[1456] | 1 | #include <math.h>
|
---|
| 2 | #include <stdio.h>
|
---|
| 3 | #include "xastropack.h"
|
---|
| 4 |
|
---|
[1682] | 5 | // BUGS BUGS BUGS BUGS BUGS BUGS BUGS BUGS BUGS BUGS
|
---|
| 6 | // Corrections de divers bugs trouve dans libastro (CMV)
|
---|
| 7 | // 1******* In the file vsop87.c line 154:
|
---|
| 8 | // p = q/(t_abs[alpha] + alpha * t_abs[alpha-1] * 1e-4 + 1e-35);
|
---|
| 9 | // - to avoid t_abs[-1] when alpha=0, replaced by :
|
---|
| 10 | // if(alpha>0) p = t_abs[alpha-1]; else p=0;
|
---|
| 11 | // p = q/(t_abs[alpha] + alpha * p * 1e-4 + 1e-35);
|
---|
| 12 | // Mail envoye a ecdowney@ClearSkyInstitute.com
|
---|
| 13 | // 2******* In the file eq_ecl.c line 69:
|
---|
| 14 | // *q = asin((sy*ceps)-(cy*seps*sx*sw));
|
---|
| 15 | // eq_ecl.c Protection NaN dans ecleq_aux, replaced by :
|
---|
| 16 | // *q = (sy*ceps)-(cy*seps*sx*sw);
|
---|
| 17 | // if(*q<-1.) *q = -PI/2.; else if(*q>1.) *q = PI/2.; else *q = asin(*q);
|
---|
| 18 | // Mail envoye a ecdowney@ClearSkyInstitute.com
|
---|
| 19 |
|
---|
| 20 |
|
---|
[1628] | 21 | /*!
|
---|
| 22 | \defgroup XAstroPack XAstroPack module
|
---|
| 23 | This module contains simple programs to perform various
|
---|
| 24 | astronomical computation (based on the libastro of Xephem).
|
---|
| 25 |
|
---|
| 26 | \verbatim
|
---|
[1456] | 27 | // TEMPS: modified Julian date (mjd) (number of days elapsed since 1900 jan 0.5)
|
---|
| 28 | // jour [1,31] (dy)
|
---|
| 29 | // mois [1,12] (mn)
|
---|
| 30 | // annee (yr)
|
---|
[1515] | 31 | // universal time [0,24[ (utc)
|
---|
| 32 | // Greenwich mean siderial [0,24[ (gst)
|
---|
| 33 | // Greenwich mean siderial at 0h UT [0,24[ (gst0)
|
---|
[1456] | 34 | // EQUATORIALE: ascension droite en heures [0,24[ (ra)
|
---|
| 35 | // declinaison en degres [-90,90] (dec)
|
---|
[1682] | 36 | // angle horaire en heures ]-12,12] (-12=12) (ha)
|
---|
[1678] | 37 | // temps sideral du lieu: tsid=ha+ra (ou lst)
|
---|
[1456] | 38 | // GALACTIQUE: longitude en degres [0,360[ (glng)
|
---|
| 39 | // latitude en degres [-90,90] (glat)
|
---|
[1515] | 40 | // HORIZONTAL: azimuth en degres [0,360[ (az)
|
---|
| 41 | // (angle round to the east from north+)
|
---|
| 42 | // altitude en degres [-90,90] (alt)
|
---|
| 43 | // ECLIPTIQUE: lontitude ecliptique en degres [0,360[ (eclng)
|
---|
| 44 | // (angle round counter clockwise from the vernal equinoxe)
|
---|
| 45 | // latitude ecliptique en degres [-90,90] (eclat)
|
---|
| 46 | // GEOGRAPHIE: longitude en degres ]-180,180] (geolng)
|
---|
| 47 | // (angle + vers l'ouest, - vers l'est)
|
---|
| 48 | // latitude en degres [-90,90] (north>0) (geolat)
|
---|
[1628] | 49 | \endverbatim
|
---|
| 50 | */
|
---|
[1456] | 51 |
|
---|
[1628] | 52 | /*! \ingroup XAstroPack
|
---|
[1682] | 53 | \brief Given a coordinate type "typ", convert to standard for astropack.
|
---|
| 54 | \verbatim
|
---|
| 55 | La routine convertit (in place) les coordonnees "coord1","coord2"
|
---|
| 56 | definies par le type "typ" dans les unites standard de ce systeme
|
---|
| 57 | de coordonnees.
