| 1 | #include <math.h>
 | 
|---|
| 2 | #include <stdio.h>
 | 
|---|
| 3 | #include "xastropack.h"
 | 
|---|
| 4 | 
 | 
|---|
| 5 | // BUGS BUGS BUGS BUGS BUGS BUGS BUGS BUGS BUGS BUGS
 | 
|---|
| 6 | // Corrections de divers bugs trouve dans libastro (CMV)
 | 
|---|
| 7 | // 1******* In the file vsop87.c line 154:
 | 
|---|
| 8 | // p = q/(t_abs[alpha] + alpha * t_abs[alpha-1] * 1e-4 + 1e-35);
 | 
|---|
| 9 | // - to avoid t_abs[-1] when alpha=0, replaced by :  
 | 
|---|
| 10 | // if(alpha>0) p = t_abs[alpha-1]; else p=0;
 | 
|---|
| 11 | // p = q/(t_abs[alpha] + alpha * p * 1e-4 + 1e-35);
 | 
|---|
| 12 | // Mail envoye a ecdowney@ClearSkyInstitute.com
 | 
|---|
| 13 | // 2******* In the file eq_ecl.c line 69:
 | 
|---|
| 14 | // *q = asin((sy*ceps)-(cy*seps*sx*sw));
 | 
|---|
| 15 | // eq_ecl.c Protection NaN dans ecleq_aux, replaced by : 
 | 
|---|
| 16 | // *q = (sy*ceps)-(cy*seps*sx*sw);
 | 
|---|
| 17 | // if(*q<-1.) *q = -PI/2.; else if(*q>1.) *q = PI/2.; else *q = asin(*q);
 | 
|---|
| 18 | // Mail envoye a ecdowney@ClearSkyInstitute.com
 | 
|---|
| 19 | 
 | 
|---|
| 20 | 
 | 
|---|
| 21 | /*!
 | 
|---|
| 22 |   \defgroup XAstroPack XAstroPack module
 | 
|---|
| 23 |   This module contains simple programs to perform various
 | 
|---|
| 24 |   astronomical computation (based on the libastro of Xephem).
 | 
|---|
| 25 | 
 | 
|---|
| 26 |   \verbatim
 | 
|---|
| 27 | // TEMPS: modified Julian date (mjd) (number of days elapsed since 1900 jan 0.5)
 | 
|---|
| 28 | //        jour [1,31] (dy)
 | 
|---|
| 29 | //        mois [1,12] (mn)
 | 
|---|
| 30 | //        annee       (yr)
 | 
|---|
| 31 | //        universal time [0,24[ (utc)
 | 
|---|
| 32 | //        Greenwich mean siderial [0,24[ (gst)
 | 
|---|
| 33 | //        Greenwich mean siderial at 0h UT [0,24[ (gst0)
 | 
|---|
| 34 | // EQUATORIALE: ascension droite en heures [0,24[ (ra)
 | 
|---|
| 35 | //              declinaison en degres [-90,90]    (dec)
 | 
|---|
| 36 | //              angle horaire en heures ]-12,12] (-12=12) (ha) 
 | 
|---|
| 37 | //              temps sideral du lieu: tsid=ha+ra (ou lst)
 | 
|---|
| 38 | // GALACTIQUE: longitude en degres [0,360[  (glng)
 | 
|---|
| 39 | //             latitude en degres [-90,90]  (glat)
 | 
|---|
| 40 | // HORIZONTAL: azimuth en degres [0,360[   (az)
 | 
|---|
| 41 | //                 (angle round to the east from north+)
 | 
|---|
| 42 | //             altitude en degres [-90,90] (alt)
 | 
|---|
| 43 | // ECLIPTIQUE: lontitude ecliptique en degres [0,360[ (eclng)
 | 
|---|
| 44 | //                 (angle round counter clockwise from the vernal equinoxe)
 | 
|---|
| 45 | //             latitude ecliptique en degres [-90,90] (eclat)
 | 
|---|
| 46 | // GEOGRAPHIE: longitude en degres ]-180,180]        (geolng)
 | 
|---|
| 47 | //                 (angle + vers l'ouest, - vers l'est)
 | 
|---|
| 48 | //             latitude en degres [-90,90] (north>0) (geolat)
 | 
|---|
| 49 |   \endverbatim
 | 
|---|
| 50 | */
 | 
|---|
| 51 | 
 | 
|---|
| 52 | /*! \ingroup XAstroPack
 | 
|---|
| 53 | \brief Given a coordinate type "typ", convert to standard for astropack.
 | 
|---|
| 54 | \verbatim
 | 
|---|
| 55 |  La routine convertit (in place) les coordonnees "coord1","coord2"
 | 
|---|
| 56 |  definies par le type "typ" dans les unites standard de ce systeme
 | 
|---|
| 57 |  de coordonnees.
