g,%g) int var=%d\n"
|
---|
148 | ,i+1,dum.c_str(),par[i],epar[i],b1,b2,ivarbl);
|
---|
149 | printf(" e+=%g e-=%g eparab=%g globcc=%g\n"
|
---|
150 | ,eplus,eminus,eparab,globcc);
|
---|
151 | }
|
---|
152 | fflush(stdout);
|
---|
153 | cout<<"haut(sig)="<<par[0]*sqrt(1-RHO*RHO)/(2*M_PI*SX*SY)
|
---|
154 | <<" haut(sig_fit)="<<par[0]*sqrt(1-par[5]*par[5])/(2*M_PI*par[3]*par[4])<<endl;
|
---|
155 |
|
---|
156 | TMatrix<r_8> emat = MMM.GetErrorsMatrix();
|
---|
157 | cout<<"GetErrorsMatrix:"<<emat<<endl;
|
---|
158 |
|
---|
159 | /* get covariance matrix */
|
---|
160 | MMM.ShowCovariance();
|
---|
161 | MMM.ShowCorrelations();
|
---|
162 | MMM.ShowEigenValues();
|
---|
163 |
|
---|
164 | /* contour plot */
|
---|
165 | if(DOCONT) {
|
---|
166 | for(int i=1;i<NPAR;i++) {
|
---|
167 | if(FIX[i]) continue;
|
---|
168 | for(int j=i+1;j<=NPAR;j++) {
|
---|
169 | if(FIX[j]) continue;
|
---|
170 | //MMM.DrawContour(i,j,20);
|
---|
171 | TVector<r_8> xcont,ycont;
|
---|
172 | int_4 ncontok = MMM.GetContour(i,j,20,xcont,ycont);
|
---|
173 | cout<<"Contour "<<i<<" "<<j<<" ncontok="<<ncontok<<endl;
|
---|
174 | if(ncontok<1) continue;
|
---|
175 | for(int k=0;k<ncontok;k++) cout<<" ("<<xcont[k]<<","<<ycont[k]<<")";
|
---|
176 | cout<<endl;
|
---|
177 | }
|
---|
178 | }
|
---|
179 | }
|
---|
180 |
|
---|
181 | /* scan parameters */
|
---|
182 | if(DOSCAN) {
|
---|
183 | MMM.ShowFcnValue();
|
---|
184 | for(int i=0;i<NPAR;i++) {
|
---|
185 | if(FIX[i]) continue;
|
---|
186 | MMM.Scan(i+1,par[i]-2.*epar[i],par[i]+2.*epar[i],20);
|
---|
187 | }
|
---|
188 | MMM.ShowFcnValue();
|
---|
189 | }
|
---|
190 |
|
---|
191 | /* end */
|
---|
192 | MMM.ShowRandom();
|
---|
193 | MMM.Return();
|
---|
194 |
|
---|
195 | printf("\n\n");
|
---|
196 | /*******************************************************************/
|
---|
197 |
|
---|
198 | /* fin de minimisation, print ! */
|
---|
199 | double xi2=0.;
|
---|
200 | for(int i=0;i<DIMX;i++) for(int j=0;j<DIMY;j++) {
|
---|
201 | double f = Z[i][j]-Gauss2D(X[i],Y[j],par);
|
---|
202 | xi2 += f*f/(EZ[i][j]*EZ[i][j]);
|
---|
203 | }
|
---|
204 | cout<<"1: "<<vol<<"\tfit="<<par[0]<<"\tefit="<<epar[0]<<"\td="<<par[0]-vol;
|
---|
205 | if(epar[0]>0.) cout<<"\td/e="<<(par[0]-vol)/epar[0]; cout<<endl;
|
---|
206 | cout<<"2: "<<X0<<"\tfit="<<par[1]<<"\tefit="<<epar[1]<<"\td="<<par[1]-X0;
|
---|