|
---|
| 58 | "typ" code le systeme de coordonnees astronomiques et les unites utilisees
|
---|
| 59 |
|
---|
| 60 | - Return : 0 = OK
|
---|
| 61 | 1 = Unknown type of coordinates
|
---|
| 62 | 2 = bad range for coord1
|
---|
| 63 | 4 = bad range for coord2
|
---|
| 64 | 6 = bad range for coord1 et coord2
|
---|
| 65 |
|
---|
| 66 | Les types de coordonnees sont definies dans le enum TypAstroCoord:
|
---|
| 67 | La premiere coordonnee est de type "longitude" (alpha,longitude)
|
---|
| 68 | La deuxieme coordonnee est de type "latidude" (delta,latitude)
|
---|
| 69 | *** Definitions des unites des coordonnees et de leurs dynamiques
|
---|
| 70 | - TypCoordH0 : heure=[0,24[
|
---|
| 71 | - TypCoordH1 : heure=]-12,12]
|
---|
| 72 | - TypCoordD0 : degre=[0,360[
|
---|
| 73 | - TypCoordD1 : degre=]-180,180]
|
---|
| 74 | - TypCoordD2 : degre=[-90,90]
|
---|
| 75 | - TypCoordR0 : degre=[0,2Pi[
|
---|
| 76 | - TypCoordR1 : degre=]-Pi,Pi]
|
---|
| 77 | - TypCoordR2 : degre=[-Pi/2,Pi/2]
|
---|
| 78 | *** Definitions des combinaisons unites des coordonnees
|
---|
| 79 | - TypCoordHD : coordonnees en (heure=[0,24[,degre=[-90,90])
|
---|
| 80 | - TypCoordDD : coordonnees en (degre=[0,360[,degre=[-90,90])
|
---|
| 81 | - TypCoordRR : coordonnees en (radian=[0,2Pi[,radian=[-Pi/2,Pi/2])
|
---|
| 82 | - TypCoordH1D : coordonnees en (heure=]-12,12],degre=[-90,90])
|
---|
| 83 | - TypCoordD1D : coordonnees en (degre=]-180,180],degre=[-90,90])
|
---|
| 84 | - TypCoordR1R : coordonnees en (radian=]-Pi,Pi],radian=[-Pi/2,Pi/2])
|
---|
| 85 | *** Definitions des types de systemes de coordonnees astronomiques.
|
---|
| 86 | - TypCoordEq : Coordonnees Equatoriales alpha,delta
|
---|
| 87 | - TypCoordGal : Coordonnees Galactiques gLong, gLat
|
---|
| 88 | - TypCoordHor : Coordonnees Horizontales azimuth,altitude
|
---|
| 89 | - TypCoordEcl : Coordonnees Ecliptiques EclLong,EclLat
|
---|
| 90 | *** Definitions des unites par defaut pour les divers systemes de coordonnees.
|
---|
| 91 | - TypCoordEqStd : heure=[0,24[, degre=[-90,90]
|
---|
| 92 | - TypCoordGalStd : degre=[0,360[,degre=[-90,90]
|
---|
| 93 | - TypCoordHorStd : degre=[0,360[,degre=[-90,90]
|
---|
| 94 | - TypCoordEclStd : degre=[0,360[,degre=[-90,90]
|
---|
| 95 | \endverbatim
|
---|
| 96 | */
|
---|
| 97 | int CoordConvertToStd(TypAstroCoord typ,double& coord1,double& coord2)
|
---|
| 98 | {
|
---|
| 99 | int rc = 0;
|
---|
| 100 |
|
---|
| 101 | // ---- Equatoriales alpha,delta
|
---|
| 102 | // - standard = [0,24[ , [-90,90]
|
---|
| 103 | if(typ&TypCoordEq) {
|
---|
| 104 | if(typ&TypCoordDD) {
|
---|
| 105 | coord1 = deghr(coord1);
|
---|
| 106 | } else if(typ&TypCoordRR) {
|
---|
| 107 | coord1 = radhr(coord1);
|
---|
| 108 | coord2 = raddeg(coord2);
|
---|
| 109 | }
|
---|
| 110 | if(coord1==24.) coord1 = 0.;
|
---|
| 111 | if(coord1<0. || coord1>=24.) rc+= 2;
|
---|
| 112 | if(coord2<-90. || coord2>90. ) rc+= 4;
|
---|
| 113 |
|
---|
| 114 | // ---- Galactiques gLong, gLat
|
---|
| 115 | // ---- Horizontales azimuth,altitude
|
---|
| 116 | // ---- Ecliptiques EclLong,EclLat
|
---|
| 117 | // - standard = [0,360[ , [-90,90]
|
---|
| 118 | } else if( typ&TypCoordGal || typ&TypCoordHor || typ&TypCoordEcl) {
|
---|
| 119 | if(typ&TypCoordHD) {
|
---|
| 120 | coord1 = hrdeg(coord1);
|
---|
| 121 | } else if(typ&TypCoordRR) {
|
---|
| 122 | coord1 = raddeg(coord1);
|
---|
| 123 | coord2 = raddeg(coord2);
|
---|
| 124 | }
|
---|
| 125 | if(coord1==360.) coord1 = 0.;
|
---|
| 126 | if(coord1<0. || coord1>=360.) rc+= 2;
|
---|
| 127 | if(coord2<-90. || coord2>90. ) rc+= 4;
|
---|
| 128 |
|
---|
| 129 | } else { // Coordonnees non-connues
|
---|
| 130 | rc= 1;
|
---|
| 131 | }
|
---|
| 132 |
|
---|
| 133 | return rc;
|
---|
| 134 | }
|
---|
| 135 |
|
---|
| 136 | /*! \ingroup XAstroPack
|
---|
| 137 | \brief Compute MJD from date
|
---|
| 138 | \verbatim
|
---|
| 139 | MJD = modified Julian date (number of days elapsed since 1900 jan 0.5),
|
---|
[1688] | 140 | dy is the decimale value of the day: dy = int(dy) + utc/24.