 | 
|---|
| 58 |  "typ" code le systeme de coordonnees astronomiques et les unites utilisees
 | 
|---|
| 59 | 
 | 
|---|
| 60 |  - Return : 0 = OK
 | 
|---|
| 61 |             1 = Unknown type of coordinates
 | 
|---|
| 62 |             2 = bad range for coord1
 | 
|---|
| 63 |             4 = bad range for coord2
 | 
|---|
| 64 |             6 = bad range for coord1 et coord2
 | 
|---|
| 65 | 
 | 
|---|
| 66 |  Les types de coordonnees sont definies dans le enum TypAstroCoord:
 | 
|---|
| 67 |   La premiere coordonnee est de type "longitude" (alpha,longitude)
 | 
|---|
| 68 |   La deuxieme coordonnee est de type "latidude" (delta,latitude)
 | 
|---|
| 69 |  *** Definitions des unites des coordonnees et de leurs dynamiques
 | 
|---|
| 70 |  - TypCoordH0 : heure=[0,24[
 | 
|---|
| 71 |  - TypCoordH1 : heure=]-12,12]
 | 
|---|
| 72 |  - TypCoordD0 : degre=[0,360[
 | 
|---|
| 73 |  - TypCoordD1 : degre=]-180,180]
 | 
|---|
| 74 |  - TypCoordD2 : degre=[-90,90]
 | 
|---|
| 75 |  - TypCoordR0 : degre=[0,2Pi[
 | 
|---|
| 76 |  - TypCoordR1 : degre=]-Pi,Pi]
 | 
|---|
| 77 |  - TypCoordR2 : degre=[-Pi/2,Pi/2]
 | 
|---|
| 78 |  *** Definitions des combinaisons unites des coordonnees
 | 
|---|
| 79 |  - TypCoordHD  : coordonnees en (heure=[0,24[,degre=[-90,90])
 | 
|---|
| 80 |  - TypCoordDD  : coordonnees en (degre=[0,360[,degre=[-90,90])
 | 
|---|
| 81 |  - TypCoordRR  : coordonnees en (radian=[0,2Pi[,radian=[-Pi/2,Pi/2])
 | 
|---|
| 82 |  - TypCoordH1D : coordonnees en (heure=]-12,12],degre=[-90,90])
 | 
|---|
| 83 |  - TypCoordD1D : coordonnees en (degre=]-180,180],degre=[-90,90])
 | 
|---|
| 84 |  - TypCoordR1R : coordonnees en (radian=]-Pi,Pi],radian=[-Pi/2,Pi/2])
 | 
|---|
| 85 |  *** Definitions des types de systemes de coordonnees astronomiques.
 | 
|---|
| 86 |  - TypCoordEq  : Coordonnees Equatoriales alpha,delta
 | 
|---|
| 87 |  - TypCoordGal : Coordonnees Galactiques gLong, gLat
 | 
|---|
| 88 |  - TypCoordHor : Coordonnees Horizontales azimuth,altitude
 | 
|---|
| 89 |  - TypCoordEcl : Coordonnees Ecliptiques EclLong,EclLat
 | 
|---|
| 90 |  *** Definitions des unites par defaut pour les divers systemes de coordonnees.
 | 
|---|
| 91 |  - TypCoordEqStd  : heure=[0,24[, degre=[-90,90]
 | 
|---|
| 92 |  - TypCoordGalStd : degre=[0,360[,degre=[-90,90]
 | 
|---|
| 93 |  - TypCoordHorStd : degre=[0,360[,degre=[-90,90]
 | 
|---|
| 94 |  - TypCoordEclStd : degre=[0,360[,degre=[-90,90]
 | 
|---|
| 95 | \endverbatim
 | 
|---|
| 96 | */
 | 
|---|
| 97 | int  CoordConvertToStd(TypAstroCoord typ,double& coord1,double& coord2)
 | 
|---|
| 98 | {
 | 
|---|
| 99 |   int rc = 0;
 | 
|---|
| 100 | 
 | 
|---|
| 101 |   // ---- Equatoriales alpha,delta
 | 
|---|
| 102 |   //    - standard = [0,24[ , [-90,90]
 | 
|---|
| 103 |   if(typ&TypCoordEq) {
 | 
|---|
| 104 |     if(typ&TypCoordDD) {
 | 
|---|
| 105 |       coord1 = deghr(coord1);
 | 
|---|
| 106 |     } else if(typ&TypCoordRR) {
 | 
|---|
| 107 |       coord1 = radhr(coord1);
 | 
|---|
| 108 |       coord2 = raddeg(coord2);
 | 
|---|
| 109 |     }
 | 
|---|
| 110 |     if(coord1==24.) coord1 = 0.;
 | 
|---|
| 111 |     if(coord1<0.   || coord1>=24.) rc+= 2;
 | 
|---|
| 112 |     if(coord2<-90. || coord2>90. ) rc+= 4;
 | 
|---|
| 113 | 
 | 
|---|
| 114 |   // ---- Galactiques gLong, gLat
 | 
|---|
| 115 |   // ---- Horizontales azimuth,altitude
 | 
|---|
| 116 |   // ---- Ecliptiques EclLong,EclLat
 | 
|---|
| 117 |   //    - standard = [0,360[ , [-90,90]
 | 
|---|
| 118 |   } else if( typ&TypCoordGal || typ&TypCoordHor || typ&TypCoordEcl) {
 | 
|---|
| 119 |     if(typ&TypCoordHD) {
 | 
|---|
| 120 |       coord1 = hrdeg(coord1);
 | 
|---|
| 121 |     } else if(typ&TypCoordRR) {
 | 
|---|
| 122 |       coord1 = raddeg(coord1);
 | 
|---|
| 123 |       coord2 = raddeg(coord2);
 | 
|---|
| 124 |     }
 | 
|---|
| 125 |     if(coord1==360.) coord1 = 0.;
 | 
|---|
| 126 |     if(coord1<0.   || coord1>=360.) rc+= 2;
 | 
|---|
| 127 |     if(coord2<-90. || coord2>90. )  rc+= 4;
 | 
|---|
| 128 | 
 | 
|---|
| 129 |   } else {          // Coordonnees non-connues
 | 
|---|
| 130 |     rc= 1;
 | 
|---|
| 131 |   }
 | 
|---|
| 132 | 
 | 
|---|
| 133 |   return rc;
 | 
|---|
| 134 | }
 | 
|---|
| 135 | 
 | 
|---|
| 136 | /*! \ingroup XAstroPack
 | 
|---|
| 137 | \brief Compute MJD from date
 | 
|---|
| 138 | \verbatim
 | 
|---|
| 139 |  MJD =  modified Julian date (number of days elapsed since 1900 jan 0.5),
 | 
|---|
| 140 |  dy is the decimale value of the day: dy = int(dy) + utc/24.
