1 | #include <math.h>
|
---|
2 | #include <stdio.h>
|
---|
3 | #include "xastropack.h"
|
---|
4 |
|
---|
5 | /*!
|
---|
6 | \defgroup XAstroPack XAstroPack module
|
---|
7 | This module contains simple programs to perform various
|
---|
8 | astronomical computation (based on the libastro of Xephem).
|
---|
9 |
|
---|
10 | \verbatim
|
---|
11 | // TEMPS: modified Julian date (mjd) (number of days elapsed since 1900 jan 0.5)
|
---|
12 | // jour [1,31] (dy)
|
---|
13 | // mois [1,12] (mn)
|
---|
14 | // annee (yr)
|
---|
15 | // universal time [0,24[ (utc)
|
---|
16 | // Greenwich mean siderial [0,24[ (gst)
|
---|
17 | // Greenwich mean siderial at 0h UT [0,24[ (gst0)
|
---|
18 | // EQUATORIALE: ascension droite en heures [0,24[ (ra)
|
---|
19 | // declinaison en degres [-90,90] (dec)
|
---|
20 | // angle horaire en heures [-12,12] (-12=12) (ha)
|
---|
21 | // temps sideral du lieu: tsid=ha+ra (ou lst)
|
---|
22 | // GALACTIQUE: longitude en degres [0,360[ (glng)
|
---|
23 | // latitude en degres [-90,90] (glat)
|
---|
24 | // HORIZONTAL: azimuth en degres [0,360[ (az)
|
---|
25 | // (angle round to the east from north+)
|
---|
26 | // altitude en degres [-90,90] (alt)
|
---|
27 | // ECLIPTIQUE: lontitude ecliptique en degres [0,360[ (eclng)
|
---|
28 | // (angle round counter clockwise from the vernal equinoxe)
|
---|
29 | // latitude ecliptique en degres [-90,90] (eclat)
|
---|
30 | // GEOGRAPHIE: longitude en degres ]-180,180] (geolng)
|
---|
31 | // (angle + vers l'ouest, - vers l'est)
|
---|
32 | // latitude en degres [-90,90] (north>0) (geolat)
|
---|
33 | \endverbatim
|
---|
34 | */
|
---|
35 |
|
---|
36 | /*! \ingroup XAstroPack
|
---|
37 | \brief Compute true Julian day from MJD
|
---|
38 | */
|
---|
39 | double TrueJDfrMJD(double mjd)
|
---|
40 | {
|
---|
41 | return mjd + MJD0;
|
---|
42 | }
|
---|
43 |
|
---|
44 | /*! \ingroup XAstroPack
|
---|
45 | \brief Compute MJD from true Julian day
|
---|
46 | */
|
---|
47 | double MJDfrTrueJD(double jd)
|
---|
48 | {
|
---|
49 | return jd - MJD0;
|
---|
50 | }
|
---|
51 |
|
---|
52 | /*! \ingroup XAstroPack
|
---|
53 | \brief Compute MJD from date
|
---|
54 | \verbatim
|
---|
55 | MJD = modified Julian date (number of days elapsed since 1900 jan 0.5),
|
---|
56 | \endverbatim
|
---|
57 | */
|
---|
58 | double MJDfrDate(double dy,int mn,int yr)
|
---|
59 | {
|
---|
60 | double mjd;
|
---|
61 | cal_mjd(mn,dy,yr,&mjd);
|
---|
62 | return mjd;
|
---|
63 | }
|
---|
64 |
|
---|
65 | /*! \ingroup XAstroPack
|
---|
66 | \brief Compute date from MJD
|
---|
67 | */
|
---|
68 | void DatefrMJD(double mjd,double *dy,int *mn,int *yr)
|
---|
69 | {
|
---|
70 | mjd_cal(mjd,mn,dy,yr);
|
---|
71 | }
|
---|
72 |
|
---|
73 | /*! \ingroup XAstroPack
|
---|
74 | \brief Given a mjd, return the year as a double.