|
---|
[1682] | 141 | \endverbatim
|
---|
| 142 | */
|
---|
| 143 | double MJDfrDate(double dy,int mn,int yr)
|
---|
| 144 | {
|
---|
| 145 | double mjd;
|
---|
| 146 | cal_mjd(mn,dy,yr,&mjd);
|
---|
| 147 | return mjd;
|
---|
| 148 | }
|
---|
| 149 |
|
---|
| 150 | /*! \ingroup XAstroPack
|
---|
| 151 | \brief Compute date from MJD
|
---|
| 152 | */
|
---|
| 153 | void DatefrMJD(double mjd,double *dy,int *mn,int *yr)
|
---|
| 154 | {
|
---|
| 155 | mjd_cal(mjd,mn,dy,yr);
|
---|
| 156 | }
|
---|
| 157 |
|
---|
| 158 | /*! \ingroup XAstroPack
|
---|
| 159 | \brief Given a mjd, return the year as a double.
|
---|
| 160 | */
|
---|
| 161 | double YearfrMJD(double mjd)
|
---|
| 162 | {
|
---|
| 163 | double yr;
|
---|
| 164 | mjd_year(mjd,&yr);
|
---|
| 165 | return yr;
|
---|
| 166 | }
|
---|
| 167 |
|
---|
| 168 | /*! \ingroup XAstroPack
|
---|
| 169 | \brief Given a decimal year, return mjd
|
---|
| 170 | */
|
---|
| 171 | double MJDfrYear(double yr)
|
---|
| 172 | {
|
---|
| 173 | double mjd;
|
---|
| 174 | year_mjd(yr,&mjd);
|
---|
| 175 | return mjd;
|
---|
| 176 | }
|
---|
| 177 |
|
---|
| 178 | /*! \ingroup XAstroPack
|
---|
| 179 | \brief Given a mjd, return the year and number of days since 00:00 Jan 1
|
---|
| 180 | \warning: if mjd = 2 January -> number of days = 1
|
---|
| 181 | */
|
---|
| 182 | void YDfrMJD(double mjd,double *dy,int *yr)
|
---|
| 183 | {
|
---|
| 184 | mjd_dayno(mjd,yr,dy);
|
---|
| 185 | }
|
---|
| 186 |
|
---|
| 187 | /*! \ingroup XAstroPack
|
---|
| 188 | \brief Given a year,
|
---|
| 189 | */
|
---|
| 190 | int IsLeapYear(int y)
|
---|
| 191 | {
|
---|
| 192 | return isleapyear(y);
|
---|
| 193 | }
|
---|
| 194 |
|
---|
| 195 | /*! \ingroup XAstroPack
|
---|
| 196 | \brief given an mjd, set *dow to 0..6 according to which day of the week it falls on (0=sunday).
|
---|
| 197 | \return return 0 if ok else -1 if can't figure it out.
|
---|
| 198 | */
|
---|
| 199 | int DayOrder(double mjd,int *dow)
|
---|
| 200 | {
|
---|
| 201 | return mjd_dow(mjd,dow);
|
---|
| 202 | }
|
---|
| 203 |
|
---|
| 204 | /*! \ingroup XAstroPack
|
---|
| 205 | \brief given a mjd, return the the number of days in the month.
