source: Sophya/trunk/SophyaExt/XAstroPack/xastropack.cc@ 1515

Last change on this file since 1515 was 1515, checked in by cmv, 24 years ago

intro enum TypAstroCoord cmv 12/6/01

File size: 10.6 KB
Line 
1#include <math.h>
2#include <stdio.h>
3#include "xastropack.h"
4
5// TEMPS: modified Julian date (mjd) (number of days elapsed since 1900 jan 0.5)
6// jour [1,31] (dy)
7// mois [1,12] (mn)
8// annee (yr)
9// universal time [0,24[ (utc)
10// Greenwich mean siderial [0,24[ (gst)
11// Greenwich mean siderial at 0h UT [0,24[ (gst0)
12// EQUATORIALE: ascension droite en heures [0,24[ (ra)
13// declinaison en degres [-90,90] (dec)
14// angle horaire en heures [-12,12] (-12=12) (ha) tsid=ha+ra
15// GALACTIQUE: longitude en degres [0,360[ (glng)
16// latitude en degres [-90,90] (glat)
17// HORIZONTAL: azimuth en degres [0,360[ (az)
18// (angle round to the east from north+)
19// altitude en degres [-90,90] (alt)
20// ECLIPTIQUE: lontitude ecliptique en degres [0,360[ (eclng)
21// (angle round counter clockwise from the vernal equinoxe)
22// latitude ecliptique en degres [-90,90] (eclat)
23// GEOGRAPHIE: longitude en degres ]-180,180] (geolng)
24// (angle + vers l'ouest, - vers l'est)
25// latitude en degres [-90,90] (north>0) (geolat)
26
27double TrueJDfrMJD(double mjd)
28{
29 return mjd + MJD0;
30}
31
32double MJDfrTrueJD(double jd)
33{
34 return jd - MJD0;
35}
36
37double MJDfrDate(double dy,int mn,int yr)
38{
39 double mjd;
40 cal_mjd(mn,dy,yr,&mjd);
41 return mjd;
42}
43
44void DatefrMJD(double mjd,double *dy,int *mn,int *yr)
45{
46 mjd_cal(mjd,mn,dy,yr);
47}
48
49/* given a mjd, return the year as a double. */
50double YearfrMJD(double mjd)
51{
52 double yr;
53 mjd_year(mjd,&yr);
54 return yr;
55}
56
57/* given a decimal year, return mjd */
58double MJDfrYear(double yr)
59{
60 double mjd;
61 year_mjd(yr,&mjd);
62 return mjd;
63}
64
65/* given a mjd, return the year and number of days since 00:00 Jan 1 */
66/* Attention: si mjd = 2 Janvier -> number of days = 1 */
67void YDfrMJD(double mjd,double *dy,int *yr)
68{
69 mjd_dayno(mjd,yr,dy);
70}
71
72/* given a modified julian date, mjd, and a universally coordinated time, utc,
73 * return greenwich mean siderial time, *gst.
74 * N.B. mjd must be at the beginning of the day.
75 */
76double GSTfrUTC(double mjd0,double utc)
77{
78 double gst;
79 utc_gst(mjd0,utc,&gst) ;
80 return gst;
81}
82
83/* given a modified julian date, mjd, and a greenwich mean siderial time, gst,
84 * return universally coordinated time, *utc.
85 * N.B. mjd must be at the beginning of the day.