|
---|
75 | */
|
---|
76 | double YearfrMJD(double mjd)
|
---|
77 | {
|
---|
78 | double yr;
|
---|
79 | mjd_year(mjd,&yr);
|
---|
80 | return yr;
|
---|
81 | }
|
---|
82 |
|
---|
83 | /*! \ingroup XAstroPack
|
---|
84 | \brief Given a decimal year, return mjd
|
---|
85 | */
|
---|
86 | double MJDfrYear(double yr)
|
---|
87 | {
|
---|
88 | double mjd;
|
---|
89 | year_mjd(yr,&mjd);
|
---|
90 | return mjd;
|
---|
91 | }
|
---|
92 |
|
---|
93 | /*! \ingroup XAstroPack
|
---|
94 | \brief Given a mjd, return the year and number of days since 00:00 Jan 1
|
---|
95 | \warning: if mjd = 2 January -> number of days = 1
|
---|
96 | */
|
---|
97 | void YDfrMJD(double mjd,double *dy,int *yr)
|
---|
98 | {
|
---|
99 | mjd_dayno(mjd,yr,dy);
|
---|
100 | }
|
---|
101 |
|
---|
102 | /*! \ingroup XAstroPack
|
---|
103 | \brief Given a year,
|
---|
104 | */
|
---|
105 | int IsLeapYear(int y)
|
---|
106 | {
|
---|
107 | return isleapyear(y);
|
---|
108 | }
|
---|
109 |
|
---|
110 | /*! \ingroup XAstroPack
|
---|
111 | \brief given an mjd, set *dow to 0..6 according to which day of the week it falls on (0=sunday).
|
---|
112 | \return return 0 if ok else -1 if can't figure it out.
|
---|
113 | */
|
---|
114 | int DayOrder(double mjd,int *dow)
|
---|
115 | {
|
---|
116 | return mjd_dow(mjd,dow);
|
---|
117 | }
|
---|
118 |
|
---|
119 | /*! \ingroup XAstroPack
|
---|
120 | \brief given a mjd, return the the number of days in the month.
|
---|
121 | */
|
---|
122 | int DaysInMonth(double mjd)
|
---|
123 | {
|
---|
124 | int ndays;
|
---|
125 | mjd_dpm(mjd,&ndays);
|
---|
126 | return ndays;
|
---|
127 | }
|
---|
128 |
|
---|
129 | /*! \ingroup XAstroPack
|
---|
130 | \brief Given a mjd, truncate it to the beginning of the whole day
|
---|
131 | */
|
---|
132 | double MJDat0hFrMJD(double mjd)
|
---|
133 | {
|
---|
134 | return mjd_day(mjd);
|
---|
135 | }
|
---|
136 |
|
---|
137 | /*! \ingroup XAstroPack
|
---|
138 | \brief Given a mjd, return the number of hours past midnight of the whole day
|
---|
139 | */
|
---|
140 | double HfrMJD(double mjd)
|
---|
141 | {
|
---|
142 | return mjd_hr(mjd);
|
---|
143 | }
|
---|
144 |
|
---|
145 | /*! \ingroup XAstroPack
|
---|
146 | \brief Give GST from UTC
|
---|
147 | \verbatim
|
---|
148 | Given a modified julian date, mjd, and a universally coordinated time, utc,
|
---|
149 | return greenwich mean siderial time, *gst.
|
---|
150 | N.B. mjd must be at the beginning of the day.
|
---|
151 | \endverbatim
|
---|
152 | */
|
---|
153 | double GSTfrUTC(double mjd0,double utc)
|
---|
154 | {
|
---|
155 | double gst;
|
---|
156 | utc_gst(mjd0,utc,&gst) ;
|
---|
157 | return gst;
|
---|
158 | }
|
---|
159 |
|
---|
160 | /*! \ingroup XAstroPack
|
---|
161 | \brief Give UTC from GST
|
---|
162 | \verbatim
|
---|
163 | Given a modified julian date, mjd, and a greenwich mean siderial time, gst,
|
---|
164 | return universally coordinated time, *utc.
|
---|
165 | N.B. mjd must be at the beginning of the day.