|
---|
| 206 | */
|
---|
| 207 | int DaysInMonth(double mjd)
|
---|
| 208 | {
|
---|
| 209 | int ndays;
|
---|
| 210 | mjd_dpm(mjd,&ndays);
|
---|
| 211 | return ndays;
|
---|
| 212 | }
|
---|
| 213 |
|
---|
| 214 | /*! \ingroup XAstroPack
|
---|
| 215 | \brief Given a mjd, truncate it to the beginning of the whole day
|
---|
| 216 | */
|
---|
| 217 | double MJDat0hFrMJD(double mjd)
|
---|
| 218 | {
|
---|
| 219 | return mjd_day(mjd);
|
---|
| 220 | }
|
---|
| 221 |
|
---|
| 222 | /*! \ingroup XAstroPack
|
---|
| 223 | \brief Given a mjd, return the number of hours past midnight of the whole day
|
---|
| 224 | */
|
---|
| 225 | double HfrMJD(double mjd)
|
---|
| 226 | {
|
---|
| 227 | return mjd_hr(mjd);
|
---|
| 228 | }
|
---|
| 229 |
|
---|
| 230 | /*! \ingroup XAstroPack
|
---|
| 231 | \brief Give GST from UTC
|
---|
| 232 | \verbatim
|
---|
| 233 | Given a modified julian date, mjd, and a universally coordinated time, utc,
|
---|
| 234 | return greenwich mean siderial time, *gst.
|
---|
| 235 | N.B. mjd must be at the beginning of the day.
|
---|
| 236 | \endverbatim
|
---|
| 237 | */
|
---|
| 238 | double GSTfrUTC(double mjd0,double utc)
|
---|
| 239 | {
|
---|
| 240 | double gst;
|
---|
| 241 | utc_gst(mjd0,utc,&gst);
|
---|
| 242 | return gst;
|
---|
| 243 | }
|
---|
| 244 |
|
---|
| 245 | /*! \ingroup XAstroPack
|
---|
| 246 | \brief Give UTC from GST
|
---|
| 247 | \verbatim
|
---|
| 248 | Given a modified julian date, mjd, and a greenwich mean siderial time, gst,
|
---|
| 249 | return universally coordinated time, *utc.
|
---|
| 250 | N.B. mjd must be at the beginning of the day.
|
---|
| 251 | \endverbatim
|
---|
| 252 | */
|
---|
| 253 | double UTCfrGST(double mjd0,double gst)
|
---|
| 254 | {
|
---|
| 255 | double utc;
|
---|
| 256 | gst_utc(mjd0,gst,&utc);
|
---|
| 257 | return utc;
|
---|
| 258 | }
|
---|
| 259 |
|
---|
| 260 | /*! \ingroup XAstroPack
|
---|
| 261 | \brief Given apparent altitude find airmass.
|
---|
| 262 | */
|
---|
| 263 | double AirmassfrAlt(double alt)
|
---|
| 264 | {
|
---|
| 265 | double x;
|
---|
| 266 | alt = degrad(alt);
|
---|
| 267 | airmass(alt,&x);
|
---|
| 268 | return x;
|
---|
| 269 | }
|
---|
| 270 |
|
---|
| 271 | /*! \ingroup XAstroPack
|
---|
| 272 | \brief given geocentric time "jd" and coords of a distant object at "ra/dec" (J2000),
|
---|
| 273 | find the difference "hcp" in time between light arriving at earth vs the sun.
|
---|
| 274 | \return "hcp" must be subtracted from "geocentric jd" to get "heliocentric jd".
|
---|
| 275 | \warning "jd" is the TRUE Julian day (jd = mjd+MJD0).
|
---|
| 276 | */
|
---|
| 277 | double HelioCorr(double jd,double ra,double dec)
|
---|
| 278 | {
|
---|
| 279 | double hcp;
|
---|
| 280 | ra=hrrad(ra);
|
---|
| 281 | dec=degrad(dec);
|
---|
| 282 | heliocorr(jd,ra,dec,&hcp);
|
---|
| 283 | return hcp;
|
---|
| 284 | }
|
---|
| 285 |
|
---|
| 286 | /*! \ingroup XAstroPack
|
---|
[1628] | 287 | \brief gmst0() - return Greenwich Mean Sidereal Time at 0h UT
|
---|
[1679] | 288 | \param mjd0 = date at 0h UT in julian days since MJD0
|
---|
[1628] | 289 | */
|
---|
[1456] | 290 | double GST0(double mjd0)
|
---|
[1678] | 291 | /* Copie depuis le code de Xephem (utc_gst.c) car pas prototype*/
|
---|
[1456] | 292 | {
|
---|
| 293 | double T, x;
|
---|
| 294 | T = ((int)(mjd0 - 0.5) + 0.5 - J2000)/36525.0;
|
---|
| 295 | x = 24110.54841 +
|
---|
| 296 | (8640184.812866 + (0.093104 - 6.2e-6 * T) * T) * T;
|
---|
| 297 | x /= 3600.0;
|
---|
| 298 | range(&x, 24.0);
|
---|
| 299 | return (x);
|
---|
| 300 | }
|
---|
| 301 |
|
---|
[1628] | 302 | /*! \ingroup XAstroPack
|
---|
[1678] | 303 | \brief return local sidereal time from modified julian day and longitude
|
---|
| 304 | \warning nutation or obliquity correction are taken into account.