 | 
|---|
| 141 | \endverbatim
 | 
|---|
| 142 | */
 | 
|---|
| 143 | double MJDfrDate(double dy,int mn,int yr)
 | 
|---|
| 144 | {
 | 
|---|
| 145 | double mjd;
 | 
|---|
| 146 | cal_mjd(mn,dy,yr,&mjd);
 | 
|---|
| 147 | return mjd;
 | 
|---|
| 148 | }
 | 
|---|
| 149 | 
 | 
|---|
| 150 | /*! \ingroup XAstroPack
 | 
|---|
| 151 | \brief Compute date from MJD
 | 
|---|
| 152 | */
 | 
|---|
| 153 | void DatefrMJD(double mjd,double *dy,int *mn,int *yr)
 | 
|---|
| 154 | {
 | 
|---|
| 155 | mjd_cal(mjd,mn,dy,yr);
 | 
|---|
| 156 | }
 | 
|---|
| 157 | 
 | 
|---|
| 158 | /*! \ingroup XAstroPack
 | 
|---|
| 159 | \brief  Given a mjd, return the year as a double.
 | 
|---|
| 160 | */
 | 
|---|
| 161 | double YearfrMJD(double mjd)
 | 
|---|
| 162 | {
 | 
|---|
| 163 | double yr;
 | 
|---|
| 164 | mjd_year(mjd,&yr);
 | 
|---|
| 165 | return yr;
 | 
|---|
| 166 | }
 | 
|---|
| 167 | 
 | 
|---|
| 168 | /*! \ingroup XAstroPack
 | 
|---|
| 169 | \brief Given a decimal year, return mjd
 | 
|---|
| 170 | */
 | 
|---|
| 171 | double MJDfrYear(double yr)
 | 
|---|
| 172 | {
 | 
|---|
| 173 | double mjd;
 | 
|---|
| 174 | year_mjd(yr,&mjd);
 | 
|---|
| 175 | return mjd;
 | 
|---|
| 176 | }
 | 
|---|
| 177 | 
 | 
|---|
| 178 | /*! \ingroup XAstroPack
 | 
|---|
| 179 | \brief Given a mjd, return the year and number of days since 00:00 Jan 1
 | 
|---|
| 180 | \warning: if mjd = 2 January -> number of days = 1
 | 
|---|
| 181 | */
 | 
|---|
| 182 | void YDfrMJD(double mjd,double *dy,int *yr)
 | 
|---|
| 183 | {
 | 
|---|
| 184 | mjd_dayno(mjd,yr,dy);
 | 
|---|
| 185 | }
 | 
|---|
| 186 | 
 | 
|---|
| 187 | /*! \ingroup XAstroPack
 | 
|---|
| 188 | \brief Given a year, 
 | 
|---|
| 189 | */
 | 
|---|
| 190 | int IsLeapYear(int y)
 | 
|---|
| 191 | {
 | 
|---|
| 192 | return isleapyear(y);
 | 
|---|
| 193 | }
 | 
|---|
| 194 | 
 | 
|---|
| 195 | /*! \ingroup XAstroPack
 | 
|---|
| 196 | \brief given an mjd, set *dow to 0..6 according to which day of the week it falls on (0=sunday).
 | 
|---|
| 197 | \return return 0 if ok else -1 if can't figure it out.
 | 
|---|
| 198 | */
 | 
|---|
| 199 | int DayOrder(double mjd,int *dow)
 | 
|---|
| 200 | {
 | 
|---|
| 201 | return mjd_dow(mjd,dow);
 | 
|---|
| 202 | }
 | 
|---|
| 203 | 
 | 
|---|
| 204 | /*! \ingroup XAstroPack
 | 
|---|
| 205 | \brief given a mjd, return the the number of days in the month.
