| [1456] | 1 | #include <math.h> | 
|---|
|  | 2 | #include <stdio.h> | 
|---|
| [2615] | 3 | #include "sopnamsp.h" | 
|---|
| [1456] | 4 | #include "xastropack.h" | 
|---|
|  | 5 |  | 
|---|
| [1682] | 6 | // BUGS BUGS BUGS BUGS BUGS BUGS BUGS BUGS BUGS BUGS | 
|---|
| [1791] | 7 | // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | 
|---|
|  | 8 | // >>>> Corrections de divers bugs trouve dans libastro (CMV) | 
|---|
| [1682] | 9 | // 1******* In the file vsop87.c line 154: | 
|---|
|  | 10 | // p = q/(t_abs[alpha] + alpha * t_abs[alpha-1] * 1e-4 + 1e-35); | 
|---|
|  | 11 | // - to avoid t_abs[-1] when alpha=0, replaced by : | 
|---|
|  | 12 | // if(alpha>0) p = t_abs[alpha-1]; else p=0; | 
|---|
|  | 13 | // p = q/(t_abs[alpha] + alpha * p * 1e-4 + 1e-35); | 
|---|
|  | 14 | // Mail envoye a ecdowney@ClearSkyInstitute.com | 
|---|
|  | 15 | // 2******* In the file eq_ecl.c line 69: | 
|---|
|  | 16 | // *q = asin((sy*ceps)-(cy*seps*sx*sw)); | 
|---|
|  | 17 | // eq_ecl.c Protection NaN dans ecleq_aux, replaced by : | 
|---|
|  | 18 | // *q = (sy*ceps)-(cy*seps*sx*sw); | 
|---|
|  | 19 | // if(*q<-1.) *q = -PI/2.; else if(*q>1.) *q = PI/2.; else *q = asin(*q); | 
|---|
|  | 20 | // Mail envoye a ecdowney@ClearSkyInstitute.com | 
|---|
| [1791] | 21 | // >>>> Corrections effectuees dans la version Xephem 3.5 | 
|---|
|  | 22 | // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | 
|---|
| [1682] | 23 |  | 
|---|
|  | 24 |  | 
|---|
| [1628] | 25 | /*! | 
|---|
|  | 26 | \defgroup XAstroPack XAstroPack module | 
|---|
|  | 27 | This module contains simple programs to perform various | 
|---|
|  | 28 | astronomical computation (based on the libastro of Xephem). | 
|---|
|  | 29 |  | 
|---|
|  | 30 | \verbatim | 
|---|
| [1456] | 31 | // TEMPS: modified Julian date (mjd) (number of days elapsed since 1900 jan 0.5) | 
|---|
|  | 32 | //        jour [1,31] (dy) | 
|---|
|  | 33 | //        mois [1,12] (mn) | 
|---|
|  | 34 | //        annee       (yr) | 
|---|
| [1515] | 35 | //        universal time [0,24[ (utc) | 
|---|
|  | 36 | //        Greenwich mean siderial [0,24[ (gst) | 
|---|
|  | 37 | //        Greenwich mean siderial at 0h UT [0,24[ (gst0) | 
|---|
| [1456] | 38 | // EQUATORIALE: ascension droite en heures [0,24[ (ra) | 
|---|
|  | 39 | //              declinaison en degres [-90,90]    (dec) | 
|---|
| [1682] | 40 | //              angle horaire en heures ]-12,12] (-12=12) (ha) | 
|---|
| [1678] | 41 | //              temps sideral du lieu: tsid=ha+ra (ou lst) | 
|---|
| [1456] | 42 | // GALACTIQUE: longitude en degres [0,360[  (glng) | 
|---|
|  | 43 | //             latitude en degres [-90,90]  (glat) | 
|---|
| [1808] | 44 | //             (colatitude en degres [0,180]  (gcolat)) | 
|---|
| [1515] | 45 | // HORIZONTAL: azimuth en degres [0,360[   (az) | 
|---|
|  | 46 | //                 (angle round to the east from north+) | 
|---|
| [1808] | 47 | //             altitude ou elevation en degres [-90,90] (alt) | 
|---|
|  | 48 | //             (distance zenitale en degres [0,180] (zendist)) | 
|---|
| [1515] | 49 | // ECLIPTIQUE: lontitude ecliptique en degres [0,360[ (eclng) | 
|---|
|  | 50 | //                 (angle round counter clockwise from the vernal equinoxe) | 
|---|
|  | 51 | //             latitude ecliptique en degres [-90,90] (eclat) | 
|---|
| [1808] | 52 | //             (colatitude ecliptique en degres [0,180] (eccolat)) | 
|---|
| [1515] | 53 | // GEOGRAPHIE: longitude en degres ]-180,180]        (geolng) | 
|---|
| [1802] | 54 | //                 (angle <0 vers l'ouest, >0 vers l'est) | 
|---|
|  | 55 | //             latitude en degres [-90,90] (north>0 sud<0) (geolat) | 
|---|
| [1808] | 56 | //             (colatitude en degres [0,180] (north=0, sud=180) (geocolat)) | 
|---|
|  | 57 | // | 
|---|
|  | 58 | // --- Remarque sur la colatitude: | 
|---|
|  | 59 | //   La latitude peut etre remplacee par la colatitude | 
|---|
|  | 60 | //      (ou altitude/elevation par la distance zenitale): | 
|---|
|  | 61 | //      latitude   : [-90,90] avec 0=equateur,  90=pole nord, -90=pole sud | 
|---|
|  | 62 | //      colatitude : [0,180]  avec 0=pole nord, 90=equateur,  180=pole sud | 
|---|
|  | 63 | //      colatitude = 90.-latitude , latitude = 90.-colatitude | 
|---|
| [1628] | 64 | \endverbatim | 
|---|
|  | 65 | */ | 
|---|
| [1456] | 66 |  | 
|---|
| [1628] | 67 | /*! \ingroup XAstroPack | 
|---|
| [1682] | 68 | \brief Given a coordinate type "typ", convert to standard for astropack. | 
|---|
|  | 69 | \verbatim | 
|---|
|  | 70 | La routine convertit (in place) les coordonnees "coord1","coord2" | 
|---|
|  | 71 | definies par le type "typ" dans les unites standard de ce systeme | 
|---|
|  | 72 | de coordonnees. | 
|---|
|  | 73 | "typ" code le systeme de coordonnees astronomiques et les unites utilisees | 
|---|
|  | 74 |  | 
|---|
| [1808] | 75 | - Return : 0 = Problem | 
|---|
|  | 76 | TypAstroCoord du systeme de coordonnees retourne | 
|---|
| [1682] | 77 |  | 
|---|
| [1808] | 78 | - Les types de coordonnees (A,B) sont definies | 
|---|
|  | 79 | dans le enum TypAstroCoord (unsigned long): | 
|---|
|  | 80 | La premiere coordonnee "A" est de type "longitude" | 
|---|
|  | 81 | (alpha,longitude,azimuth) | 
|---|
|  | 82 | La deuxieme coordonnee "B" est de type "latidude" | 
|---|