|
---|
| 305 | */
|
---|
| 306 | double LSTfrMJD(double mjd,double geolng)
|
---|
| 307 | {
|
---|
| 308 | double eps,lst,deps,dpsi;
|
---|
| 309 | utc_gst(mjd_day(mjd),mjd_hr(mjd),&lst);
|
---|
[1679] | 310 | lst += deghr(geolng);
|
---|
[1678] | 311 | obliquity(mjd,&eps);
|
---|
| 312 | nutation(mjd,&deps,&dpsi);
|
---|
[1679] | 313 | lst += radhr(dpsi*cos(eps+deps));
|
---|
| 314 | InRange(&lst,24.);
|
---|
[1678] | 315 | return lst;
|
---|
| 316 | }
|
---|
| 317 |
|
---|
| 318 | /*! \ingroup XAstroPack
|
---|
[1628] | 319 | \brief Give a time in h:mn:s from a decimal hour
|
---|
| 320 | \verbatim
|
---|
[1456] | 321 | // INPUT: hd
|
---|
[1465] | 322 | // OUTPUT: h mn s (h,mn,s >=< 0)
|
---|
| 323 | // REMARQUE: si hd<0 alors h<0 ET mn<0 ET s<0
|
---|
| 324 | // EX: 12.51 -> h=12 mn=30 s=10 ;
|
---|
| 325 | // -12.51 -> h=-12 mn=-30 s=-10 ;
|
---|
[1628] | 326 | \endverbatim
|
---|
| 327 | */
|
---|
| 328 | void HMSfrHdec(double hd,int *h,int *mn,double *s)
|
---|
[1456] | 329 | {
|
---|
| 330 | int sgn=1;
|
---|
| 331 | if(hd<0.) {sgn=-1; hd*=-1.;}
|
---|
| 332 | *h = int(hd);
|
---|
| 333 | *mn = int((hd-(double)(*h))*60.);
|
---|
| 334 | *s = (hd - (double)(*h) - (double)(*mn)/60.)*3600.;
|
---|
| 335 | // pb precision
|
---|
| 336 | if(*s<0.) *s = 0.;
|
---|
| 337 | if(*s>60. || *s==60.) {*s-=60.; *mn+=1;} // s=double attention comparaison
|
---|
| 338 | if(*mn<0) *mn = 0;
|
---|
| 339 | if(*mn>=60) {*mn-=60; *h+=1;}
|
---|
[1465] | 340 | *h *= sgn; *mn *= sgn; *s *= (double)sgn;
|
---|
[1456] | 341 | }
|
---|
| 342 |
|
---|
[1628] | 343 | /*! \ingroup XAstroPack
|
---|
| 344 | \brief Give a decimal hour from a time in h:mn:s
|
---|
| 345 | \verbatim
|
---|
[1465] | 346 | // INPUT: h , mn , s (h,mn,s >=< 0)
|
---|
| 347 | // RETURN: en heures decimales
|
---|
| 348 | // REMARQUE: pour avoir hd=-12.51 <- h=-12 mn=-30 s=-10
|
---|
[1628] | 349 | \endverbatim
|
---|
| 350 | */
|
---|
| 351 | double HdecfrHMS(int h,int mn,double s)
|
---|
[1456] | 352 | {
|
---|
[1465] | 353 | return ((double)h + (double)mn/60. + s/3600.);
|
---|
[1456] | 354 | }
|
---|
| 355 |
|
---|
[1628] | 356 | /*! \ingroup XAstroPack
|
---|
| 357 | \brief Give a time string from a time in h:mn:s
|
---|
| 358 | \verbatim
|
---|
[1465] | 359 | // INPUT: h , mn , s (h,mn,s >=< 0)
|
---|
[1456] | 360 | // RETURN: string h:mn:s
|
---|
[1628] | 361 | \endverbatim
|
---|
| 362 | */
|
---|
| 363 | string ToStringHMS(int h,int mn,double s)
|
---|
[1456] | 364 | {
|
---|
[1465] | 365 | double hd = HdecfrHMS(h,mn,s); // put in range
|
---|
| 366 | HMSfrHdec(hd,&h,&mn,&s);
|
---|
[1456] | 367 | char str[128];
|
---|
[1465] | 368 | if(hd<0.)
|
---|
| 369 | sprintf(str,"-%d:%d:%.3f",-h,-mn,-s);
|
---|
| 370 | else
|
---|
| 371 | sprintf(str,"%d:%d:%.3f",h,mn,s);
|
---|
[1456] | 372 | string dum = str;
|
---|
| 373 | return dum;
|
---|
| 374 | }
|
---|
| 375 |
|
---|
[1628] | 376 | /*! \ingroup XAstroPack
|
---|
| 377 | \brief Give a time string from a decimal hour
|
---|
| 378 | */
|
---|
[1456] | 379 | string ToStringHdec(double hd)
|
---|
| 380 | {
|
---|
| 381 | int h,mn; double s;
|
---|
[1465] | 382 | HMSfrHdec(hd,&h,&mn,&s);
|
---|
[1456] | 383 | return ToStringHMS(h,mn,s);
|
---|
| 384 | }
|
---|
| 385 |
|
---|
[1628] | 386 | /*! \ingroup XAstroPack
|
---|
[1679] | 387 | \brief Compute precession between 2 dates.