207 | if(epar[1]>0.) cout<<"\td/e="<<(par[1]-X0)/epar[1]; cout<<endl;
|
---|
208 | cout<<"3: "<<Y0<<"\tfit="<<par[2]<<"\tefit="<<epar[2]<<"\td="<<par[2]-Y0;
|
---|
209 | if(epar[2]>0.) cout<<"\td/e="<<(par[2]-Y0)/epar[2]; cout<<endl;
|
---|
210 | cout<<"4: "<<SX<<"\tfit="<<par[3]<<"\tefit="<<epar[3]<<"\td="<<par[3]-SX;
|
---|
211 | if(epar[3]>0.) cout<<"\td/e="<<(par[3]-SX)/epar[3]; cout<<endl;
|
---|
212 | cout<<"5: "<<SY<<"\tfit="<<par[4]<<"\tefit="<<epar[4]<<"\td="<<par[4]-SY;
|
---|
213 | if(epar[4]>0.) cout<<"\td/e="<<(par[4]-SY)/epar[4]; cout<<endl;
|
---|
214 | cout<<"6: "<<RHO<<"\tfit="<<par[5]<<"\tefit="<<epar[5]<<"\td="<<par[5]-RHO;
|
---|
215 | if(epar[5]>0.) cout<<"\td/e="<<(par[5]-RHO)/epar[5]; cout<<endl;
|
---|
216 | cout<<"7: "<<FOND<<"\tfit="<<par[6]<<"\tefit="<<epar[6]<<"\td="<<par[6]-FOND;
|
---|
217 | if(epar[6]>0.) cout<<"\td/e="<<(par[6]-FOND)/epar[6]; cout<<endl;
|
---|
218 | cout<<"Xi2="<<xi2<<"\txi2/n="<<xi2/(DIMX*DIMY-NPAR)<<endl;
|
---|
219 |
|
---|
220 | exit(0);
|
---|
221 | }
|
---|
222 |
|
---|
223 | void fcn(int_4 *npar,double *grad,double *fval,double *xval
|
---|
224 | ,int_4 *iflag,double futils(double *))
|
---|
225 | {
|
---|
226 | //cout<<"iflag="<<*iflag<<endl;
|
---|
227 | IFLAG[0]++;
|
---|
228 | if(*iflag>0 && *iflag<10) IFLAG[*iflag]++;
|
---|
229 |
|
---|
230 | // Read input,init,... data values
|
---|
231 | // if(*iflag==1) {...}
|
---|
232 |
|
---|
233 | // Instruct Minuit to redefine the problem
|
---|
234 | // and forget about previously best fitted values.
|
---|
235 | // if(*iflag==5) {...}
|
---|
236 |
|
---|
237 | // Always compute Chi2 or Likelyhood (here iflag==4)
|
---|
238 | *fval=0.;
|
---|
239 | for(int i=0;i<DIMX;i++) for(int j=0;j<DIMY;j++) {
|
---|
240 | double f = Z[i][j]-Gauss2D(X[i],Y[j],xval);
|
---|
241 | *fval += f*f/(EZ[i][j]*EZ[i][j]);
|
---|
242 | }
|
---|
243 |
|
---|
244 | // Compute (optionnal) the first derivative of Chi2 / parameters
|
---|
245 | if(*iflag==2) {
|
---|
246 | // Return gradient of chi2 (if SET GRA called)
|
---|
247 | // C'est DChi2/DPi = -2*sum{(Yi-F(Xi))/EYi^2 * dF/dPi(Xi)}
|
---|
248 | double dpar[NPAR];
|
---|
249 | for(int j=0;j<NPAR;j++) grad[j]=0.;
|
---|
250 | for(int i=0;i<DIMX;i++) for(int j=0;j<DIMY;j++) {
|
---|
251 | double f=-2.*(Z[i][j]-Gauss2D(X[i],Y[j],xval))/(EZ[i][j]*EZ[i][j]);
|
---|
252 | dGauss2D(X[i],Y[j],xval,dpar);
|
---|