|  | 83 | (delta,latitude,altitude ou elevation) | 
|---|
|  | 84 |  | 
|---|
|  | 85 | *** Definitions des unites des coordonnees | 
|---|
|  | 86 | - Coordonnee: | 
|---|
|  | 87 | TypCoordH en heure | 
|---|
|  | 88 | TypCoordD en degre | 
|---|
|  | 89 | TypCoordR en radian | 
|---|
|  | 90 | - Coordonnee "A": | 
|---|
|  | 91 | TypCoord1H en heure | 
|---|
|  | 92 | TypCoord1D en degre | 
|---|
|  | 93 | TypCoord1R en radian | 
|---|
|  | 94 | - Defaut (pas de bit leve): radians | 
|---|
|  | 95 | - Coordonnee "B": | 
|---|
|  | 96 | TypCoord2H en heure | 
|---|
|  | 97 | TypCoord2D en degre | 
|---|
|  | 98 | TypCoord2R en radian | 
|---|
|  | 99 | - Defaut (pas de bit leve): radians | 
|---|
|  | 100 | *** Definitions des types d'intervalle utilises | 
|---|
|  | 101 | - Coordonnee "A": | 
|---|
|  | 102 | TypCoord1C type intervalle | 
|---|
|  | 103 | [0,24[ ou [0,360[ ou [0,2Pi[ | 
|---|
|  | 104 | TypCoord1L type intervalle centre | 
|---|
|  | 105 | ]-12,12] ou ]-180,180] ou ]-Pi,Pi] | 
|---|
|  | 106 | - Defaut (pas de bit leve): TypCoord1C | 
|---|
|  | 107 | - Coordonnee "B": | 
|---|
|  | 108 | TypCoord2C type intervalle (colatitude) | 
|---|
|  | 109 | [0,12] ou [0,180] ou [0,Pi] | 
|---|
|  | 110 | TypCoord2L type intervalle centre (latitude) | 
|---|
|  | 111 | [-6,6] ou [-90,90] ou [-Pi/2,Pi/2] | 
|---|
|  | 112 | - Defaut (pas de bit leve): TypCoord2L (latitude) | 
|---|
|  | 113 | *** Les systemes de coordonnes astronomiques | 
|---|
|  | 114 | TypCoordEq  coordonnees Equatoriales alpha,delta | 
|---|
|  | 115 | TypCoordGal coordonnees Galactiques gLong, gLat | 
|---|
|  | 116 | TypCoordHor coordonnees Horizontales azimuth,altitude | 
|---|
|  | 117 | TypCoordEcl coordonnees Ecliptiques EclLong,EclLat | 
|---|
|  | 118 | (Pas de defaut) | 
|---|
|  | 119 | *** Les systemes de coordonnes astronomiques "standard" | 
|---|
|  | 120 | TypCoordEqStd   alpha en heure=[0,24[ delta en degre=[-90,90] | 
|---|
|  | 121 | TypCoordGalStd  long en degre=[0,360[ lat en degre=[-90,90] (latitude) | 
|---|
|  | 122 | TypCoordHorStd  long en degre=[0,360[ lat en degre=[-90,90] (latitude) | 
|---|
|  | 123 | TypCoordEclStd  long en degre=[0,360[ lat en degre=[-90,90] (latitude) | 
|---|
| [1682] | 124 | \endverbatim | 
|---|
|  | 125 | */ | 
|---|
| [1808] | 126 | unsigned long CoordConvertToStd(unsigned long typ,double* coord1,double* coord2) | 
|---|
| [1682] | 127 | { | 
|---|
| [1808] | 128 | unsigned long rc = TypCoordUndef; | 
|---|
| [1682] | 129 |  | 
|---|
|  | 130 | if(typ&TypCoordEq) { | 
|---|
| [1808] | 131 | // ---- Equatoriales alpha,delta | 
|---|
|  | 132 | if     (typ&TypCoord1D)    *coord1 = deghr(*coord1); | 
|---|
|  | 133 | else if(typ&TypCoord1R)    *coord1 = radhr(*coord1); | 
|---|
|  | 134 | else if(!(typ&TypCoord1H)) *coord1 = radhr(*coord1); | 
|---|
| [1682] | 135 |  | 
|---|
| [1808] | 136 | InRange(coord1,24.); | 
|---|
| [1682] | 137 |  | 
|---|
| [1808] | 138 | if     (typ&TypCoord2H)    *coord2 = hrdeg(*coord2); | 
|---|
|  | 139 | else if(typ&TypCoord2R)    *coord2 = raddeg(*coord2); | 
|---|
|  | 140 | else if(!(typ&TypCoord2D)) *coord2 = raddeg(*coord2); | 
|---|
|  | 141 |  | 
|---|
|  | 142 | if(typ&TypCoord2C) { | 
|---|
|  | 143 | InRangeCoLat(coord2,TypUniteD); | 
|---|
|  | 144 | ToCoLat(coord2,TypUniteD); | 
|---|
|  | 145 | } else InRangeLat(coord2,TypUniteD); | 
|---|
|  | 146 |  | 
|---|
|  | 147 | rc=TypCoordEqStd; | 
|---|
|  | 148 |  | 
|---|
|  | 149 | } else if(typ&TypCoordGal || typ&TypCoordHor || typ&TypCoordEcl) { | 
|---|
|  | 150 | // ---- Galactiques gLong, gLat | 
|---|
|  | 151 | // ---- Horizontales azimuth,altitude ou elevation | 
|---|
|  | 152 | // ---- Ecliptiques EclLong,EclLat | 
|---|
|  | 153 | if     (typ&TypCoord1H)    *coord1 = hrdeg(*coord1); | 
|---|
|  | 154 | else if(typ&TypCoord1R)    *coord1 = raddeg(*coord1); | 
|---|
|  | 155 | else if(!(typ&TypCoord1D)) *coord1 = raddeg(*coord1); | 
|---|
|  | 156 |  | 
|---|
|  | 157 | InRange(coord1,360.); | 
|---|
|  | 158 |  | 
|---|
|  | 159 | if     (typ&TypCoord2H)    *coord2 = hrdeg(*coord2); | 
|---|
|  | 160 | else if(typ&TypCoord2R)    *coord2 = raddeg(*coord2); | 
|---|
|  | 161 | else if(!(typ&TypCoord2D)) *coord2 = raddeg(*coord2); | 
|---|
|  | 162 |  | 
|---|
|  | 163 | if(typ&TypCoord2C) { | 
|---|
|  | 164 | InRangeCoLat(coord2,TypUniteD); | 
|---|
|  | 165 | ToCoLat(coord2,TypUniteD); | 
|---|
|  | 166 | } else InRangeLat(coord2,TypUniteD); | 
|---|
|  | 167 |  | 
|---|
|  | 168 | if     (typ&TypCoordGal) rc=TypCoordGalStd; | 
|---|
|  | 169 | else if(typ&TypCoordHor) rc=TypCoordHorStd; | 
|---|
|  | 170 | else if(typ&TypCoordEcl) rc=TypCoordEclStd; | 
|---|
|  | 171 |  | 
|---|
|  | 172 | } else {          // Systeme de coordonnees non-connu | 
|---|
|  | 173 | rc=TypCoordUndef; | 
|---|
| [1682] | 174 | } | 
|---|
|  | 175 |  | 
|---|
|  | 176 | return rc; | 
|---|
|  | 177 | } | 
|---|
|  | 178 |  | 
|---|
|  | 179 | /*! \ingroup XAstroPack | 
|---|
| [1808] | 180 | \brief Retourne te type d'unite pour la coordonnee "coordnum" | 
|---|
|  | 181 | pour un TypAstroCoord valant "typ" | 
|---|
|  | 182 | \verbatim | 
|---|
|  | 183 | coordnum : numero de coordonnee: 1 ou 2 | 
|---|
|  | 184 | retourne: TypUniteH si la coordonnee est en heure | 
|---|
|  | 185 | TypUniteD si la coordonnee est en degre | 