|
---|
| 388 | */
|
---|
| 389 | void Precess(double mjd1,double mjd2,double ra1,double dec1,double *ra2,double *dec2)
|
---|
| 390 | {
|
---|
| 391 | ra1 = hrrad(ra1); // radians
|
---|
| 392 | dec1 = degrad(dec1); // radians
|
---|
| 393 | precess(mjd1,mjd2,&ra1,&dec1);
|
---|
| 394 | *ra2 = radhr(ra1); InRange(ra2,24.);
|
---|
| 395 | *dec2 = raddeg(dec1);
|
---|
| 396 | }
|
---|
| 397 |
|
---|
| 398 | /*! \ingroup XAstroPack
|
---|
[1678] | 399 | \brief Convert equatorial coordinates for the given epoch into galactic coordinates
|
---|
[1628] | 400 | */
|
---|
[1456] | 401 | void EqtoGal(double mjd,double ra,double dec, double *glng,double *glat)
|
---|
| 402 | // Coordonnees equatoriales -> Coordonnees galactiques
|
---|
| 403 | {
|
---|
[1679] | 404 | ra = hrrad(ra); // radians
|
---|
| 405 | dec = degrad(dec); // radians
|
---|
[1456] | 406 | eq_gal(mjd,ra,dec,glat,glng);
|
---|
| 407 | // Vraiment bizarre, sur Linux-g++ glng>=360 ne comprend pas glng==360 ! (CMV)
|
---|
[1679] | 408 | *glng = raddeg(*glng); InRange(glng,360.);
|
---|
| 409 | *glat = raddeg(*glat);
|
---|
[1456] | 410 | }
|
---|
| 411 |
|
---|
[1628] | 412 | /*! \ingroup XAstroPack
|
---|
[1678] | 413 | \brief Convert galactic coordinates into equatorial coordinates at the given epoch
|
---|
[1628] | 414 | */
|
---|
[1456] | 415 | void GaltoEq(double mjd,double glng,double glat,double *ra,double *dec)
|
---|
| 416 | // Coordonnees galactiques -> Coordonnees equatoriales
|
---|
| 417 | {
|
---|
[1679] | 418 | glng = degrad(glng); // radians
|
---|
| 419 | glat = degrad(glat); // radians
|
---|
[1456] | 420 | gal_eq (mjd,glat,glng,ra,dec);
|
---|
[1679] | 421 | *ra = radhr(*ra); InRange(ra,24.);
|
---|
| 422 | *dec = raddeg(*dec);
|
---|
[1456] | 423 | }
|
---|
| 424 |
|
---|
[1628] | 425 | /*! \ingroup XAstroPack
|
---|
[1678] | 426 | \brief Convert equatorial coordinates (with hour angle instead of right ascension) into horizontal coordinates.
|
---|
[1628] | 427 | */
|
---|
[1678] | 428 | void EqHtoHor(double geolat,double ha,double dec,double *az,double *alt)
|
---|
[1456] | 429 | // Coordonnees equatoriales -> Coordonnees horizontales
|
---|
| 430 | {
|
---|
[1679] | 431 | geolat = degrad(geolat); // radians
|
---|
| 432 | ha = hrrad(ha); // radians
|
---|
| 433 | dec = degrad(dec); // radians
|
---|
[1456] | 434 | hadec_aa (geolat,ha,dec,alt,az);
|
---|
[1679] | 435 | *alt = raddeg(*alt);
|
---|
| 436 | *az = raddeg(*az); InRange(az,360.);
|
---|
[1456] | 437 | }
|
---|
| 438 |
|
---|
[1628] | 439 | /*! \ingroup XAstroPack
|
---|
[1678] | 440 | Convert horizontal coordinates into equatorial coordinates (with hour angle instead of right ascension).
|
---|
[1628] | 441 | */
|
---|
[1678] | 442 | void HortoEqH(double geolat,double az,double alt,double *ha,double *dec)
|
---|
[1456] | 443 | // Coordonnees horizontales -> Coordonnees equatoriales
|
---|
| 444 | {
|
---|
[1679] | 445 | geolat = degrad(geolat); // radians
|
---|
| 446 | alt = degrad(alt); // radians
|
---|
| 447 | az = degrad(az); // radians
|
---|
[1456] | 448 | aa_hadec (geolat,alt,az,ha,dec);
|
---|
[1679] | 449 | *ha = radhr(*ha); InRange(ha,24.,12.);
|
---|
| 450 | *dec = raddeg(*dec);
|
---|
[1456] | 451 | }
|
---|
| 452 |
|
---|
[1628] | 453 | /*! \ingroup XAstroPack
|
---|
[1678] | 454 | \brief Convert equatorial coordinates into horizontal coordinates.