 | 
|---|
| 206 | */
 | 
|---|
| 207 | int DaysInMonth(double mjd)
 | 
|---|
| 208 | {
 | 
|---|
| 209 | int ndays;
 | 
|---|
| 210 | mjd_dpm(mjd,&ndays);
 | 
|---|
| 211 | return ndays;
 | 
|---|
| 212 | }
 | 
|---|
| 213 | 
 | 
|---|
| 214 | /*! \ingroup XAstroPack
 | 
|---|
| 215 | \brief Given a mjd, truncate it to the beginning of the whole day
 | 
|---|
| 216 | */
 | 
|---|
| 217 | double MJDat0hFrMJD(double mjd)
 | 
|---|
| 218 | {
 | 
|---|
| 219 | return mjd_day(mjd);
 | 
|---|
| 220 | }
 | 
|---|
| 221 | 
 | 
|---|
| 222 | /*! \ingroup XAstroPack
 | 
|---|
| 223 | \brief Given a mjd, return the number of hours past midnight of the whole day
 | 
|---|
| 224 | */
 | 
|---|
| 225 | double HfrMJD(double mjd)
 | 
|---|
| 226 | {
 | 
|---|
| 227 | return mjd_hr(mjd);
 | 
|---|
| 228 | }
 | 
|---|
| 229 | 
 | 
|---|
| 230 | /*! \ingroup XAstroPack
 | 
|---|
| 231 | \brief Give GST from UTC
 | 
|---|
| 232 | \verbatim
 | 
|---|
| 233 |  Given a modified julian date, mjd, and a universally coordinated time, utc,
 | 
|---|
| 234 |  return greenwich mean siderial time, *gst.
 | 
|---|
| 235 |  N.B. mjd must be at the beginning of the day.
 | 
|---|
| 236 | \endverbatim
 | 
|---|
| 237 | */
 | 
|---|
| 238 | double GSTfrUTC(double mjd0,double utc)
 | 
|---|
| 239 | {
 | 
|---|
| 240 | double gst;
 | 
|---|
| 241 | utc_gst(mjd0,utc,&gst);
 | 
|---|
| 242 | return gst;
 | 
|---|
| 243 | }
 | 
|---|
| 244 | 
 | 
|---|
| 245 | /*! \ingroup XAstroPack
 | 
|---|
| 246 | \brief Give UTC from GST
 | 
|---|
| 247 | \verbatim
 | 
|---|
| 248 |  Given a modified julian date, mjd, and a greenwich mean siderial time, gst,
 | 
|---|
| 249 |  return universally coordinated time, *utc.
 | 
|---|
| 250 |  N.B. mjd must be at the beginning of the day.
 | 
|---|
| 251 | \endverbatim
 | 
|---|
| 252 | */                                                                             
 | 
|---|
| 253 | double UTCfrGST(double mjd0,double gst)
 | 
|---|
| 254 | {
 | 
|---|
| 255 | double utc;
 | 
|---|
| 256 | gst_utc(mjd0,gst,&utc);
 | 
|---|
| 257 | return utc;
 | 
|---|
| 258 | }
 | 
|---|
| 259 | 
 | 
|---|
| 260 | /*! \ingroup XAstroPack
 | 
|---|
| 261 | \brief Given apparent altitude find airmass.
 | 
|---|
| 262 | */                                                                             
 | 
|---|
| 263 | double AirmassfrAlt(double alt)
 | 
|---|
| 264 | {
 | 
|---|
| 265 | double x;
 | 
|---|
| 266 | alt = degrad(alt);
 | 
|---|
| 267 | airmass(alt,&x);
 | 
|---|
| 268 | return x;
 | 
|---|
| 269 | }
 | 
|---|
| 270 | 
 | 
|---|
| 271 | /*! \ingroup XAstroPack
 | 
|---|
| 272 | \brief given geocentric time "jd" and coords of a distant object at "ra/dec" (J2000),
 | 
|---|
| 273 | find the difference "hcp" in time between light arriving at earth vs the sun.
 | 
|---|
| 274 | \return "hcp" must be subtracted from "geocentric jd" to get "heliocentric jd".
 | 
|---|
| 275 | \warning "jd" is the TRUE Julian day (jd = mjd+MJD0).
 | 
|---|
| 276 | */
 | 
|---|
| 277 | double HelioCorr(double jd,double ra,double dec)
 | 
|---|
| 278 | {
 | 
|---|
| 279 | double hcp;
 | 
|---|
| 280 | ra=hrrad(ra);
 | 
|---|
| 281 | dec=degrad(dec);
 | 
|---|
| 282 | heliocorr(jd,ra,dec,&hcp);
 | 
|---|
| 283 | return hcp;
 | 
|---|
| 284 | }
 | 
|---|
| 285 | 
 | 
|---|
| 286 | /*! \ingroup XAstroPack
 | 
|---|
| 287 | \brief gmst0() - return Greenwich Mean Sidereal Time at 0h UT
 | 
|---|
| 288 | \param mjd0 = date at 0h UT in julian days since MJD0
 | 
|---|
| 289 | */                                                                             
 | 
|---|
| 290 | double GST0(double mjd0)
 | 
|---|
| 291 | /* Copie depuis le code de Xephem (utc_gst.c) car pas prototype*/
 | 
|---|
| 292 | {
 | 
|---|
| 293 |  double T, x;
 | 
|---|
| 294 |  T = ((int)(mjd0 - 0.5) + 0.5 - J2000)/36525.0;
 | 
|---|
| 295 |  x = 24110.54841 +
 | 
|---|
| 296 |      (8640184.812866 + (0.093104 - 6.2e-6 * T) * T) * T;
 | 
|---|
| 297 |  x /= 3600.0;
 | 
|---|
| 298 |  range(&x, 24.0);
 | 
|---|
| 299 |  return (x);
 | 
|---|
| 300 | }
 | 
|---|
| 301 | 
 | 
|---|
| 302 | /*! \ingroup XAstroPack
 | 
|---|
| 303 | \brief return local sidereal time from modified julian day and longitude
 | 
|---|
| 304 | \warning nutation or obliquity correction are taken into account.