|---|
|  | 186 | TypUniteR si la coordonnee est en radian | 
|---|
|  | 187 | TypUniteR par defaut | 
|---|
|  | 188 | TypCoordUndef si le numero de coordonnee est errone. | 
|---|
|  | 189 | \endverbatim | 
|---|
|  | 190 | */ | 
|---|
|  | 191 | unsigned long GetCoordUnit(int coordnum,unsigned long typ) | 
|---|
|  | 192 | { | 
|---|
|  | 193 | if(coordnum==1) { | 
|---|
|  | 194 | if     (typ&TypCoord1H) return TypUniteH; | 
|---|
|  | 195 | else if(typ&TypCoord1D) return TypUniteD; | 
|---|
|  | 196 | else if(typ&TypCoord1R) return TypUniteR; | 
|---|
|  | 197 | else                    return TypUniteR; | 
|---|
|  | 198 | } | 
|---|
|  | 199 | if(coordnum==2) { | 
|---|
|  | 200 | if     (typ&TypCoord2H) return TypUniteH; | 
|---|
|  | 201 | else if(typ&TypCoord2D) return TypUniteD; | 
|---|
|  | 202 | else if(typ&TypCoord2R) return TypUniteR; | 
|---|
|  | 203 | else                    return TypUniteR; | 
|---|
|  | 204 | } | 
|---|
|  | 205 | return TypCoordUndef; | 
|---|
|  | 206 | } | 
|---|
|  | 207 |  | 
|---|
|  | 208 | /*! \ingroup XAstroPack | 
|---|
|  | 209 | \brief Pour decoder et transcrire en TypAstroCoord une chaine | 
|---|
|  | 210 | donnant la structure du systeme de coordonnees. | 
|---|
|  | 211 | \verbatim | 
|---|
|  | 212 | ctype = "CAaBb" | 
|---|
|  | 213 | C: type de coordonnees: E Equatoriales | 
|---|
|  | 214 | G Galactiques | 
|---|
|  | 215 | H Horizontales | 
|---|
|  | 216 | S Ecliptiques | 
|---|
|  | 217 | pas de defaut | 
|---|
|  | 218 | A: unite de la coordonnee 1 (alpha,longitude etc...) | 
|---|
|  | 219 | H heure | 
|---|
|  | 220 | D degre | 
|---|
|  | 221 | R radian | 
|---|
|  | 222 | defaut radian | 
|---|
|  | 223 | a: type d'intervalle pour la coordonnee 1 | 
|---|
|  | 224 | C intervalle [0,24[ [0,360[ [0,2*Pi[ | 
|---|
|  | 225 | L intervalle [-12,12[ [-180,180[ [-Pi,Pi[ | 
|---|
|  | 226 | (defaut: C) | 
|---|
|  | 227 | A: unite de la coordonnee 2 (delta,latitude etc...) | 
|---|
|  | 228 | H heure | 
|---|
|  | 229 | D degre | 
|---|
|  | 230 | R radian | 
|---|
|  | 231 | defaut radian | 
|---|
|  | 232 | a: type d'intervalle pour la coordonnee 2 | 
|---|
|  | 233 | C intervalle [0,12] [0,180] [0,Pi] | 
|---|
|  | 234 | (type colatitude) | 
|---|
|  | 235 | L intervalle [-6,6] [-90,90][ [-Pi/2,Pi/2] | 
|---|
|  | 236 | (defaut: L) | 
|---|
|  | 237 |  | 
|---|
|  | 238 | Exemple: GDCDL : galactiques long=[0,360[ lat=[-90,90] | 
|---|
|  | 239 | GDxDx ou GDxD: idem | 
|---|
|  | 240 | Gxxxx ou G : galactiques long=[0,2*Pi[ lat=[-Pi/2,Pi/2] | 
|---|
|  | 241 | Exemple: EHCDL : equatoriales alpha=[0,24[ delta=[-90,90] | 
|---|
|  | 242 | EHxDx ou EHxD : idem | 
|---|
|  | 243 | Exxxx ou E : equatoriales alpha=[0,2*Pi[ delta=[-Pi/2,Pi/2] | 
|---|
|  | 244 |  | 
|---|
|  | 245 | - Retourne 0 si probleme dans la chaine | 
|---|
|  | 246 | \endverbatim | 
|---|
|  | 247 | */ | 
|---|
|  | 248 | unsigned long DecodeTypAstro(const char *ctype) | 
|---|
|  | 249 | { | 
|---|
|  | 250 | if(ctype==NULL) return TypCoordUndef; | 
|---|
|  | 251 | int len = strlen(ctype); | 
|---|
|  | 252 | if(len<1) return TypCoordUndef; | 
|---|
|  | 253 |  | 
|---|
|  | 254 | unsigned long typ=0; | 
|---|
|  | 255 | // Le type de systeme de coordonnees | 
|---|
|  | 256 | int i = 0; | 
|---|
|  | 257 | if     (ctype[i]=='e' || ctype[i]=='E') typ=TypCoordEq; | 
|---|
|  | 258 | else if(ctype[i]=='g' || ctype[i]=='G') typ=TypCoordGal; | 
|---|
|  | 259 | else if(ctype[i]=='h' || ctype[i]=='H') typ=TypCoordHor; | 
|---|
|  | 260 | else if(ctype[i]=='s' || ctype[i]=='S') typ=TypCoordEcl; | 
|---|
|  | 261 | else return TypCoordUndef; | 
|---|
|  | 262 | // La coordonnee 1 | 
|---|
|  | 263 | i = 1; | 
|---|
|  | 264 | if(i>=len) | 
|---|
|  | 265 | {typ |= TypCoord1R|TypCoord1C|TypCoord2R|TypCoord2L; return typ;} | 
|---|
|  | 266 | if     (ctype[i]=='h' || ctype[i]=='H') typ |= TypCoord1H; | 
|---|
|  | 267 | else if(ctype[i]=='d' || ctype[i]=='D') typ |= TypCoord1D; | 
|---|
|  | 268 | else if(ctype[i]=='r' || ctype[i]=='R') typ |= TypCoord1R; | 
|---|
|  | 269 | else                                    typ |= TypCoord1R; | 
|---|
|  | 270 | i = 2; | 
|---|
|  | 271 | if(i>=len) {typ |= TypCoord1C|TypCoord2R|TypCoord2L; return typ;} | 
|---|
|  | 272 | if     (ctype[i]=='c' || ctype[i]=='C') typ |= TypCoord1C; | 
|---|
|  | 273 | else if(ctype[i]=='l' || ctype[i]=='L') typ |= TypCoord1L; | 
|---|
|  | 274 | else                                    typ |= TypCoord1C; | 
|---|
|  | 275 | // La coordonnee 2 | 
|---|
|  | 276 | i = 3; | 
|---|
|  | 277 | if(i>=len) {typ |= TypCoord2R|TypCoord2L; return typ;} | 
|---|
|  | 278 | if     (ctype[i]=='h' || ctype[i]=='H') typ |= TypCoord2H; | 
|---|
|  | 279 | else if(ctype[i]=='d' || ctype[i]=='D') typ |= TypCoord2D; | 
|---|
|  | 280 | else if(ctype[i]=='r' || ctype[i]=='R') typ |= TypCoord2R; | 
|---|
|  | 281 | else                                    typ |= TypCoord2R; | 
|---|
|  | 282 | i = 4; | 
|---|
|  | 283 | if(i>=len) {typ |= TypCoord2L; return typ;} | 
|---|
|  | 284 | if     (ctype[i]=='c' || ctype[i]=='C') typ |= TypCoord2C; | 
|---|
|  | 285 | else if(ctype[i]=='l' || ctype[i]=='L') typ |= TypCoord2L; | 
|---|
|  | 286 | else                                    typ |= TypCoord2L; | 
|---|
|  | 287 | // Return | 
|---|
|  | 288 | return typ; | 
|---|