86 */
87double UTCfrGST(double mjd0,double gst)
88{
89 double utc;
90 gst_utc(mjd0,gst,&utc);
91 return utc;
92}
93
94/* gmst0() - return Greenwich Mean Sidereal Time at 0h UT */
95/* mjd = date at 0h UT in julian days since MJD0 */
96double GST0(double mjd0)
97/* Copie depuis le code de Xephem car pas prototype */
98{
99 double T, x;
100 T = ((int)(mjd0 - 0.5) + 0.5 - J2000)/36525.0;
101 x = 24110.54841 +
102 (8640184.812866 + (0.093104 - 6.2e-6 * T) * T) * T;
103 x /= 3600.0;
104 range(&x, 24.0);
105 return (x);
106}
107
108void Precess(double mjd1,double mjd2,double ra1,double dec1,double *ra2,double *dec2)
109{
110 ra1 *= PI/12.; // radians
111 dec1 *= PI/180.; // radians
112 precess(mjd1,mjd2,&ra1,&dec1);
113 *ra2 = ra1*12./PI; if(*ra2>24.) *ra2 -= 24.; if(*ra2==24.) *ra2 = 0.;
114 *dec2 = dec1*180./PI;
115}
116
117/* given apparent altitude find airmass. */
118double AirmassfrAlt(double alt)
119{
120 double x;
121 alt *= PI/180.; // radians
122 airmass(alt,&x);
123 return x;
124}
125
126/* donne l'angle horaire a partir du temps sideral et de l'ascension droite */
127double HafrRaTS(double gst,double ra)
128{
129 double ha = gst - ra;
130 // Attention au probleme de la discontinuite 0h <==> 24h
131 // ts=1 ra=23 ; (ts-ra)=-22 <-12 --> ha = +2 = +24 + (ts-ra)
132 // ts=23 ra=1 ; (ts-ra)=+22 >+12 --> ha = -2 = -24 + (ts-ra)
133 if(ha==-12.) ha = 12.; if(ha<-12.) ha += 24.; if(ha>12.) ha -= 24.;
134 return ha;
135}
136
137void HMSfrHdec(double hd,int *h,int *mn,double *s)
138// INPUT: hd
139// OUTPUT: h mn s (h,mn,s >=< 0)
140// REMARQUE: si hd<0 alors h<0 ET mn<0 ET s<0
141// EX: 12.51 -> h=12 mn=30 s=10 ;
142// -12.51 -> h=-12 mn=-30 s=-10 ;
143{
144 int sgn=1;
145 if(hd<0.) {sgn=-1; hd*=-1.;}
146 *h = int(hd);
147 *mn = int((hd-(double)(*h))*60.);
148 *s = (hd - (double)(*h) - (double)(*mn)/60.)*3600.;
149 // pb precision
150 if(*s<0.) *s = 0.;
151 if(*s>60. || *s==60.) {*s-=60.; *mn+=1;} // s=double attention comparaison
152 if(*mn<0) *mn = 0;
153 if(*mn>=60) {*mn-=60; *h+=1;}
154 *h *= sgn; *mn *= sgn; *s *= (double)sgn;
155}
156
157double HdecfrHMS(int h,int mn,double s)
158// INPUT: h , mn , s (h,mn,s >=< 0)
159// RETURN: en heures decimales
160// REMARQUE: pour avoir hd=-12.51 <- h=-12 mn=-30 s=-10
161{
162 return ((double)h + (double)mn/60. + s/3600.);
163}
164
165string ToStringHMS(int h,int mn,double s)
166// INPUT: h , mn , s (h,mn,s >=< 0)
167// RETURN: string h:mn:s
168{
169 double hd = HdecfrHMS(h,mn,s); // put in range
170 HMSfrHdec(hd,&h,&mn,&s);
171 char str[128];
172 if(hd<0.)