|
---|
166 | \endverbatim
|
---|
167 | */
|
---|
168 | double UTCfrGST(double mjd0,double gst)
|
---|
169 | {
|
---|
170 | double utc;
|
---|
171 | gst_utc(mjd0,gst,&utc);
|
---|
172 | return utc;
|
---|
173 | }
|
---|
174 |
|
---|
175 | /*! \ingroup XAstroPack
|
---|
176 | \brief gmst0() - return Greenwich Mean Sidereal Time at 0h UT
|
---|
177 | \param mjd = date at 0h UT in julian days since MJD0
|
---|
178 | */
|
---|
179 | double GST0(double mjd0)
|
---|
180 | /* Copie depuis le code de Xephem (utc_gst.c) car pas prototype*/
|
---|
181 | {
|
---|
182 | double T, x;
|
---|
183 | T = ((int)(mjd0 - 0.5) + 0.5 - J2000)/36525.0;
|
---|
184 | x = 24110.54841 +
|
---|
185 | (8640184.812866 + (0.093104 - 6.2e-6 * T) * T) * T;
|
---|
186 | x /= 3600.0;
|
---|
187 | range(&x, 24.0);
|
---|
188 | return (x);
|
---|
189 | }
|
---|
190 |
|
---|
191 | /*! \ingroup XAstroPack
|
---|
192 | \brief return local sidereal time from greenwich mean siderial time and longitude
|
---|
193 | \param precis : if not zero, then correct for obliquity and nutation
|
---|
194 | \warning no nutation or obliquity correction are done.
|
---|
195 | */
|
---|
196 | double LSTfrGST(double gst,double geolng)
|
---|
197 | {
|
---|
198 | double lst = gst + geolng *12./180.;
|
---|
199 | InRange(&lst,24.);
|
---|
200 | return lst;
|
---|
201 | }
|
---|
202 |
|
---|
203 | /*! \ingroup XAstroPack
|
---|
204 | \brief return local sidereal time from modified julian day and longitude
|
---|
205 | \warning nutation or obliquity correction are taken into account.
|
---|
206 | */
|
---|
207 | double LSTfrMJD(double mjd,double geolng)
|
---|
208 | {
|
---|
209 | double eps,lst,deps,dpsi;
|
---|
210 | utc_gst(mjd_day(mjd),mjd_hr(mjd),&lst);
|
---|
211 | lst += geolng *12./180.;
|
---|
212 | obliquity(mjd,&eps);
|
---|
213 | nutation(mjd,&deps,&dpsi);
|
---|
214 | lst += dpsi*cos(eps+deps) *12./M_PI;
|
---|
215 | return lst;
|
---|
216 | }
|
---|
217 |
|
---|
218 | /*! \ingroup XAstroPack
|
---|
219 | \brief Compute precession between 2 dates.
|
---|
220 | */
|
---|
221 | void Precess(double mjd1,double mjd2,double ra1,double dec1,double *ra2,double *dec2)
|
---|
222 | {
|
---|
223 | ra1 *= PI/12.; // radians
|
---|
224 | dec1 *= PI/180.; // radians
|
---|
225 | precess(mjd1,mjd2,&ra1,&dec1);
|
---|
226 | *ra2 = ra1*12./PI; InRange(ra2,24.);
|
---|
227 | *dec2 = dec1*180./PI;
|
---|
228 | }
|
---|
229 |
|
---|
230 | /*! \ingroup XAstroPack
|
---|
231 | \brief Given apparent altitude find airmass.
|
---|
232 | */
|
---|
233 | double AirmassfrAlt(double alt)
|
---|
234 | {
|
---|
235 | double x;
|
---|
236 | alt *= PI/180.; // radians
|
---|
237 | airmass(alt,&x);
|
---|
238 | return x;
|
---|
239 | }
|
---|
240 |
|
---|
241 | /*! \ingroup XAstroPack
|
---|
242 | \brief Give the hour angle from local sideral time and right ascencion
|
---|
243 | \warning right ascencion should be first precessed to date of interest
|
---|
244 | \warning no nutation or obliquity correction are done.