|  | 289 | } | 
|---|
|  | 290 |  | 
|---|
|  | 291 | /*! \ingroup XAstroPack | 
|---|
|  | 292 | \brief Idem DecodeTypAstro(char *) mais a l'envers | 
|---|
|  | 293 | */ | 
|---|
|  | 294 | string DecodeTypAstro(unsigned long typ) | 
|---|
|  | 295 | { | 
|---|
|  | 296 | string s = ""; | 
|---|
|  | 297 |  | 
|---|
|  | 298 | if     (typ&TypCoordEq)  s += "E"; | 
|---|
|  | 299 | else if(typ&TypCoordGal) s += "G"; | 
|---|
|  | 300 | else if(typ&TypCoordHor) s += "H"; | 
|---|
|  | 301 | else if(typ&TypCoordEcl) s += "S"; | 
|---|
|  | 302 | else                     s += "x"; | 
|---|
|  | 303 |  | 
|---|
|  | 304 | if     (typ&TypCoord1H) s += "H"; | 
|---|
|  | 305 | else if(typ&TypCoord1D) s += "D"; | 
|---|
|  | 306 | else if(typ&TypCoord1R) s += "R"; | 
|---|
|  | 307 | else                    s += "x"; | 
|---|
|  | 308 |  | 
|---|
|  | 309 | if     (typ&TypCoord1C) s += "C"; | 
|---|
|  | 310 | else if(typ&TypCoord1L) s += "L"; | 
|---|
|  | 311 | else                    s += "x"; | 
|---|
|  | 312 |  | 
|---|
|  | 313 | if     (typ&TypCoord2H) s += "H"; | 
|---|
|  | 314 | else if(typ&TypCoord2D) s += "D"; | 
|---|
|  | 315 | else if(typ&TypCoord2R) s += "R"; | 
|---|
|  | 316 | else                    s += "x"; | 
|---|
|  | 317 |  | 
|---|
|  | 318 | if     (typ&TypCoord2C) s += "C"; | 
|---|
|  | 319 | else if(typ&TypCoord2L) s += "L"; | 
|---|
|  | 320 | else                    s += "x"; | 
|---|
|  | 321 |  | 
|---|
|  | 322 | return s; | 
|---|
|  | 323 | } | 
|---|
|  | 324 |  | 
|---|
|  | 325 | /*! \ingroup XAstroPack | 
|---|
|  | 326 | \brief Pour convertir la latitude en colatitude et vice-versa (in place) | 
|---|
|  | 327 | \verbatim | 
|---|
|  | 328 | val = valeur a convertir qui doit etre: | 
|---|
|  | 329 | si type "latitude"   dans [-6,6] [-90,90] [-Pi/2,Pi/2] | 
|---|
|  | 330 | si type "colatitude" dans [0,12] [0,180] [0,Pi] | 
|---|
|  | 331 | typ = type d'unite: heure  TypUniteH | 
|---|
|  | 332 | degre  TypUniteD | 
|---|
|  | 333 | radian TypUniteR | 
|---|
|  | 334 | (Defaut: radian TypUniteR) | 
|---|
|  | 335 | \endverbatim | 
|---|
|  | 336 | */ | 
|---|
|  | 337 | void ToCoLat(double *val,unsigned long typ) | 
|---|
|  | 338 | { | 
|---|
|  | 339 | if     (typ&TypUniteH) *val = 6.    - *val; | 
|---|
|  | 340 | else if(typ&TypUniteD) *val = 90.   - *val; | 
|---|
|  | 341 | else if(typ&TypUniteR) *val = PI/2. - *val; | 
|---|
|  | 342 | else *val = PI/2. - *val; | 
|---|
|  | 343 | } | 
|---|
|  | 344 |  | 
|---|
|  | 345 | /*! \ingroup XAstroPack | 
|---|
|  | 346 | \brief Pour remettre la valeur de la COLATITUDE "val" dans la dynamique [0.,range] | 
|---|
|  | 347 | \verbatim | 
|---|
|  | 348 | val = valeur a convertir qui doit etre mise dans [0,12] [0,180] [0,Pi] | 
|---|
|  | 349 | typ = type d'unite: heure  TypUniteH | 
|---|
|  | 350 | degre  TypUniteD | 
|---|
|  | 351 | radian TypUniteR | 
|---|
|  | 352 | ex en degre: 0 -> 0 ,  90 ->  90 ,  180 -> 180 ,  270 -> 90 ,  360 -> 0 | 
|---|
|  | 353 | -90 ->  90 , -180 -> 180 , -270 -> 90 , -360 -> 0 | 
|---|
|  | 354 | \endverbatim | 
|---|
|  | 355 | */ | 
|---|
|  | 356 | void InRangeCoLat(double *val,unsigned long typ) | 
|---|
|  | 357 | { | 
|---|
|  | 358 | double range=PI; | 
|---|
|  | 359 | if(typ==TypUniteH) range=12.; else if(typ==TypUniteD) range=180.; | 
|---|
|  | 360 | InRange(val,2.*range,range); | 
|---|
|  | 361 | if(*val<0.) *val*=-1.; | 
|---|
|  | 362 | } | 
|---|
|  | 363 |  | 
|---|
|  | 364 | /*! \ingroup XAstroPack | 
|---|
|  | 365 | \brief Pour remettre la valeur de la LATITUDE "val" dans la dynamique [-range/2,range/2] | 
|---|
|  | 366 | \verbatim | 
|---|
|  | 367 | val = valeur a convertir qui doit etre mise dans [-6,6] [-90,90] [-Pi/2,Pi/2] | 
|---|
|  | 368 | typ = type d'unite: heure  TypUniteH | 
|---|
|  | 369 | degre  TypUniteD | 
|---|
|  | 370 | radian TypUniteR | 
|---|
|  | 371 | ex en degre: 0 -> 0 ,  90 ->  90 ,  180 -> 0 ,  270 -> -90 ,  360 -> 0 | 
|---|
|  | 372 | -90 -> -90 , -180 -> 0 , -270 ->  90 , -360 -> 0 | 
|---|
|  | 373 | \endverbatim | 
|---|
|  | 374 | */ | 
|---|
|  | 375 | void InRangeLat(double *val,unsigned long typ) | 
|---|
|  | 376 | { | 
|---|
|  | 377 | double range = PI; | 
|---|
|  | 378 | if(typ==TypUniteH) range = 12.; else if(typ==TypUniteD) range = 180.; | 
|---|
|  | 379 | InRange(val,2.*range,range); | 
|---|
|  | 380 | if(*val>range/2.) *val = range - *val; | 
|---|
|  | 381 | else if(*val<-range/2.) *val = -(range + *val); | 
|---|
|  | 382 | } | 
|---|
|  | 383 |  | 
|---|
|  | 384 | /*! \ingroup XAstroPack | 
|---|
| [1682] | 385 | \brief Compute MJD from date | 
|---|
|  | 386 | \verbatim | 
|---|
|  | 387 | MJD =  modified Julian date (number of days elapsed since 1900 jan 0.5), | 
|---|
| [1688] | 388 | dy is the decimale value of the day: dy = int(dy) + utc/24. | 
|---|
| [1682] | 389 | \endverbatim | 
|---|
|  | 390 | */ | 
|---|
|  | 391 | double MJDfrDate(double dy,int mn,int yr) | 
|---|
|  | 392 | { | 
|---|
|  | 393 | double mjd; | 
|---|
|  | 394 | cal_mjd(mn,dy,yr,&mjd); | 
|---|
|  | 395 | return mjd; | 
|---|
|  | 396 | } | 
|---|
|  | 397 |  | 
|---|
|  | 398 | /*! \ingroup XAstroPack | 
|---|
|  | 399 | \brief Compute date from MJD | 
|---|
|  | 400 | */ | 
|---|
|  | 401 | void DatefrMJD(double mjd,double *dy,int *mn,int *yr) | 
|---|