173 sprintf(str,"-%d:%d:%.3f",-h,-mn,-s);
174 else
175 sprintf(str,"%d:%d:%.3f",h,mn,s);
176 string dum = str;
177 return dum;
178}
179
180string ToStringHdec(double hd)
181{
182 int h,mn; double s;
183 HMSfrHdec(hd,&h,&mn,&s);
184 return ToStringHMS(h,mn,s);
185}
186
187void EqtoGal(double mjd,double ra,double dec, double *glng,double *glat)
188// Coordonnees equatoriales -> Coordonnees galactiques
189{
190 ra *= PI/12.; // radians
191 dec *= PI/180.; // radians
192 eq_gal(mjd,ra,dec,glat,glng);
193 // Vraiment bizarre, sur Linux-g++ glng>=360 ne comprend pas glng==360 ! (CMV)
194 *glng *= 180./PI; if(*glng>360.) *glng -= 360.; if(*glng==360.) *glng = 0.;
195 *glat *= 180./PI;
196}
197
198void GaltoEq(double mjd,double glng,double glat,double *ra,double *dec)
199// Coordonnees galactiques -> Coordonnees equatoriales
200{
201 glng *= PI/180.; // radians
202 glat *= PI/180.; // radians
203 gal_eq (mjd,glat,glng,ra,dec);
204 *ra *= 12./PI; if(*ra>24.) *ra -= 24.; if(*ra==24.) *ra = 0.;
205 *dec *= 180./PI;
206}
207
208void EqtoHor(double geolat,double ha,double dec,double *az,double *alt)
209// Coordonnees equatoriales -> Coordonnees horizontales
210{
211 geolat *= PI/180.;
212 ha *= PI/12.; // radians
213 dec *= PI/180.; // radians
214 hadec_aa (geolat,ha,dec,alt,az);
215 *alt *= 180./PI;
216 *az *= 180./PI; if(*az>360.) *az -= 360.; if(*az==360.) *az = 0.;
217}
218
219void HortoEq(double geolat,double az,double alt,double *ha,double *dec)
220// Coordonnees horizontales -> Coordonnees equatoriales
221{
222 geolat *= PI/180.;
223 alt *= PI/180.; // radians
224 az *= PI/180.; // radians
225 aa_hadec (geolat,alt,az,ha,dec);
226 *ha *= 12./PI;
227 if(*ha==-12.) *ha = 12.; if(*ha<-12.) *ha += 24.; if(*ha>12.) *ha -= 24.;
228 *dec *= 180./PI;
229}
230
231// Attention, j'ai modifie eq_ecl.c pour proteger NaN
232// dans ecleq_aux :
233// *q = (sy*ceps)-(cy*seps*sx*sw);
234// if(*q<-1.) *q = -PI/2.; else if(*q>1.) *q = PI/2.; else *q = asin(*q);
235void EqtoEcl(double mjd,double ra,double dec,double *eclng,double *eclat)
236// Coordonnees equatoriales -> Coordonnees ecliptiques
237{
238 ra *= PI/12.; // radians
239 dec *= PI/180.; // radians
240 eq_ecl(mjd,ra,dec,eclat,eclng);
241 *eclng *= 180./PI; if(*eclng>360.) *eclng -= 360.; if(*eclng==360.) *eclng = 0.;
242 *eclat *= 180./PI;
243}
244
245void EcltoEq(double mjd,double eclng,double eclat,double *ra,double *dec)
246// Coordonnees ecliptiques -> Coordonnees equatoriales
247{
248 eclat *= PI/180.; // radians
249 eclng *= PI/180.; // radians
250 ecl_eq(mjd,eclat,eclng,ra,dec);
251 *ra *= 12./PI; if(*ra>24.) *ra -= 24.; if(*ra==24.) *ra = 0.;
252 *dec *= 180./PI;
253}
254
255/* given the modified JD, mjd, return the true geocentric ecliptic longitude
256 * of the sun for the mean equinox of the date, *lsn, in radians, the
257 * sun-earth distance, *rsn, in AU, and the latitude *bsn, in radians
258 * (since this is always <= 1.2 arcseconds, in can be neglected by
259 * calling with bsn = NULL). */
260void SunPos(double mjd,double *eclsn,double *ecbsn)
261{
262 double rsn;
263 sunpos(mjd,eclsn,&rsn,ecbsn);
264 *eclsn *= 180./PI; if(*eclsn>360.) *eclsn -= 360.; if(*eclsn==360.) *eclsn = 0.;
265 *ecbsn *= 180./PI;
266}
267
268/* given the mjd, find the geocentric ecliptic longitude, lam, and latitude,
269 * bet, and geocentric distance, rho in a.u. for the moon. also return
270 * the sun's mean anomaly, *msp, and the moon's mean anomaly, *mdp.