|
---|
245 | */
|
---|
246 | double HafrRaTS(double lst,double ra)
|
---|
247 | {
|
---|
248 | double ha = lst - ra;
|
---|
249 | // Attention au probleme de la discontinuite 0h <==> 24h
|
---|
250 | // ts=1 ra=23 ; (ts-ra)=-22 <-12 --> ha = +2 = +24 + (ts-ra)
|
---|
251 | // ts=23 ra=1 ; (ts-ra)=+22 >+12 --> ha = -2 = -24 + (ts-ra)
|
---|
252 | InRange(&ha,24.,12.);
|
---|
253 | return ha;
|
---|
254 | }
|
---|
255 |
|
---|
256 | /*! \ingroup XAstroPack
|
---|
257 | \brief Give the local sideral time and the hour angle return the right ascencion
|
---|
258 | \warning right ascencion is the value precessed to date of interest
|
---|
259 | \warning no nutation or obliquity correction are done.
|
---|
260 | */
|
---|
261 | double RafrHaTS(double lst,double ha)
|
---|
262 | {
|
---|
263 | double ra = lst - ha;
|
---|
264 | InRange(&ra,24.);
|
---|
265 | return ra;
|
---|
266 | }
|
---|
267 |
|
---|
268 | /*! \ingroup XAstroPack
|
---|
269 | \brief given geocentric time "jd" and coords of a distant object at "ra/dec" (J2000),
|
---|
270 | find the difference "hcp" in time between light arriving at earth vs the sun.
|
---|
271 | \return "hcp" must be subtracted from "geocentric jd" to get "heliocentric jd".
|
---|
272 | \warning "jd" is the TRUE Julian day (jd = mjd+MJD0).
|
---|
273 | */
|
---|
274 | double HelioCorr(double jd,double ra,double dec)
|
---|
275 | {
|
---|
276 | double hcp;
|
---|
277 | ra *= PI/12.; // radians
|
---|
278 | dec *= PI/180.; // radians
|
---|
279 | heliocorr(jd,ra,dec,&hcp);
|
---|
280 | return hcp;
|
---|
281 | }
|
---|
282 |
|
---|
283 | /*! \ingroup XAstroPack
|
---|
284 | \brief Give a time in h:mn:s from a decimal hour
|
---|
285 | \verbatim
|
---|
286 | // INPUT: hd
|
---|
287 | // OUTPUT: h mn s (h,mn,s >=< 0)
|
---|
288 | // REMARQUE: si hd<0 alors h<0 ET mn<0 ET s<0
|
---|
289 | // EX: 12.51 -> h=12 mn=30 s=10 ;
|
---|
290 | // -12.51 -> h=-12 mn=-30 s=-10 ;
|
---|
291 | \endverbatim
|
---|
292 | */
|
---|
293 | void HMSfrHdec(double hd,int *h,int *mn,double *s)
|
---|
294 | {
|
---|
295 | int sgn=1;
|
---|
296 | if(hd<0.) {sgn=-1; hd*=-1.;}
|
---|
297 | *h = int(hd);
|
---|
298 | *mn = int((hd-(double)(*h))*60.);
|
---|
299 | *s = (hd - (double)(*h) - (double)(*mn)/60.)*3600.;
|
---|
300 | // pb precision
|
---|
301 | if(*s<0.) *s = 0.;
|
---|
302 | if(*s>60. || *s==60.) {*s-=60.; *mn+=1;} // s=double attention comparaison
|
---|
303 | if(*mn<0) *mn = 0;
|
---|
304 | if(*mn>=60) {*mn-=60; *h+=1;}
|
---|
305 | *h *= sgn; *mn *= sgn; *s *= (double)sgn;
|
---|
306 | }
|
---|
307 |
|
---|
308 | /*! \ingroup XAstroPack
|
---|
309 | \brief Give a decimal hour from a time in h:mn:s
|
---|
310 | \verbatim
|
---|
311 | // INPUT: h , mn , s (h,mn,s >=< 0)
|
---|
312 | // RETURN: en heures decimales
|
---|
313 | // REMARQUE: pour avoir hd=-12.51 <- h=-12 mn=-30 s=-10
|
---|
314 | \endverbatim
|
---|
315 | */
|
---|
316 | double HdecfrHMS(int h,int mn,double s)
|
---|
317 | {
|
---|
318 | return ((double)h + (double)mn/60. + s/3600.);
|
---|
319 | }
|
---|
320 |
|
---|
321 | /*! \ingroup XAstroPack
|
---|
322 | \brief Give a time string from a time in h:mn:s
|
---|
323 | \verbatim
|
---|
324 | // INPUT: h , mn , s (h,mn,s >=< 0)
|
---|
325 | // RETURN: string h:mn:s
|
---|
326 | \endverbatim
|
---|
327 | */
|
---|
328 | string ToStringHMS(int h,int mn,double s)
|
---|
329 | {
|
---|
330 | double hd = HdecfrHMS(h,mn,s); // put in range
|
---|
331 | HMSfrHdec(hd,&h,&mn,&s);
|
---|
332 | char str[128];
|
---|
333 | if(hd<0.)