|  | 402 | { | 
|---|
|  | 403 | mjd_cal(mjd,mn,dy,yr); | 
|---|
|  | 404 | } | 
|---|
|  | 405 |  | 
|---|
|  | 406 | /*! \ingroup XAstroPack | 
|---|
|  | 407 | \brief  Given a mjd, return the year as a double. | 
|---|
|  | 408 | */ | 
|---|
|  | 409 | double YearfrMJD(double mjd) | 
|---|
|  | 410 | { | 
|---|
|  | 411 | double yr; | 
|---|
|  | 412 | mjd_year(mjd,&yr); | 
|---|
|  | 413 | return yr; | 
|---|
|  | 414 | } | 
|---|
|  | 415 |  | 
|---|
|  | 416 | /*! \ingroup XAstroPack | 
|---|
|  | 417 | \brief Given a decimal year, return mjd | 
|---|
|  | 418 | */ | 
|---|
|  | 419 | double MJDfrYear(double yr) | 
|---|
|  | 420 | { | 
|---|
|  | 421 | double mjd; | 
|---|
|  | 422 | year_mjd(yr,&mjd); | 
|---|
|  | 423 | return mjd; | 
|---|
|  | 424 | } | 
|---|
|  | 425 |  | 
|---|
|  | 426 | /*! \ingroup XAstroPack | 
|---|
|  | 427 | \brief Given a mjd, return the year and number of days since 00:00 Jan 1 | 
|---|
|  | 428 | \warning: if mjd = 2 January -> number of days = 1 | 
|---|
|  | 429 | */ | 
|---|
|  | 430 | void YDfrMJD(double mjd,double *dy,int *yr) | 
|---|
|  | 431 | { | 
|---|
|  | 432 | mjd_dayno(mjd,yr,dy); | 
|---|
|  | 433 | } | 
|---|
|  | 434 |  | 
|---|
|  | 435 | /*! \ingroup XAstroPack | 
|---|
|  | 436 | \brief Given a year, | 
|---|
|  | 437 | */ | 
|---|
|  | 438 | int IsLeapYear(int y) | 
|---|
|  | 439 | { | 
|---|
|  | 440 | return isleapyear(y); | 
|---|
|  | 441 | } | 
|---|
|  | 442 |  | 
|---|
|  | 443 | /*! \ingroup XAstroPack | 
|---|
|  | 444 | \brief given an mjd, set *dow to 0..6 according to which day of the week it falls on (0=sunday). | 
|---|
|  | 445 | \return return 0 if ok else -1 if can't figure it out. | 
|---|
|  | 446 | */ | 
|---|
|  | 447 | int DayOrder(double mjd,int *dow) | 
|---|
|  | 448 | { | 
|---|
|  | 449 | return mjd_dow(mjd,dow); | 
|---|
|  | 450 | } | 
|---|
|  | 451 |  | 
|---|
|  | 452 | /*! \ingroup XAstroPack | 
|---|
|  | 453 | \brief given a mjd, return the the number of days in the month. | 
|---|
|  | 454 | */ | 
|---|
|  | 455 | int DaysInMonth(double mjd) | 
|---|
|  | 456 | { | 
|---|
|  | 457 | int ndays; | 
|---|
|  | 458 | mjd_dpm(mjd,&ndays); | 
|---|
|  | 459 | return ndays; | 
|---|
|  | 460 | } | 
|---|
|  | 461 |  | 
|---|
|  | 462 | /*! \ingroup XAstroPack | 
|---|
|  | 463 | \brief Given a mjd, truncate it to the beginning of the whole day | 
|---|
|  | 464 | */ | 
|---|
|  | 465 | double MJDat0hFrMJD(double mjd) | 
|---|
|  | 466 | { | 
|---|
|  | 467 | return mjd_day(mjd); | 
|---|
|  | 468 | } | 
|---|
|  | 469 |  | 
|---|
|  | 470 | /*! \ingroup XAstroPack | 
|---|
|  | 471 | \brief Given a mjd, return the number of hours past midnight of the whole day | 
|---|
|  | 472 | */ | 
|---|
|  | 473 | double HfrMJD(double mjd) | 
|---|
|  | 474 | { | 
|---|
|  | 475 | return mjd_hr(mjd); | 
|---|
|  | 476 | } | 
|---|
|  | 477 |  | 
|---|
|  | 478 | /*! \ingroup XAstroPack | 
|---|
|  | 479 | \brief Give GST from UTC | 
|---|
|  | 480 | \verbatim | 
|---|
|  | 481 | Given a modified julian date, mjd, and a universally coordinated time, utc, | 
|---|
|  | 482 | return greenwich mean siderial time, *gst. | 
|---|
|  | 483 | N.B. mjd must be at the beginning of the day. | 
|---|
|  | 484 | \endverbatim | 
|---|
|  | 485 | */ | 
|---|
|  | 486 | double GSTfrUTC(double mjd0,double utc) | 
|---|
|  | 487 | { | 
|---|
|  | 488 | double gst; | 
|---|
|  | 489 | utc_gst(mjd0,utc,&gst); | 
|---|
|  | 490 | return gst; | 
|---|
|  | 491 | } | 
|---|
|  | 492 |  | 
|---|
|  | 493 | /*! \ingroup XAstroPack | 
|---|
|  | 494 | \brief Give UTC from GST | 
|---|
|  | 495 | \verbatim | 
|---|
|  | 496 | Given a modified julian date, mjd, and a greenwich mean siderial time, gst, | 
|---|
|  | 497 | return universally coordinated time, *utc. | 
|---|
|  | 498 | N.B. mjd must be at the beginning of the day. | 
|---|
|  | 499 | \endverbatim | 
|---|
|  | 500 | */ | 
|---|
|  | 501 | double UTCfrGST(double mjd0,double gst) | 
|---|
|  | 502 | { | 
|---|
|  | 503 | double utc; | 
|---|
|  | 504 | gst_utc(mjd0,gst,&utc); | 
|---|
|  | 505 | return utc; | 
|---|
|  | 506 | } | 
|---|
|  | 507 |  | 
|---|
|  | 508 | /*! \ingroup XAstroPack | 
|---|
|  | 509 | \brief Given apparent altitude find airmass. | 
|---|
|  | 510 | */ | 
|---|
|  | 511 | double AirmassfrAlt(double alt) | 
|---|
|  | 512 | { | 
|---|
|  | 513 | double x; | 
|---|
|  | 514 | alt = degrad(alt); | 
|---|
|  | 515 | airmass(alt,&x); | 
|---|
|  | 516 | return x; | 
|---|
|  | 517 | } | 
|---|
|  | 518 |  | 
|---|
|  | 519 | /*! \ingroup XAstroPack | 
|---|
|  | 520 | \brief given geocentric time "jd" and coords of a distant object at "ra/dec" (J2000), | 
|---|
|  | 521 | find the difference "hcp" in time between light arriving at earth vs the sun. | 
|---|
|  | 522 | \return "hcp" must be subtracted from "geocentric jd" to get "heliocentric jd". | 
|---|
|  | 523 | \warning "jd" is the TRUE Julian day (jd = mjd+MJD0). | 
|---|
|  | 524 | */ | 
|---|
|  | 525 | double HelioCorr(double jd,double ra,double dec) | 
|---|
|  | 526 | { | 
|---|
|  | 527 | double hcp; | 
|---|
|  | 528 | ra=hrrad(ra); | 
|---|
|  | 529 | dec=degrad(dec); | 
|---|
|  | 530 | heliocorr(jd,ra,dec,&hcp); | 
|---|
|  | 531 | return hcp; | 
|---|
|  | 532 | } | 
|---|
|  | 533 |  | 
|---|
|  | 534 | /*! \ingroup XAstroPack | 
|---|