271 * (for the mean equinox) */
272void MoonPos(double mjd,double *eclmn,double *ecbmn)
273{
274 double rho,msp,mdp;
275 moon(mjd,eclmn,ecbmn,&rho,&msp,&mdp);
276 *eclmn *= 180./PI; if(*eclmn>360.) *eclmn -= 360.; if(*eclmn==360.) *eclmn = 0.;
277 *ecbmn *= 180./PI;
278}
279
280void PlanetPos(double mjd,int numplan,double *ecl,double *ecb,double *diamang)
281/* given a modified Julian date, mjd, and a planet, p, find:
282 * lpd0: heliocentric longitude,
283 * psi0: heliocentric latitude,
284 * rp0: distance from the sun to the planet,
285 * rho0: distance from the Earth to the planet,
286 * none corrected for light time, ie, they are the true values for the
287 * given instant.
288 * lam: geocentric ecliptic longitude,
289 * bet: geocentric ecliptic latitude,
290 * each corrected for light time, ie, they are the apparent values as
291 * seen from the center of the Earth for the given instant.
292 * dia: angular diameter in arcsec at 1 AU,
293 * mag: visual magnitude when 1 AU from sun and earth at 0 phase angle.
294 * (for the mean equinox) */
295{
296 double lpd0,psi0,rp0,rho0,mag;
297 plans(mjd,numplan,&lpd0,&psi0,&rp0,&rho0,ecl,ecb,diamang,&mag);
298 *ecl *= 180./PI; if(*ecl>360.) *ecl -= 360.; if(*ecl==360.) *ecl = 0.;
299 *ecb *= 180./PI;
300}
301
302void JupiterPos(double mjd,double *ecl,double *ecb,double *diamang)
303{
304 PlanetPos(mjd,JUPITER,ecl,ecb,diamang);
305}
306
307void SaturnPos(double mjd,double *ecl,double *ecb,double *diamang)
308{
309 PlanetPos(mjd,SATURN,ecl,ecb,diamang);
310}
311
312/* Given a coordinate type "typ", convert to standard for astropack */
313int CoordConvertToStd(TypAstroCoord typ,double& coord1,double& coord2)
314// Return : 0 = OK
315// 1 = Type de coordonnees non connu
316// 2 = Mauvais range pour coord1
317// 4 = Mauvais range pour coord2
318// 6 = Mauvais range pour coord1 et coord2
319{
320 int rc = 0;
321
322 // ---- Equatoriales alpha,delta
323 // - standard = [0,24[ , [-90,90]
324 if(typ&TypCoordEq) {
325 if(typ&TypCoordDD) {
326 coord1 = coord1 / 180. * 12.;
327 } else if(typ&TypCoordRR) {
328 coord1 = coord1 / PI * 12.;
329 coord2 = coord2 / PI * 180.;
330 }
331 if(coord1==24.) coord1 = 0.;
332 if(coord1<0. || coord1>=24.) rc+= 2;
333 if(coord2<-90. || coord2>90. ) rc+= 4;
334
335 // ---- Galactiques gLong, gLat
336 // ---- Horizontales azimuth,altitude
337 // ---- Ecliptiques EclLong,EclLat
338 // - standard = [0,360[ , [-90,90]
339 } else if( typ&TypCoordGal || typ&TypCoordHor || typ&TypCoordEcl) {
340 if(typ&TypCoordHD) {
341 coord1 = coord1 / 12. * 180.;
342 } else if(typ&TypCoordRR) {
343 coord1 = coord1 / PI * 180.;
344 coord2 = coord2 / PI * 180.;
345 }
346 if(coord1==360.) coord1 = 0.;
347 if(coord1<0. || coord1>=360.) rc+= 2;
348 if(coord2<-90. || coord2>90. ) rc+= 4;
349
350 } else { // Coordonnees non-connues
351 rc= 1;
352 }
353
354 return rc;
355}
Note: See TracBrowser for help on using the repository browser.