|
---|
334 | sprintf(str,"-%d:%d:%.3f",-h,-mn,-s);
|
---|
335 | else
|
---|
336 | sprintf(str,"%d:%d:%.3f",h,mn,s);
|
---|
337 | string dum = str;
|
---|
338 | return dum;
|
---|
339 | }
|
---|
340 |
|
---|
341 | /*! \ingroup XAstroPack
|
---|
342 | \brief Give a time string from a decimal hour
|
---|
343 | */
|
---|
344 | string ToStringHdec(double hd)
|
---|
345 | {
|
---|
346 | int h,mn; double s;
|
---|
347 | HMSfrHdec(hd,&h,&mn,&s);
|
---|
348 | return ToStringHMS(h,mn,s);
|
---|
349 | }
|
---|
350 |
|
---|
351 | /*! \ingroup XAstroPack
|
---|
352 | \brief Convert equatorial coordinates for the given epoch into galactic coordinates
|
---|
353 | */
|
---|
354 | void EqtoGal(double mjd,double ra,double dec, double *glng,double *glat)
|
---|
355 | // Coordonnees equatoriales -> Coordonnees galactiques
|
---|
356 | {
|
---|
357 | ra *= PI/12.; // radians
|
---|
358 | dec *= PI/180.; // radians
|
---|
359 | eq_gal(mjd,ra,dec,glat,glng);
|
---|
360 | // Vraiment bizarre, sur Linux-g++ glng>=360 ne comprend pas glng==360 ! (CMV)
|
---|
361 | *glng *= 180./PI; InRange(glng,360.);
|
---|
362 | *glat *= 180./PI;
|
---|
363 | }
|
---|
364 |
|
---|
365 | /*! \ingroup XAstroPack
|
---|
366 | \brief Convert galactic coordinates into equatorial coordinates at the given epoch
|
---|
367 | */
|
---|
368 | void GaltoEq(double mjd,double glng,double glat,double *ra,double *dec)
|
---|
369 | // Coordonnees galactiques -> Coordonnees equatoriales
|
---|
370 | {
|
---|
371 | glng *= PI/180.; // radians
|
---|
372 | glat *= PI/180.; // radians
|
---|
373 | gal_eq (mjd,glat,glng,ra,dec);
|
---|
374 | *ra *= 12./PI; InRange(ra,24.);
|
---|
375 | *dec *= 180./PI;
|
---|
376 | }
|
---|
377 |
|
---|
378 | /*! \ingroup XAstroPack
|
---|
379 | \brief Convert equatorial coordinates (with hour angle instead of right ascension) into horizontal coordinates.
|
---|
380 | */
|
---|
381 | void EqHtoHor(double geolat,double ha,double dec,double *az,double *alt)
|
---|
382 | // Coordonnees equatoriales -> Coordonnees horizontales
|
---|
383 | {
|
---|
384 | geolat *= PI/180.;
|
---|
385 | ha *= PI/12.; // radians
|
---|
386 | dec *= PI/180.; // radians
|
---|
387 | hadec_aa (geolat,ha,dec,alt,az);
|
---|
388 | *alt *= 180./PI;
|
---|
389 | *az *= 180./PI; InRange(az,360.);
|
---|
390 | }
|
---|
391 |
|
---|
392 | /*! \ingroup XAstroPack
|
---|
393 | Convert horizontal coordinates into equatorial coordinates (with hour angle instead of right ascension).