| [1628] | 535 | \brief gmst0() - return Greenwich Mean Sidereal Time at 0h UT | 
|---|
| [1679] | 536 | \param mjd0 = date at 0h UT in julian days since MJD0 | 
|---|
| [1628] | 537 | */ | 
|---|
| [1456] | 538 | double GST0(double mjd0) | 
|---|
| [1678] | 539 | /* Copie depuis le code de Xephem (utc_gst.c) car pas prototype*/ | 
|---|
| [1456] | 540 | { | 
|---|
|  | 541 | double T, x; | 
|---|
|  | 542 | T = ((int)(mjd0 - 0.5) + 0.5 - J2000)/36525.0; | 
|---|
|  | 543 | x = 24110.54841 + | 
|---|
|  | 544 | (8640184.812866 + (0.093104 - 6.2e-6 * T) * T) * T; | 
|---|
|  | 545 | x /= 3600.0; | 
|---|
|  | 546 | range(&x, 24.0); | 
|---|
|  | 547 | return (x); | 
|---|
|  | 548 | } | 
|---|
|  | 549 |  | 
|---|
| [1628] | 550 | /*! \ingroup XAstroPack | 
|---|
| [1678] | 551 | \brief return local sidereal time from modified julian day and longitude | 
|---|
|  | 552 | \warning nutation or obliquity correction are taken into account. | 
|---|
|  | 553 | */ | 
|---|
|  | 554 | double LSTfrMJD(double mjd,double geolng) | 
|---|
|  | 555 | { | 
|---|
|  | 556 | double eps,lst,deps,dpsi; | 
|---|
|  | 557 | utc_gst(mjd_day(mjd),mjd_hr(mjd),&lst); | 
|---|
| [1679] | 558 | lst += deghr(geolng); | 
|---|
| [1678] | 559 | obliquity(mjd,&eps); | 
|---|
|  | 560 | nutation(mjd,&deps,&dpsi); | 
|---|
| [1679] | 561 | lst += radhr(dpsi*cos(eps+deps)); | 
|---|
|  | 562 | InRange(&lst,24.); | 
|---|
| [1678] | 563 | return lst; | 
|---|
|  | 564 | } | 
|---|
|  | 565 |  | 
|---|
|  | 566 | /*! \ingroup XAstroPack | 
|---|
| [1628] | 567 | \brief Give a time in h:mn:s from a decimal hour | 
|---|
|  | 568 | \verbatim | 
|---|
| [1456] | 569 | // INPUT: hd | 
|---|
| [1465] | 570 | // OUTPUT: h mn s   (h,mn,s >=< 0) | 
|---|
|  | 571 | // REMARQUE: si hd<0 alors h<0 ET mn<0 ET s<0 | 
|---|
|  | 572 | // EX: 12.51 -> h=12  mn=30  s=10 ; | 
|---|
|  | 573 | //    -12.51 -> h=-12 mn=-30 s=-10 ; | 
|---|
| [1628] | 574 | \endverbatim | 
|---|
|  | 575 | */ | 
|---|
|  | 576 | void HMSfrHdec(double hd,int *h,int *mn,double *s) | 
|---|
| [1456] | 577 | { | 
|---|
|  | 578 | int sgn=1; | 
|---|
|  | 579 | if(hd<0.) {sgn=-1; hd*=-1.;} | 
|---|
|  | 580 | *h  = int(hd); | 
|---|
|  | 581 | *mn = int((hd-(double)(*h))*60.); | 
|---|
|  | 582 | *s  = (hd - (double)(*h) - (double)(*mn)/60.)*3600.; | 
|---|
|  | 583 | // pb precision | 
|---|
|  | 584 | if(*s<0.) *s = 0.; | 
|---|
|  | 585 | if(*s>60. || *s==60.) {*s-=60.; *mn+=1;} // s=double attention comparaison | 
|---|
|  | 586 | if(*mn<0) *mn = 0; | 
|---|
|  | 587 | if(*mn>=60) {*mn-=60; *h+=1;} | 
|---|
| [1465] | 588 | *h *= sgn; *mn *= sgn; *s *= (double)sgn; | 
|---|
| [1456] | 589 | } | 
|---|
|  | 590 |  | 
|---|
| [1628] | 591 | /*! \ingroup XAstroPack | 
|---|
|  | 592 | \brief Give a decimal hour from a time in h:mn:s | 
|---|
|  | 593 | \verbatim | 
|---|
| [1465] | 594 | // INPUT: h , mn , s  (h,mn,s >=< 0) | 
|---|
|  | 595 | // RETURN:  en heures decimales | 
|---|
|  | 596 | // REMARQUE: pour avoir hd=-12.51 <- h=-12 mn=-30 s=-10 | 
|---|
| [1628] | 597 | \endverbatim | 
|---|
|  | 598 | */ | 
|---|
|  | 599 | double HdecfrHMS(int h,int mn,double s) | 
|---|
| [1456] | 600 | { | 
|---|
| [1465] | 601 | return ((double)h + (double)mn/60. + s/3600.); | 
|---|
| [1456] | 602 | } | 
|---|
|  | 603 |  | 
|---|
| [1628] | 604 | /*! \ingroup XAstroPack | 
|---|
|  | 605 | \brief Give a time string from a time in h:mn:s | 
|---|
|  | 606 | \verbatim | 
|---|
| [1465] | 607 | // INPUT: h , mn , s   (h,mn,s >=< 0) | 
|---|
| [1456] | 608 | // RETURN: string h:mn:s | 
|---|
| [1628] | 609 | \endverbatim | 
|---|
|  | 610 | */ | 
|---|
|  | 611 | string ToStringHMS(int h,int mn,double s) | 
|---|
| [1456] | 612 | { | 
|---|
| [1465] | 613 | double hd = HdecfrHMS(h,mn,s); // put in range | 
|---|
|  | 614 | HMSfrHdec(hd,&h,&mn,&s); | 
|---|
| [1456] | 615 | char str[128]; | 
|---|
| [1465] | 616 | if(hd<0.) | 
|---|
|  | 617 | sprintf(str,"-%d:%d:%.3f",-h,-mn,-s); | 
|---|
|  | 618 | else | 
|---|
|  | 619 | sprintf(str,"%d:%d:%.3f",h,mn,s); | 
|---|
| [1456] | 620 | string dum = str; | 
|---|
|  | 621 | return dum; | 
|---|
|  | 622 | } | 
|---|
|  | 623 |  | 
|---|
| [1628] | 624 | /*! \ingroup XAstroPack | 
|---|
|  | 625 | \brief Give a time string from a decimal hour | 
|---|
|  | 626 | */ | 
|---|
| [1456] | 627 | string ToStringHdec(double hd) | 
|---|
|  | 628 | { | 
|---|
|  | 629 | int h,mn; double s; | 
|---|
| [1465] | 630 | HMSfrHdec(hd,&h,&mn,&s); | 
|---|
| [1456] | 631 | return ToStringHMS(h,mn,s); | 
|---|
|  | 632 | } | 
|---|
|  | 633 |  | 
|---|
| [1628] | 634 | /*! \ingroup XAstroPack | 
|---|
| [1679] | 635 | \brief Compute precession between 2 dates. | 
|---|
|  | 636 | */ | 
|---|
|  | 637 | void Precess(double mjd1,double mjd2,double ra1,double dec1,double *ra2,double *dec2) | 
|---|
|  | 638 | { | 
|---|
|  | 639 | ra1  = hrrad(ra1);   // radians | 
|---|
|  | 640 | dec1 = degrad(dec1);  // radians | 
|---|
|  | 641 | precess(mjd1,mjd2,&ra1,&dec1); | 
|---|
|  | 642 | *ra2 = radhr(ra1); InRange(ra2,24.); | 
|---|
|  | 643 | *dec2 = raddeg(dec1); | 
|---|
|  | 644 | } | 
|---|
|  | 645 |  | 
|---|
|  | 646 | /*! \ingroup XAstroPack | 
|---|
| [1678] | 647 | \brief Convert equatorial coordinates for the given epoch into galactic coordinates | 
|---|
| [1628] | 648 | */ | 