|
---|
[1628] | 455 | */
|
---|
[1678] | 456 | void EqtoHor(double geolat,double lst,double ra,double dec,double *az,double *alt)
|
---|
| 457 | // Coordonnees equatoriales -> Coordonnees horizontales
|
---|
| 458 | {
|
---|
[1679] | 459 | double ha = lst - ra; InRange(&ha,24.,12.);
|
---|
| 460 | geolat = degrad(geolat); // radians
|
---|
| 461 | ha = hrrad(ha); // radians
|
---|
| 462 | dec = degrad(dec); // radians
|
---|
[1678] | 463 | hadec_aa (geolat,ha,dec,alt,az);
|
---|
[1679] | 464 | *alt = raddeg(*alt);
|
---|
| 465 | *az = raddeg(*az); InRange(az,360.);
|
---|
[1678] | 466 | }
|
---|
| 467 |
|
---|
| 468 | /*! \ingroup XAstroPack
|
---|
| 469 | Convert horizontal coordinates into equatorial coordinates.
|
---|
| 470 | */
|
---|
| 471 | void HortoEq(double geolat,double lst,double az,double alt,double *ra,double *dec)
|
---|
| 472 | // Coordonnees horizontales -> Coordonnees equatoriales
|
---|
| 473 | {
|
---|
| 474 | double ha;
|
---|
[1679] | 475 | geolat = degrad(geolat); // radians
|
---|
| 476 | alt = degrad(alt); // radians
|
---|
| 477 | az = degrad(az); // radians
|
---|
[1678] | 478 | aa_hadec (geolat,alt,az,&ha,dec);
|
---|
[1679] | 479 | *ra = lst - radhr(ha); InRange(ra,24.);
|
---|
| 480 | *dec = raddeg(*dec);
|
---|
[1678] | 481 | }
|
---|
| 482 |
|
---|
| 483 | /*! \ingroup XAstroPack
|
---|
| 484 | \brief Convert equatorial coordinates into geocentric ecliptic coordinates given the modified Julian date.
|
---|
| 485 | \warning Correction for the effect on the angle of the obliquity due to nutation is not included.
|
---|
| 486 | */
|
---|
[1456] | 487 | void EqtoEcl(double mjd,double ra,double dec,double *eclng,double *eclat)
|
---|
| 488 | // Coordonnees equatoriales -> Coordonnees ecliptiques
|
---|
| 489 | {
|
---|
[1679] | 490 | ra = hrrad(ra); // radians
|
---|
| 491 | dec = degrad(dec); // radians
|
---|
[1456] | 492 | eq_ecl(mjd,ra,dec,eclat,eclng);
|
---|
[1679] | 493 | *eclng = raddeg(*eclng); InRange(eclng,360.);
|
---|
| 494 | *eclat = raddeg(*eclat);
|
---|
[1456] | 495 | }
|
---|
| 496 |
|
---|
[1628] | 497 | /*! \ingroup XAstroPack
|
---|
[1678] | 498 | \brief Convert geocentric ecliptic coordinates into equatorial coordinates given the modified Julian date.
|
---|
| 499 | \warning Correction for the effect on the angle of the obliquity due to nutation is not included.
|
---|
[1628] | 500 | */
|
---|
[1456] | 501 | void EcltoEq(double mjd,double eclng,double eclat,double *ra,double *dec)
|
---|
| 502 | // Coordonnees ecliptiques -> Coordonnees equatoriales
|
---|
| 503 | {
|
---|
[1679] | 504 | eclat = degrad(eclat); // radians
|
---|
| 505 | eclng = degrad(eclng); // radians
|
---|
[1456] | 506 | ecl_eq(mjd,eclat,eclng,ra,dec);
|
---|
[1679] | 507 | *ra = radhr(*ra); InRange(ra,24.);
|
---|
| 508 | *dec = raddeg(*dec);
|
---|
[1456] | 509 | }
|
---|
| 510 |
|
---|
[1628] | 511 | /*! \ingroup XAstroPack
|
---|
| 512 | \brief Give Sun position
|
---|
| 513 | \verbatim
|
---|
| 514 | given the modified JD, mjd, return the true geocentric ecliptic longitude
|
---|
[1679] | 515 | of the sun for the mean equinox of the date, *eclsn, in degres, the
|
---|
| 516 | sun-earth distance, *rsn, in AU, and the latitude *ecbsn, in degres
|
---|
[1628] | 517 | (since this is always <= 1.2 arcseconds, in can be neglected by
|
---|
[1679] | 518 | calling with ecbsn = NULL).