|
---|
394 | */
|
---|
395 | void HortoEqH(double geolat,double az,double alt,double *ha,double *dec)
|
---|
396 | // Coordonnees horizontales -> Coordonnees equatoriales
|
---|
397 | {
|
---|
398 | geolat *= PI/180.;
|
---|
399 | alt *= PI/180.; // radians
|
---|
400 | az *= PI/180.; // radians
|
---|
401 | aa_hadec (geolat,alt,az,ha,dec);
|
---|
402 | *ha *= 12./PI; InRange(ha,24.,12.);
|
---|
403 | *dec *= 180./PI;
|
---|
404 | }
|
---|
405 |
|
---|
406 | /*! \ingroup XAstroPack
|
---|
407 | \brief Convert equatorial coordinates into horizontal coordinates.
|
---|
408 | */
|
---|
409 | void EqtoHor(double geolat,double lst,double ra,double dec,double *az,double *alt)
|
---|
410 | // Coordonnees equatoriales -> Coordonnees horizontales
|
---|
411 | {
|
---|
412 | double ha = lst - ra;
|
---|
413 | if(ha==-12.) ha=12.; InRange(&ha,24.,12.);
|
---|
414 | geolat *= PI/180.;
|
---|
415 | ha *= PI/12.; // radians
|
---|
416 | dec *= PI/180.; // radians
|
---|
417 | hadec_aa (geolat,ha,dec,alt,az);
|
---|
418 | *alt *= 180./PI;
|
---|
419 | *az *= 180./PI; InRange(az,360.);
|
---|
420 | }
|
---|
421 |
|
---|
422 | /*! \ingroup XAstroPack
|
---|
423 | Convert horizontal coordinates into equatorial coordinates.
|
---|
424 | */
|
---|
425 | void HortoEq(double geolat,double lst,double az,double alt,double *ra,double *dec)
|
---|
426 | // Coordonnees horizontales -> Coordonnees equatoriales
|
---|
427 | {
|
---|
428 | double ha;
|
---|
429 | geolat *= PI/180.;
|
---|
430 | alt *= PI/180.; // radians
|
---|
431 | az *= PI/180.; // radians
|
---|
432 | aa_hadec (geolat,alt,az,&ha,dec);
|
---|
433 | ha *= 12./PI;
|
---|
434 | *ra = lst - ha; InRange(ra,24.);
|
---|
435 | *dec *= 180./PI;
|
---|
436 | }
|
---|
437 |
|
---|
438 | /*! \ingroup XAstroPack
|
---|
439 | \brief Convert equatorial coordinates into geocentric ecliptic coordinates given the modified Julian date.
|
---|
440 | \warning Correction for the effect on the angle of the obliquity due to nutation is not included.
|
---|
441 | */
|
---|
442 | // Attention, j'ai modifie eq_ecl.c pour proteger NaN
|
---|
443 | // dans ecleq_aux :
|
---|
444 | // *q = (sy*ceps)-(cy*seps*sx*sw);
|
---|
445 | // if(*q<-1.) *q = -PI/2.; else if(*q>1.) *q = PI/2.; else *q = asin(*q);
|
---|
446 | void EqtoEcl(double mjd,double ra,double dec,double *eclng,double *eclat)
|
---|
447 | // Coordonnees equatoriales -> Coordonnees ecliptiques
|
---|
448 | {
|
---|
449 | ra *= PI/12.; // radians
|
---|
450 | dec *= PI/180.; // radians
|
---|
451 | eq_ecl(mjd,ra,dec,eclat,eclng);
|
---|
452 | *eclng *= 180./PI; InRange(eclng,360.);
|
---|
453 | *eclat *= 180./PI;
|
---|
454 | }
|
---|
455 |
|
---|
456 | /*! \ingroup XAstroPack
|
---|
457 | \brief Convert geocentric ecliptic coordinates into equatorial coordinates given the modified Julian date.