|---|
| [1456] | 649 | void EqtoGal(double mjd,double ra,double dec, double *glng,double *glat) | 
|---|
|  | 650 | // Coordonnees equatoriales -> Coordonnees galactiques | 
|---|
|  | 651 | { | 
|---|
| [1679] | 652 | ra  = hrrad(ra);   // radians | 
|---|
|  | 653 | dec = degrad(dec);  // radians | 
|---|
| [1456] | 654 | eq_gal(mjd,ra,dec,glat,glng); | 
|---|
|  | 655 | // Vraiment bizarre, sur Linux-g++ glng>=360 ne comprend pas glng==360 ! (CMV) | 
|---|
| [1679] | 656 | *glng = raddeg(*glng); InRange(glng,360.); | 
|---|
|  | 657 | *glat = raddeg(*glat); | 
|---|
| [1456] | 658 | } | 
|---|
|  | 659 |  | 
|---|
| [1628] | 660 | /*! \ingroup XAstroPack | 
|---|
| [1678] | 661 | \brief Convert galactic coordinates into equatorial coordinates at the given epoch | 
|---|
| [1628] | 662 | */ | 
|---|
| [1456] | 663 | void GaltoEq(double mjd,double glng,double glat,double *ra,double *dec) | 
|---|
|  | 664 | // Coordonnees galactiques -> Coordonnees equatoriales | 
|---|
|  | 665 | { | 
|---|
| [1679] | 666 | glng = degrad(glng);  // radians | 
|---|
|  | 667 | glat = degrad(glat);  // radians | 
|---|
| [1456] | 668 | gal_eq (mjd,glat,glng,ra,dec); | 
|---|
| [1679] | 669 | *ra = radhr(*ra); InRange(ra,24.); | 
|---|
|  | 670 | *dec = raddeg(*dec); | 
|---|
| [1456] | 671 | } | 
|---|
|  | 672 |  | 
|---|
| [1628] | 673 | /*! \ingroup XAstroPack | 
|---|
| [1678] | 674 | \brief Convert equatorial coordinates (with hour angle instead of right ascension) into horizontal coordinates. | 
|---|
| [1628] | 675 | */ | 
|---|
| [1678] | 676 | void EqHtoHor(double geolat,double ha,double dec,double *az,double *alt) | 
|---|
| [1456] | 677 | // Coordonnees equatoriales -> Coordonnees horizontales | 
|---|
|  | 678 | { | 
|---|
| [1679] | 679 | geolat = degrad(geolat);  // radians | 
|---|
|  | 680 | ha  = hrrad(ha);   // radians | 
|---|
|  | 681 | dec = degrad(dec);  // radians | 
|---|
| [1456] | 682 | hadec_aa (geolat,ha,dec,alt,az); | 
|---|
| [1679] | 683 | *alt = raddeg(*alt); | 
|---|
|  | 684 | *az  = raddeg(*az); InRange(az,360.); | 
|---|
| [1456] | 685 | } | 
|---|
|  | 686 |  | 
|---|
| [1628] | 687 | /*! \ingroup XAstroPack | 
|---|
| [1678] | 688 | Convert horizontal coordinates into equatorial coordinates (with hour angle instead of right ascension). | 
|---|
| [1628] | 689 | */ | 
|---|
| [1678] | 690 | void HortoEqH(double geolat,double az,double alt,double *ha,double *dec) | 
|---|
| [1456] | 691 | // Coordonnees horizontales -> Coordonnees equatoriales | 
|---|
|  | 692 | { | 
|---|
| [1679] | 693 | geolat = degrad(geolat);  // radians | 
|---|
|  | 694 | alt = degrad(alt);  // radians | 
|---|
|  | 695 | az  = degrad(az);  // radians | 
|---|
| [1456] | 696 | aa_hadec (geolat,alt,az,ha,dec); | 
|---|
| [1679] | 697 | *ha = radhr(*ha); InRange(ha,24.,12.); | 
|---|
|  | 698 | *dec = raddeg(*dec); | 
|---|
| [1456] | 699 | } | 
|---|
|  | 700 |  | 
|---|
| [1628] | 701 | /*! \ingroup XAstroPack | 
|---|
| [1678] | 702 | \brief Convert equatorial coordinates into horizontal coordinates. | 
|---|
| [1628] | 703 | */ | 
|---|
| [1678] | 704 | void EqtoHor(double geolat,double lst,double ra,double dec,double *az,double *alt) | 
|---|
|  | 705 | // Coordonnees equatoriales -> Coordonnees horizontales | 
|---|
|  | 706 | { | 
|---|
| [1679] | 707 | double ha = lst - ra; InRange(&ha,24.,12.); | 
|---|
|  | 708 | geolat = degrad(geolat);  // radians | 
|---|
|  | 709 | ha = hrrad(ha);   // radians | 
|---|
|  | 710 | dec = degrad(dec);  // radians | 
|---|
| [1678] | 711 | hadec_aa (geolat,ha,dec,alt,az); | 
|---|
| [1679] | 712 | *alt = raddeg(*alt); | 
|---|
|  | 713 | *az  = raddeg(*az); InRange(az,360.); | 
|---|
| [1678] | 714 | } | 
|---|
|  | 715 |  | 
|---|
|  | 716 | /*! \ingroup XAstroPack | 
|---|
|  | 717 | Convert horizontal coordinates into equatorial coordinates. | 
|---|
|  | 718 | */ | 
|---|
|  | 719 | void HortoEq(double geolat,double lst,double az,double alt,double *ra,double *dec) | 
|---|
|  | 720 | // Coordonnees horizontales -> Coordonnees equatoriales | 
|---|
|  | 721 | { | 
|---|
|  | 722 | double ha; | 
|---|
| [1679] | 723 | geolat = degrad(geolat);  // radians | 
|---|
|  | 724 | alt = degrad(alt);  // radians | 
|---|
|  | 725 | az  = degrad(az);  // radians | 
|---|
| [1678] | 726 | aa_hadec (geolat,alt,az,&ha,dec); | 
|---|
| [1679] | 727 | *ra = lst - radhr(ha); InRange(ra,24.); | 
|---|
|  | 728 | *dec = raddeg(*dec); | 
|---|
| [1678] | 729 | } | 
|---|
|  | 730 |  | 
|---|
|  | 731 | /*! \ingroup XAstroPack | 
|---|
|  | 732 | \brief Convert equatorial coordinates into geocentric ecliptic coordinates given the modified Julian date. | 
|---|
|  | 733 | \warning Correction for the effect on the angle of the obliquity due to nutation is not included. | 
|---|
|  | 734 | */ | 
|---|
| [1456] | 735 | void EqtoEcl(double mjd,double ra,double dec,double *eclng,double *eclat) | 
|---|
|  | 736 | // Coordonnees equatoriales -> Coordonnees ecliptiques | 
|---|
|  | 737 | { | 
|---|
| [1679] | 738 | ra = hrrad(ra);   // radians | 
|---|
|  | 739 | dec = degrad(dec);  // radians | 
|---|
| [1456] | 740 | eq_ecl(mjd,ra,dec,eclat,eclng); | 
|---|
| [1679] | 741 | *eclng = raddeg(*eclng); InRange(eclng,360.); | 
|---|
|  | 742 | *eclat = raddeg(*eclat); | 
|---|
| [1456] | 743 | } | 
|---|
|  | 744 |  | 
|---|