|
---|
| 519 | - REMARQUE:
|
---|
| 520 | * if the APPARENT ecliptic longitude is required, correct the longitude for
|
---|
| 521 | * nutation to the true equinox of date and for aberration (light travel time,
|
---|
| 522 | * approximately -9.27e7/186000/(3600*24*365)*2*pi = -9.93e-5 radians).
|
---|
[1628] | 523 | \endverbatim
|
---|
| 524 | */
|
---|
[1679] | 525 | void SunPos(double mjd,double *eclsn,double *ecbsn,double *rsn)
|
---|
[1456] | 526 | {
|
---|
[1679] | 527 | sunpos(mjd,eclsn,rsn,ecbsn);
|
---|
| 528 | *eclsn = raddeg(*eclsn); InRange(eclsn,360.);
|
---|
| 529 | if(ecbsn!=NULL) *ecbsn = raddeg(*ecbsn);
|
---|
[1456] | 530 | }
|
---|
| 531 |
|
---|
[1628] | 532 | /*! \ingroup XAstroPack
|
---|
| 533 | \brief Give Moon position
|
---|
| 534 | \verbatim
|
---|
| 535 | given the mjd, find the geocentric ecliptic longitude, lam, and latitude,
|
---|
| 536 | bet, and geocentric distance, rho in a.u. for the moon. also return
|
---|
| 537 | the sun's mean anomaly, *msp, and the moon's mean anomaly, *mdp.
|
---|
| 538 | (for the mean equinox)
|
---|
| 539 | \endverbatim
|
---|
| 540 | */
|
---|
[1679] | 541 | void MoonPos(double mjd,double *eclmn,double *ecbmn,double *rho)
|
---|
[1456] | 542 | {
|
---|
[1679] | 543 | double msp,mdp;
|
---|
| 544 | moon(mjd,eclmn,ecbmn,rho,&msp,&mdp);
|
---|
| 545 | *eclmn = raddeg(*eclmn); InRange(eclmn,360.);
|
---|
| 546 | *ecbmn = raddeg(*ecbmn);
|
---|
[1456] | 547 | }
|
---|
| 548 |
|
---|
[1628] | 549 | /*! \ingroup XAstroPack
|
---|
| 550 | \brief Give planet position
|
---|
| 551 | \verbatim
|
---|
| 552 | * given a modified Julian date, mjd, and a planet, p, find:
|
---|
[1679] | 553 | * sunecl: heliocentric longitude,
|
---|
| 554 | * sunecb: heliocentric latitude,
|
---|
| 555 | * sundist: distance from the sun to the planet,
|
---|
| 556 | * geodist: distance from the Earth to the planet,
|
---|
[1456] | 557 | * none corrected for light time, ie, they are the true values for the
|
---|
| 558 | * given instant.
|
---|
[1679] | 559 | * geoecl: geocentric ecliptic longitude,
|
---|
| 560 | * geoecb: geocentric ecliptic latitude,
|
---|
[1456] | 561 | * each corrected for light time, ie, they are the apparent values as
|
---|
| 562 | * seen from the center of the Earth for the given instant.
|
---|
[1679] | 563 | * diamang: angular diameter in arcsec at 1 AU,
|
---|
[1456] | 564 | * mag: visual magnitude when 1 AU from sun and earth at 0 phase angle.
|
---|
[1628] | 565 | * (for the mean equinox)
|
---|
[1679] | 566 | * all angles are in degres, all distances in AU.
|
---|
| 567 | *
|
---|
| 568 | * corrections for nutation and abberation must be made by the caller. The RA
|
---|
| 569 | * and DEC calculated from the fully-corrected ecliptic coordinates are then
|
---|
| 570 | * the apparent geocentric coordinates. Further corrections can be made, if
|
---|
| 571 | * required, for atmospheric refraction and geocentric parallax.
|
---|
[1628] | 572 | \endverbatim
|
---|
| 573 | */
|
---|
[1679] | 574 | void PlanetPos(double mjd,int numplan,double *sunecl,double *sunecb,double *sundist
|
---|
| 575 | ,double *geodist,double *geoecl,double *geoecb
|
---|
| 576 | ,double *diamang,double *mag)
|
---|
[1456] | 577 | {
|
---|
[1679] | 578 | plans(mjd,numplan,sunecl,sunecb,sundist,geodist,geoecl,geoecb,diamang,mag);
|
---|
| 579 | *geoecl = raddeg(*geoecl); InRange(geoecl,360.);
|
---|
| 580 | *geoecb = raddeg(*geoecb);
|
---|
| 581 | *sunecl = raddeg(*sunecl); InRange(sunecl,360.);
|
---|
| 582 | *sunecb = raddeg(*sunecb);
|
---|
[1456] | 583 | }
|
---|