|
---|
458 | \warning Correction for the effect on the angle of the obliquity due to nutation is not included.
|
---|
459 | */
|
---|
460 | void EcltoEq(double mjd,double eclng,double eclat,double *ra,double *dec)
|
---|
461 | // Coordonnees ecliptiques -> Coordonnees equatoriales
|
---|
462 | {
|
---|
463 | eclat *= PI/180.; // radians
|
---|
464 | eclng *= PI/180.; // radians
|
---|
465 | ecl_eq(mjd,eclat,eclng,ra,dec);
|
---|
466 | *ra *= 12./PI; InRange(ra,24.);
|
---|
467 | *dec *= 180./PI;
|
---|
468 | }
|
---|
469 |
|
---|
470 | /*! \ingroup XAstroPack
|
---|
471 | \brief Give Sun position
|
---|
472 | \verbatim
|
---|
473 | given the modified JD, mjd, return the true geocentric ecliptic longitude
|
---|
474 | of the sun for the mean equinox of the date, *lsn, in radians, the
|
---|
475 | sun-earth distance, *rsn, in AU, and the latitude *bsn, in radians
|
---|
476 | (since this is always <= 1.2 arcseconds, in can be neglected by
|
---|
477 | calling with bsn = NULL).
|
---|
478 | \endverbatim
|
---|
479 | */
|
---|
480 | void SunPos(double mjd,double *eclsn,double *ecbsn)
|
---|
481 | {
|
---|
482 | double rsn;
|
---|
483 | sunpos(mjd,eclsn,&rsn,ecbsn);
|
---|
484 | *eclsn *= 180./PI; InRange(eclsn,360.);
|
---|
485 | *ecbsn *= 180./PI;
|
---|
486 | }
|
---|
487 |
|
---|
488 | /*! \ingroup XAstroPack
|
---|
489 | \brief Give Moon position
|
---|
490 | \verbatim
|
---|
491 | given the mjd, find the geocentric ecliptic longitude, lam, and latitude,
|
---|
492 | bet, and geocentric distance, rho in a.u. for the moon. also return
|
---|
493 | the sun's mean anomaly, *msp, and the moon's mean anomaly, *mdp.
|
---|
494 | (for the mean equinox)
|
---|
495 | \endverbatim
|
---|
496 | */
|
---|
497 | void MoonPos(double mjd,double *eclmn,double *ecbmn)
|
---|
498 | {
|
---|
499 | double rho,msp,mdp;
|
---|
500 | moon(mjd,eclmn,ecbmn,&rho,&msp,&mdp);
|
---|
501 | *eclmn *= 180./PI; InRange(eclmn,360.);
|
---|
502 | *ecbmn *= 180./PI;
|
---|
503 | }
|
---|
504 |
|
---|
505 | /*! \ingroup XAstroPack
|
---|
506 | \brief Give planet position
|
---|
507 | \verbatim
|
---|
508 | * given a modified Julian date, mjd, and a planet, p, find:
|
---|
509 | * lpd0: heliocentric longitude,
|
---|
510 | * psi0: heliocentric latitude,
|
---|
511 | * rp0: distance from the sun to the planet,
|
---|
512 | * rho0: distance from the Earth to the planet,
|
---|
513 | * none corrected for light time, ie, they are the true values for the
|
---|
514 | * given instant.
|
---|
515 | * lam: geocentric ecliptic longitude,
|
---|
516 | * bet: geocentric ecliptic latitude,
|
---|
517 | * each corrected for light time, ie, they are the apparent values as
|
---|
518 | * seen from the center of the Earth for the given instant.
|
---|
519 | * dia: angular diameter in arcsec at 1 AU,
|
---|
520 | * mag: visual magnitude when 1 AU from sun and earth at 0 phase angle.