| [1628] | 745 | /*! \ingroup XAstroPack | 
|---|
| [1678] | 746 | \brief Convert geocentric ecliptic coordinates into equatorial coordinates given the modified Julian date. | 
|---|
|  | 747 | \warning Correction for the effect on the angle of the obliquity due to nutation is not included. | 
|---|
| [1628] | 748 | */ | 
|---|
| [1456] | 749 | void EcltoEq(double mjd,double eclng,double eclat,double *ra,double *dec) | 
|---|
|  | 750 | // Coordonnees ecliptiques -> Coordonnees equatoriales | 
|---|
|  | 751 | { | 
|---|
| [1679] | 752 | eclat = degrad(eclat);  // radians | 
|---|
|  | 753 | eclng = degrad(eclng);  // radians | 
|---|
| [1456] | 754 | ecl_eq(mjd,eclat,eclng,ra,dec); | 
|---|
| [1679] | 755 | *ra = radhr(*ra); InRange(ra,24.); | 
|---|
|  | 756 | *dec = raddeg(*dec); | 
|---|
| [1456] | 757 | } | 
|---|
|  | 758 |  | 
|---|
| [1628] | 759 | /*! \ingroup XAstroPack | 
|---|
|  | 760 | \brief Give Sun position | 
|---|
|  | 761 | \verbatim | 
|---|
|  | 762 | given the modified JD, mjd, return the true geocentric ecliptic longitude | 
|---|
| [1679] | 763 | of the sun for the mean equinox of the date, *eclsn, in degres, the | 
|---|
|  | 764 | sun-earth distance, *rsn, in AU, and the latitude *ecbsn, in degres | 
|---|
| [1628] | 765 | (since this is always <= 1.2 arcseconds, in can be neglected by | 
|---|
| [1679] | 766 | calling with ecbsn = NULL). | 
|---|
|  | 767 | - REMARQUE: | 
|---|
|  | 768 | * if the APPARENT ecliptic longitude is required, correct the longitude for | 
|---|
|  | 769 | *   nutation to the true equinox of date and for aberration (light travel time, | 
|---|
|  | 770 | *   approximately  -9.27e7/186000/(3600*24*365)*2*pi = -9.93e-5 radians). | 
|---|
| [1628] | 771 | \endverbatim | 
|---|
|  | 772 | */ | 
|---|
| [1679] | 773 | void SunPos(double mjd,double *eclsn,double *ecbsn,double *rsn) | 
|---|
| [1456] | 774 | { | 
|---|
| [1679] | 775 | sunpos(mjd,eclsn,rsn,ecbsn); | 
|---|
|  | 776 | *eclsn = raddeg(*eclsn); InRange(eclsn,360.); | 
|---|
|  | 777 | if(ecbsn!=NULL) *ecbsn = raddeg(*ecbsn); | 
|---|
| [1456] | 778 | } | 
|---|
|  | 779 |  | 
|---|
| [1628] | 780 | /*! \ingroup XAstroPack | 
|---|
|  | 781 | \brief Give Moon position | 
|---|
|  | 782 | \verbatim | 
|---|
|  | 783 | given the mjd, find the geocentric ecliptic longitude, lam, and latitude, | 
|---|
|  | 784 | bet, and geocentric distance, rho in a.u. for the moon.  also return | 
|---|
|  | 785 | the sun's mean anomaly, *msp, and the moon's mean anomaly, *mdp. | 
|---|
|  | 786 | (for the mean equinox) | 
|---|
|  | 787 | \endverbatim | 
|---|
|  | 788 | */ | 
|---|
| [1679] | 789 | void MoonPos(double mjd,double *eclmn,double *ecbmn,double *rho) | 
|---|
| [1456] | 790 | { | 
|---|
| [1679] | 791 | double msp,mdp; | 
|---|
|  | 792 | moon(mjd,eclmn,ecbmn,rho,&msp,&mdp); | 
|---|
|  | 793 | *eclmn = raddeg(*eclmn); InRange(eclmn,360.); | 
|---|
|  | 794 | *ecbmn = raddeg(*ecbmn); | 
|---|
| [1456] | 795 | } | 
|---|
|  | 796 |  | 
|---|
| [1628] | 797 | /*! \ingroup XAstroPack | 
|---|
|  | 798 | \brief Give planet position | 
|---|
|  | 799 | \verbatim | 
|---|
|  | 800 | * given a modified Julian date, mjd, and a planet, p, find: | 
|---|
| [1679] | 801 | *   sunecl: heliocentric longitude, | 
|---|
|  | 802 | *   sunecb: heliocentric latitude, | 
|---|
|  | 803 | *   sundist:  distance from the sun to the planet, | 
|---|
|  | 804 | *   geodist: distance from the Earth to the planet, | 
|---|
| [1456] | 805 | *         none corrected for light time, ie, they are the true values for the | 
|---|
|  | 806 | *         given instant. | 
|---|
| [1679] | 807 | *   geoecl:  geocentric ecliptic longitude, | 
|---|
|  | 808 | *   geoecb:  geocentric ecliptic latitude, | 
|---|
| [1456] | 809 | *         each corrected for light time, ie, they are the apparent values as | 
|---|
|  | 810 | *         seen from the center of the Earth for the given instant. | 
|---|
| [1679] | 811 | *   diamang:  angular diameter in arcsec at 1 AU, | 
|---|
| [1456] | 812 | *   mag:  visual magnitude when 1 AU from sun and earth at 0 phase angle. | 
|---|
| [1628] | 813 | *   (for the mean equinox) | 
|---|
| [1679] | 814 | * all angles are in degres, all distances in AU. | 
|---|
|  | 815 | * | 
|---|
|  | 816 | * corrections for nutation and abberation must be made by the caller. The RA | 
|---|
|  | 817 | *   and DEC calculated from the fully-corrected ecliptic coordinates are then | 
|---|
|  | 818 | *   the apparent geocentric coordinates. Further corrections can be made, if | 
|---|
|  | 819 | *   required, for atmospheric refraction and geocentric parallax. | 
|---|
| [1628] | 820 | \endverbatim | 
|---|
|  | 821 | */ | 
|---|
| [2552] | 822 | void PlanetPos(double mjd,PLCode numplan,double *sunecl,double *sunecb,double *sundist | 
|---|
| [1679] | 823 | ,double *geodist,double *geoecl,double *geoecb | 
|---|
|  | 824 | ,double *diamang,double *mag) | 
|---|
| [1456] | 825 | { | 
|---|
| [1679] | 826 | plans(mjd,numplan,sunecl,sunecb,sundist,geodist,geoecl,geoecb,diamang,mag); | 
|---|
|  | 827 | *geoecl = raddeg(*geoecl); InRange(geoecl,360.); | 
|---|
|  | 828 | *geoecb = raddeg(*geoecb); | 
|---|
|  | 829 | *sunecl = raddeg(*sunecl); InRange(sunecl,360.); | 
|---|
|  | 830 | *sunecb = raddeg(*sunecb); | 
|---|
| [1456] | 831 | } | 
|---|