 | 
|---|
| 305 | */                                                                             
 | 
|---|
| 306 | double LSTfrMJD(double mjd,double geolng)
 | 
|---|
| 307 | {
 | 
|---|
| 308 |   double eps,lst,deps,dpsi;
 | 
|---|
| 309 |   utc_gst(mjd_day(mjd),mjd_hr(mjd),&lst);
 | 
|---|
| 310 |   lst += deghr(geolng);
 | 
|---|
| 311 |   obliquity(mjd,&eps);
 | 
|---|
| 312 |   nutation(mjd,&deps,&dpsi);
 | 
|---|
| 313 |   lst += radhr(dpsi*cos(eps+deps));
 | 
|---|
| 314 |   InRange(&lst,24.);
 | 
|---|
| 315 |   return lst;
 | 
|---|
| 316 | }
 | 
|---|
| 317 | 
 | 
|---|
| 318 | /*! \ingroup XAstroPack
 | 
|---|
| 319 | \brief Give a time in h:mn:s from a decimal hour
 | 
|---|
| 320 | \verbatim
 | 
|---|
| 321 | // INPUT: hd
 | 
|---|
| 322 | // OUTPUT: h mn s   (h,mn,s >=< 0)
 | 
|---|
| 323 | // REMARQUE: si hd<0 alors h<0 ET mn<0 ET s<0
 | 
|---|
| 324 | // EX: 12.51 -> h=12  mn=30  s=10 ; 
 | 
|---|
| 325 | //    -12.51 -> h=-12 mn=-30 s=-10 ; 
 | 
|---|
| 326 | \endverbatim
 | 
|---|
| 327 | */                                                                             
 | 
|---|
| 328 | void HMSfrHdec(double hd,int *h,int *mn,double *s)
 | 
|---|
| 329 | {
 | 
|---|
| 330 |  int sgn=1;
 | 
|---|
| 331 |  if(hd<0.) {sgn=-1; hd*=-1.;}
 | 
|---|
| 332 |  *h  = int(hd);
 | 
|---|
| 333 |  *mn = int((hd-(double)(*h))*60.);
 | 
|---|
| 334 |  *s  = (hd - (double)(*h) - (double)(*mn)/60.)*3600.;
 | 
|---|
| 335 |  // pb precision
 | 
|---|
| 336 |  if(*s<0.) *s = 0.;
 | 
|---|
| 337 |  if(*s>60. || *s==60.) {*s-=60.; *mn+=1;} // s=double attention comparaison
 | 
|---|
| 338 |  if(*mn<0) *mn = 0;
 | 
|---|
| 339 |  if(*mn>=60) {*mn-=60; *h+=1;}
 | 
|---|
| 340 |  *h *= sgn; *mn *= sgn; *s *= (double)sgn;
 | 
|---|
| 341 | }
 | 
|---|
| 342 | 
 | 
|---|
| 343 | /*! \ingroup XAstroPack
 | 
|---|
| 344 | \brief Give a decimal hour from a time in h:mn:s
 | 
|---|
| 345 | \verbatim
 | 
|---|
| 346 | // INPUT: h , mn , s  (h,mn,s >=< 0)
 | 
|---|
| 347 | // RETURN:  en heures decimales
 | 
|---|
| 348 | // REMARQUE: pour avoir hd=-12.51 <- h=-12 mn=-30 s=-10
 | 
|---|
| 349 | \endverbatim
 | 
|---|
| 350 | */                                                                             
 | 
|---|
| 351 | double HdecfrHMS(int h,int mn,double s)
 | 
|---|
| 352 | {
 | 
|---|
| 353 |  return ((double)h + (double)mn/60. + s/3600.);
 | 
|---|
| 354 | }
 | 
|---|
| 355 | 
 | 
|---|
| 356 | /*! \ingroup XAstroPack
 | 
|---|
| 357 | \brief Give a time string from a time in h:mn:s
 | 
|---|
| 358 | \verbatim
 | 
|---|
| 359 | // INPUT: h , mn , s   (h,mn,s >=< 0)
 | 
|---|
| 360 | // RETURN: string h:mn:s
 | 
|---|
| 361 | \endverbatim
 | 
|---|
| 362 | */                                                                             
 | 
|---|
| 363 | string ToStringHMS(int h,int mn,double s)
 | 
|---|
| 364 | {
 | 
|---|
| 365 |  double hd = HdecfrHMS(h,mn,s); // put in range
 | 
|---|
| 366 |  HMSfrHdec(hd,&h,&mn,&s);
 | 
|---|
| 367 |  char str[128];
 | 
|---|
| 368 |  if(hd<0.)