|
---|
521 | * (for the mean equinox)
|
---|
522 | \endverbatim
|
---|
523 | */
|
---|
524 | void PlanetPos(double mjd,int numplan,double *ecl,double *ecb,double *diamang)
|
---|
525 | {
|
---|
526 | double lpd0,psi0,rp0,rho0,mag;
|
---|
527 | plans(mjd,numplan,&lpd0,&psi0,&rp0,&rho0,ecl,ecb,diamang,&mag);
|
---|
528 | *ecl *= 180./PI; InRange(ecl,360.);
|
---|
529 | *ecb *= 180./PI;
|
---|
530 | }
|
---|
531 |
|
---|
532 | /*! \ingroup XAstroPack
|
---|
533 | \brief Give Jupiter position
|
---|
534 | */
|
---|
535 | void JupiterPos(double mjd,double *ecl,double *ecb,double *diamang)
|
---|
536 | {
|
---|
537 | PlanetPos(mjd,JUPITER,ecl,ecb,diamang);
|
---|
538 | }
|
---|
539 |
|
---|
540 | /*! \ingroup XAstroPack
|
---|
541 | \brief Give Saturn position
|
---|
542 | */
|
---|
543 | void SaturnPos(double mjd,double *ecl,double *ecb,double *diamang)
|
---|
544 | {
|
---|
545 | PlanetPos(mjd,SATURN,ecl,ecb,diamang);
|
---|
546 | }
|
---|
547 |
|
---|
548 | /*! \ingroup XAstroPack
|
---|
549 | \brief Given a coordinate type "typ", convert to standard for astropack
|
---|
550 | \verbatim
|
---|
551 | // Return : 0 = OK
|
---|
552 | // 1 = Unknown type of coordinates
|
---|
553 | // 2 = bad range for coord1
|
---|
554 | // 4 = bad range for coord2
|
---|
555 | // 6 = bad range for coord1 et coord2
|
---|
556 | \endverbatim
|
---|
557 | */
|
---|
558 | int CoordConvertToStd(TypAstroCoord typ,double& coord1,double& coord2)
|
---|
559 | {
|
---|
560 | int rc = 0;
|
---|
561 |
|
---|
562 | // ---- Equatoriales alpha,delta
|
---|
563 | // - standard = [0,24[ , [-90,90]
|
---|
564 | if(typ&TypCoordEq) {
|
---|
565 | if(typ&TypCoordDD) {
|
---|
566 | coord1 = coord1 / 180. * 12.;
|
---|
567 | } else if(typ&TypCoordRR) {
|
---|
568 | coord1 = coord1 / PI * 12.;
|
---|
569 | coord2 = coord2 / PI * 180.;
|
---|
570 | }
|
---|
571 | if(coord1==24.) coord1 = 0.;
|
---|
572 | if(coord1<0. || coord1>=24.) rc+= 2;
|
---|
573 | if(coord2<-90. || coord2>90. ) rc+= 4;
|
---|
574 |
|
---|
575 | // ---- Galactiques gLong, gLat
|
---|
576 | // ---- Horizontales azimuth,altitude
|
---|
577 | // ---- Ecliptiques EclLong,EclLat
|
---|
578 | // - standard = [0,360[ , [-90,90]
|
---|
579 | } else if( typ&TypCoordGal || typ&TypCoordHor || typ&TypCoordEcl) {
|
---|
580 | if(typ&TypCoordHD) {
|
---|
581 | coord1 = coord1 / 12. * 180.;
|
---|
582 | } else if(typ&TypCoordRR) {
|
---|
583 | coord1 = coord1 / PI * 180.;
|
---|
584 | coord2 = coord2 / PI * 180.;
|
---|
585 | }
|
---|
586 | if(coord1==360.) coord1 = 0.;
|
---|
587 | if(coord1<0. || coord1>=360.) rc+= 2;
|
---|
588 | if(coord2<-90. || coord2>90. ) rc+= 4;
|
---|
589 |
|
---|
590 | } else { // Coordonnees non-connues
|
---|
591 | rc= 1;
|
---|
592 | }
|
---|
593 |
|
---|
594 | return rc;
|
---|
595 | }
|
---|