253 | for(int k=0;k<NPAR;k++) grad[k]+= f*dpar[k];
|
---|
254 | }
|
---|
255 | }
|
---|
256 |
|
---|
257 | // Called at the end of the fit (on the Minuit RETURN)
|
---|
258 | if(*iflag==3) {
|
---|
259 | cout<<"Call fcn iflag="<<*iflag<<" npar="<<*npar<<endl;
|
---|
260 | for(int k=0;k<NPAR;k++) cout<<" P"<<k+1<<"="<<xval[k];
|
---|
261 | cout<<endl;
|
---|
262 | cout<<"Number of fcn calls="<<IFLAG[0]<<endl;
|
---|
263 | for(int k=1;k<10;k++)
|
---|
264 | cout<<" iflag="<<k<<" number of calls="<<IFLAG[k]<<endl;
|
---|
265 | }
|
---|
266 | }
|
---|
267 |
|
---|
268 | double Gauss2D(double x,double y,double *param)
|
---|
269 | // xc = (x-p1)/p3 ; yc = (y-p2)/p4
|
---|
270 | // f(x) = p0*(1-rho^2)/(2*Pi*p3*p4) * exp(-0.5*(xc^2+yc^2-2*p5*xc*yc))
|
---|
271 | {
|
---|
272 | double N = sqrt(1.-param[5]*param[5])/(2*M_PI*param[3]*param[4]);
|
---|
273 | double X = (x-param[1])/param[3];
|
---|
274 | double Y = (y-param[2])/param[4];
|
---|
275 | double z2 = (X*X + Y*Y - 2.*param[5]*X*Y)/2.;
|
---|
276 | if(z2<100.) z2=exp(-z2); else z2=0.;
|
---|
277 | return param[0]*N*z2 + param[6];
|
---|
278 | }
|
---|
279 |
|
---|
280 | double dGauss2D(double x,double y,double *param,double *dparam)
|
---|
281 | {
|
---|
282 | double unmr2 = 1.-param[5]*param[5];
|
---|
283 | double N = sqrt(unmr2)/(2*M_PI*param[3]*param[4]);
|
---|
284 | double X = (x-param[1])/param[3];
|
---|
285 | double Y = (y-param[2])/param[4];
|
---|
286 |
|
---|
287 | double XmrY = X-param[5]*Y;
|
---|
288 | double YmrX = Y-param[5]*X;
|
---|
289 | double z2 = (X*(XmrY-param[5]*Y)+Y*Y)/2.;
|
---|
290 |
|
---|
291 | /* g(x,y) */
|
---|
292 | double PSF = 0.;
|
---|
293 | if(z2<100.) PSF = N * exp(-z2);
|
---|
294 | /* dg(x,y)/d(Vol) */
|
---|
295 | dparam[0] = PSF;
|
---|
296 | /* dg(x,y)/d(x0) */
|
---|
297 | dparam[1] = param[0]* PSF* XmrY/param[3];
|
---|
298 | /* dg(x,y)/d(y0) */
|
---|
299 | dparam[2] = param[0]* PSF* YmrX/param[4];
|
---|
300 | /* dg(x,y)/d(sx)*/
|
---|
301 | dparam[3] = param[0]* PSF* (X*XmrY-1.)/param[3];
|
---|
302 | /* dg(x,y)/d(sy) */
|
---|
303 | dparam[4] = param[0]* PSF* (Y*YmrX-1.)/param[4];
|
---|
304 | /* dg(x,y)/d(rho) */
|
---|
305 | dparam[5] = param[0]* PSF* (X*Y-2.*param[5]/unmr2);
|
---|
306 | /* dg(x,y)/d(Fond) */
|
---|
307 | dparam[6] = 1.;
|
---|
308 |
|
---|
309 | return param[0] * PSF + param[6];
|
---|
310 | }
|
---|