 | 
|---|
| 369 |    sprintf(str,"-%d:%d:%.3f",-h,-mn,-s);
 | 
|---|
| 370 |  else
 | 
|---|
| 371 |    sprintf(str,"%d:%d:%.3f",h,mn,s);
 | 
|---|
| 372 |  string dum = str;
 | 
|---|
| 373 |  return dum;
 | 
|---|
| 374 | }
 | 
|---|
| 375 | 
 | 
|---|
| 376 | /*! \ingroup XAstroPack
 | 
|---|
| 377 | \brief Give a time string from a decimal hour
 | 
|---|
| 378 | */                                                                             
 | 
|---|
| 379 | string ToStringHdec(double hd)
 | 
|---|
| 380 | {
 | 
|---|
| 381 |  int h,mn; double s;
 | 
|---|
| 382 |  HMSfrHdec(hd,&h,&mn,&s);
 | 
|---|
| 383 |  return ToStringHMS(h,mn,s);
 | 
|---|
| 384 | }
 | 
|---|
| 385 | 
 | 
|---|
| 386 | /*! \ingroup XAstroPack
 | 
|---|
| 387 | \brief Compute precession between 2 dates.
 | 
|---|
| 388 | */                                                                             
 | 
|---|
| 389 | void Precess(double mjd1,double mjd2,double ra1,double dec1,double *ra2,double *dec2)
 | 
|---|
| 390 | {
 | 
|---|
| 391 |  ra1  = hrrad(ra1);   // radians
 | 
|---|
| 392 |  dec1 = degrad(dec1);  // radians
 | 
|---|
| 393 |  precess(mjd1,mjd2,&ra1,&dec1);
 | 
|---|
| 394 |  *ra2 = radhr(ra1); InRange(ra2,24.);
 | 
|---|
| 395 |  *dec2 = raddeg(dec1);
 | 
|---|
| 396 | }
 | 
|---|
| 397 | 
 | 
|---|
| 398 | /*! \ingroup XAstroPack
 | 
|---|
| 399 | \brief Convert equatorial coordinates for the given epoch into galactic coordinates
 | 
|---|
| 400 | */                                                                             
 | 
|---|
| 401 | void EqtoGal(double mjd,double ra,double dec, double *glng,double *glat)
 | 
|---|
| 402 | // Coordonnees equatoriales -> Coordonnees galactiques
 | 
|---|
| 403 | {
 | 
|---|
| 404 |  ra  = hrrad(ra);   // radians
 | 
|---|
| 405 |  dec = degrad(dec);  // radians
 | 
|---|
| 406 |  eq_gal(mjd,ra,dec,glat,glng);
 | 
|---|
| 407 |  // Vraiment bizarre, sur Linux-g++ glng>=360 ne comprend pas glng==360 ! (CMV)
 | 
|---|
| 408 |  *glng = raddeg(*glng); InRange(glng,360.);
 | 
|---|
| 409 |  *glat = raddeg(*glat);
 | 
|---|
| 410 | }
 | 
|---|
| 411 | 
 | 
|---|
| 412 | /*! \ingroup XAstroPack
 | 
|---|
| 413 | \brief Convert galactic coordinates into equatorial coordinates at the given epoch
 | 
|---|
| 414 | */                                                                             
 | 
|---|
| 415 | void GaltoEq(double mjd,double glng,double glat,double *ra,double *dec)
 | 
|---|
| 416 | // Coordonnees galactiques -> Coordonnees equatoriales
 | 
|---|
| 417 | {
 | 
|---|
| 418 |  glng = degrad(glng);  // radians
 | 
|---|
| 419 |  glat = degrad(glat);  // radians
 | 
|---|
| 420 |  gal_eq (mjd,glat,glng,ra,dec);
 | 
|---|
| 421 |  *ra = radhr(*ra); InRange(ra,24.);
 | 
|---|
| 422 |  *dec = raddeg(*dec);
 | 
|---|
| 423 | }
 | 
|---|
| 424 | 
 | 
|---|
| 425 | /*! \ingroup XAstroPack
 | 
|---|
| 426 | \brief Convert equatorial coordinates (with hour angle instead of right ascension) into horizontal coordinates.
 | 
|---|
| 427 | */                                                                             
 | 
|---|
| 428 | void EqHtoHor(double geolat,double ha,double dec,double *az,double *alt)
 | 
|---|
| 429 | // Coordonnees equatoriales -> Coordonnees horizontales
 | 
|---|
| 430 | {
 | 
|---|
| 431 |  geolat = degrad(geolat);  // radians
 | 
|---|
| 432 |  ha  = hrrad(ha);   // radians
 | 
|---|
| 433 |  dec = degrad(dec);  // radians
 | 
|---|
| 434 |  hadec_aa (geolat,ha,dec,alt,az);
 | 
|---|
| 435 |  *alt = raddeg(*alt);
 | 
|---|
| 436 |  *az  = raddeg(*az); InRange(az,360.);
 | 
|---|
| 437 | }
 | 
|---|
| 438 | 
 | 
|---|
| 439 | /*! \ingroup XAstroPack
 | 
|---|
| 440 |  Convert horizontal coordinates into equatorial coordinates (with hour angle instead of right ascension).
 | 
|---|
| 441 | */                                                                             
 | 
|---|
| 442 | void HortoEqH(double geolat,double az,double alt,double *ha,double *dec)
 | 
|---|
| 443 | // Coordonnees horizontales -> Coordonnees equatoriales
 | 
|---|
| 444 | {
 | 
|---|
| 445 |  geolat = degrad(geolat);  // radians
 | 
|---|
| 446 |  alt = degrad(alt);  // radians
 | 
|---|
| 447 |  az  = degrad(az);  // radians
 | 
|---|
| 448 |  aa_hadec (geolat,alt,az,ha,dec);
 | 
|---|
| 449 |  *ha = radhr(*ha); InRange(ha,24.,12.);
 | 
|---|
| 450 |  *dec = raddeg(*dec);
 | 
|---|
| 451 | }
 | 
|---|
| 452 | 
 | 
|---|
| 453 | /*! \ingroup XAstroPack
 | 
|---|
| 454 | \brief Convert equatorial coordinates into horizontal coordinates.
 | 
|---|
| 455 | */                                                                             
 | 
|---|
| 456 | void EqtoHor(double geolat,double lst,double ra,double dec,double *az,double *alt)
 | 
|---|
| 457 | // Coordonnees equatoriales -> Coordonnees horizontales
 | 
|---|
| 458 | {
 | 
|---|
| 459 |  double ha = lst - ra; InRange(&ha,24.,12.);
 | 
|---|
| 460 |  geolat = degrad(geolat);  // radians
 | 
|---|
| 461 |  ha = hrrad(ha);   // radians
 | 
|---|
| 462 |  dec = degrad(dec);  // radians
 | 
|---|
| 463 |  hadec_aa (geolat,ha,dec,alt,az);
 | 
|---|
| 464 |  *alt = raddeg(*alt);
 | 
|---|
| 465 |  *az  = raddeg(*az); InRange(az,360.);
 | 
|---|
| 466 | }
 | 
|---|
| 467 | 
 | 
|---|
| 468 | /*! \ingroup XAstroPack
 | 
|---|
| 469 |  Convert horizontal coordinates into equatorial coordinates.
 | 
|---|
| 470 | */                                                                             
 | 
|---|
| 471 | void HortoEq(double geolat,double lst,double az,double alt,double *ra,double *dec)
 | 
|---|
| 472 | // Coordonnees horizontales -> Coordonnees equatoriales
 | 
|---|
| 473 | {
 | 
|---|
| 474 |  double ha;
 | 
|---|
| 475 |  geolat = degrad(geolat);  // radians
 | 
|---|
| 476 |  alt = degrad(alt);  // radians
 | 
|---|
| 477 |  az  = degrad(az);  // radians
 | 
|---|
| 478 |  aa_hadec (geolat,alt,az,&ha,dec);
 | 
|---|
| 479 |  *ra = lst - radhr(ha); InRange(ra,24.);
 | 
|---|
| 480 |  *dec = raddeg(*dec);
 | 
|---|
| 481 | }
 | 
|---|
| 482 | 
 | 
|---|
| 483 | /*! \ingroup XAstroPack
 | 
|---|
| 484 | \brief Convert equatorial coordinates into geocentric ecliptic coordinates given the modified Julian date.
 | 
|---|
| 485 | \warning Correction for the effect on the angle of the obliquity due to nutation is not included.
 | 
|---|
| 486 | */                                                                             
 | 
|---|
| 487 | void EqtoEcl(double mjd,double ra,double dec,double *eclng,double *eclat)
 | 
|---|
| 488 | // Coordonnees equatoriales -> Coordonnees ecliptiques
 | 
|---|
| 489 | {
 | 
|---|
| 490 |  ra = hrrad(ra);   // radians
 | 
|---|
| 491 |  dec = degrad(dec);  // radians
 | 
|---|
| 492 |  eq_ecl(mjd,ra,dec,eclat,eclng);
 | 
|---|
| 493 |  *eclng = raddeg(*eclng); InRange(eclng,360.);
 | 
|---|
| 494 |  *eclat = raddeg(*eclat);
 | 
|---|
| 495 | }
 | 
|---|
| 496 | 
 | 
|---|
| 497 | /*! \ingroup XAstroPack
 | 
|---|
| 498 | \brief Convert geocentric ecliptic coordinates into equatorial coordinates given the modified Julian date.
 | 
|---|
| 499 | \warning Correction for the effect on the angle of the obliquity due to nutation is not included.
 | 
|---|
| 500 | */                                                                             
 | 
|---|
| 501 | void EcltoEq(double mjd,double eclng,double eclat,double *ra,double *dec)
 | 
|---|
| 502 | // Coordonnees ecliptiques -> Coordonnees equatoriales
 | 
|---|
| 503 | {
 | 
|---|
| 504 |  eclat = degrad(eclat);  // radians
 | 
|---|
| 505 |  eclng = degrad(eclng);  // radians
 | 
|---|
| 506 |  ecl_eq(mjd,eclat,eclng,ra,dec); 
 | 
|---|
| 507 |  *ra = radhr(*ra); InRange(ra,24.);
 | 
|---|
| 508 |  *dec = raddeg(*dec);
 | 
|---|
| 509 | }
 | 
|---|
| 510 | 
 | 
|---|
| 511 | /*! \ingroup XAstroPack
 | 
|---|
| 512 | \brief Give Sun position
 | 
|---|
| 513 | \verbatim
 | 
|---|
| 514 |  given the modified JD, mjd, return the true geocentric ecliptic longitude
 | 
|---|
| 515 |  of the sun for the mean equinox of the date, *eclsn, in degres, the
 | 
|---|
| 516 |  sun-earth distance, *rsn, in AU, and the latitude *ecbsn, in degres
 | 
|---|
| 517 |  (since this is always <= 1.2 arcseconds, in can be neglected by
 | 
|---|
| 518 |  calling with ecbsn = NULL).
 | 
|---|
| 519 |  - REMARQUE:
 | 
|---|
| 520 |  * if the APPARENT ecliptic longitude is required, correct the longitude for
 | 
|---|
| 521 |  *   nutation to the true equinox of date and for aberration (light travel time,
 | 
|---|
| 522 |  *   approximately  -9.27e7/186000/(3600*24*365)*2*pi = -9.93e-5 radians).
 | 
|---|
| 523 | \endverbatim
 | 
|---|
| 524 | */
 | 
|---|
| 525 | void SunPos(double mjd,double *eclsn,double *ecbsn,double *rsn)
 | 
|---|
| 526 | {
 | 
|---|
| 527 |  sunpos(mjd,eclsn,rsn,ecbsn);
 | 
|---|
| 528 |  *eclsn = raddeg(*eclsn); InRange(eclsn,360.);
 | 
|---|
| 529 |  if(ecbsn!=NULL) *ecbsn = raddeg(*ecbsn);
 | 
|---|
| 530 | }
 | 
|---|
| 531 | 
 | 
|---|
| 532 | /*! \ingroup XAstroPack
 | 
|---|
| 533 | \brief Give Moon position
 | 
|---|
| 534 | \verbatim
 | 
|---|
| 535 |  given the mjd, find the geocentric ecliptic longitude, lam, and latitude,
 | 
|---|
| 536 |  bet, and geocentric distance, rho in a.u. for the moon.  also return
 | 
|---|
| 537 |  the sun's mean anomaly, *msp, and the moon's mean anomaly, *mdp. 
 | 
|---|
| 538 |  (for the mean equinox)
 | 
|---|
| 539 | \endverbatim
 | 
|---|
| 540 | */
 | 
|---|
| 541 | void MoonPos(double mjd,double *eclmn,double *ecbmn,double *rho)
 | 
|---|
| 542 | {
 | 
|---|
| 543 |   double msp,mdp;
 | 
|---|
| 544 |   moon(mjd,eclmn,ecbmn,rho,&msp,&mdp);
 | 
|---|
| 545 |  *eclmn = raddeg(*eclmn); InRange(eclmn,360.);
 | 
|---|
| 546 |  *ecbmn = raddeg(*ecbmn);
 | 
|---|
| 547 | }
 | 
|---|
| 548 | 
 | 
|---|
| 549 | /*! \ingroup XAstroPack
 | 
|---|
| 550 | \brief Give planet position
 | 
|---|
| 551 | \verbatim
 | 
|---|
| 552 |  * given a modified Julian date, mjd, and a planet, p, find:
 | 
|---|
| 553 |  *   sunecl: heliocentric longitude, 
 | 
|---|
| 554 |  *   sunecb: heliocentric latitude,
 | 
|---|
| 555 |  *   sundist:  distance from the sun to the planet, 
 | 
|---|
| 556 |  *   geodist: distance from the Earth to the planet,
 | 
|---|
| 557 |  *         none corrected for light time, ie, they are the true values for the
 | 
|---|
| 558 |  *         given instant.
 | 
|---|
| 559 |  *   geoecl:  geocentric ecliptic longitude, 
 | 
|---|
| 560 |  *   geoecb:  geocentric ecliptic latitude,
 | 
|---|
| 561 |  *         each corrected for light time, ie, they are the apparent values as
 | 
|---|
| 562 |  *         seen from the center of the Earth for the given instant.
 | 
|---|
| 563 |  *   diamang:  angular diameter in arcsec at 1 AU, 
 | 
|---|
| 564 |  *   mag:  visual magnitude when 1 AU from sun and earth at 0 phase angle.
 | 
|---|
| 565 |  *   (for the mean equinox)
 | 
|---|
| 566 |  * all angles are in degres, all distances in AU.
 | 
|---|
| 567 |  *
 | 
|---|
| 568 |  * corrections for nutation and abberation must be made by the caller. The RA 
 | 
|---|
| 569 |  *   and DEC calculated from the fully-corrected ecliptic coordinates are then
 | 
|---|
| 570 |  *   the apparent geocentric coordinates. Further corrections can be made, if
 | 
|---|
| 571 |  *   required, for atmospheric refraction and geocentric parallax.
 | 
|---|
| 572 |  \endverbatim
 | 
|---|
| 573 | */
 | 
|---|
| 574 | void PlanetPos(double mjd,int numplan,double *sunecl,double *sunecb,double *sundist
 | 
|---|
| 575 |               ,double *geodist,double *geoecl,double *geoecb
 | 
|---|
| 576 |               ,double *diamang,double *mag)
 | 
|---|
| 577 | {
 | 
|---|
| 578 |  plans(mjd,numplan,sunecl,sunecb,sundist,geodist,geoecl,geoecb,diamang,mag);
 | 
|---|
| 579 |  *geoecl = raddeg(*geoecl); InRange(geoecl,360.);
 | 
|---|
| 580 |  *geoecb = raddeg(*geoecb);
 | 
|---|
| 581 |  *sunecl = raddeg(*sunecl); InRange(sunecl,360.);
 | 
|---|
| 582 |  *sunecb = raddeg(*sunecb);
 | 
|---|
| 583 | }
 | 
|---|