| 1 | #include <math.h>
 | 
|---|
| 2 | #include <stdio.h>
 | 
|---|
| 3 | #include "sopnamsp.h"
 | 
|---|
| 4 | #include "xastropack.h"
 | 
|---|
| 5 | 
 | 
|---|
| 6 | // BUGS BUGS BUGS BUGS BUGS BUGS BUGS BUGS BUGS BUGS
 | 
|---|
| 7 | // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
 | 
|---|
| 8 | // >>>> Corrections de divers bugs trouve dans libastro (CMV)
 | 
|---|
| 9 | // 1******* In the file vsop87.c line 154:
 | 
|---|
| 10 | // p = q/(t_abs[alpha] + alpha * t_abs[alpha-1] * 1e-4 + 1e-35);
 | 
|---|
| 11 | // - to avoid t_abs[-1] when alpha=0, replaced by :  
 | 
|---|
| 12 | // if(alpha>0) p = t_abs[alpha-1]; else p=0;
 | 
|---|
| 13 | // p = q/(t_abs[alpha] + alpha * p * 1e-4 + 1e-35);
 | 
|---|
| 14 | // Mail envoye a ecdowney@ClearSkyInstitute.com
 | 
|---|
| 15 | // 2******* In the file eq_ecl.c line 69:
 | 
|---|
| 16 | // *q = asin((sy*ceps)-(cy*seps*sx*sw));
 | 
|---|
| 17 | // eq_ecl.c Protection NaN dans ecleq_aux, replaced by : 
 | 
|---|
| 18 | // *q = (sy*ceps)-(cy*seps*sx*sw);
 | 
|---|
| 19 | // if(*q<-1.) *q = -PI/2.; else if(*q>1.) *q = PI/2.; else *q = asin(*q);
 | 
|---|
| 20 | // Mail envoye a ecdowney@ClearSkyInstitute.com
 | 
|---|
| 21 | // >>>> Corrections effectuees dans la version Xephem 3.5
 | 
|---|
| 22 | // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
 | 
|---|
| 23 | 
 | 
|---|
| 24 | 
 | 
|---|
| 25 | /*!
 | 
|---|
| 26 |   \defgroup XAstroPack XAstroPack module
 | 
|---|
| 27 |   This module contains simple programs to perform various
 | 
|---|
| 28 |   astronomical computation (based on the libastro of Xephem).
 | 
|---|
| 29 | 
 | 
|---|
| 30 |   \verbatim
 | 
|---|
| 31 | // TEMPS: modified Julian date (mjd) (number of days elapsed since 1900 jan 0.5)
 | 
|---|
| 32 | //        jour [1,31] (dy)
 | 
|---|
| 33 | //        mois [1,12] (mn)
 | 
|---|
| 34 | //        annee       (yr)
 | 
|---|
| 35 | //        universal time [0,24[ (utc)
 | 
|---|
| 36 | //        Greenwich mean siderial [0,24[ (gst)
 | 
|---|
| 37 | //        Greenwich mean siderial at 0h UT [0,24[ (gst0)
 | 
|---|
| 38 | // EQUATORIALE: ascension droite en heures [0,24[ (ra)
 | 
|---|
| 39 | //              declinaison en degres [-90,90]    (dec)
 | 
|---|
| 40 | //              angle horaire en heures ]-12,12] (-12=12) (ha) 
 | 
|---|
| 41 | //              temps sideral du lieu: tsid=ha+ra (ou lst)
 | 
|---|
| 42 | // GALACTIQUE: longitude en degres [0,360[  (glng)
 | 
|---|
| 43 | //             latitude en degres [-90,90]  (glat)
 | 
|---|
| 44 | //             (colatitude en degres [0,180]  (gcolat))
 | 
|---|
| 45 | // HORIZONTAL: azimuth en degres [0,360[   (az)
 | 
|---|
| 46 | //                 (angle round to the east from north+)
 | 
|---|
| 47 | //             altitude ou elevation en degres [-90,90] (alt)
 | 
|---|
| 48 | //             (distance zenitale en degres [0,180] (zendist))
 | 
|---|
| 49 | // ECLIPTIQUE: lontitude ecliptique en degres [0,360[ (eclng)
 | 
|---|
| 50 | //                 (angle round counter clockwise from the vernal equinoxe)
 | 
|---|
| 51 | //             latitude ecliptique en degres [-90,90] (eclat)
 | 
|---|
| 52 | //             (colatitude ecliptique en degres [0,180] (eccolat))
 | 
|---|
| 53 | // GEOGRAPHIE: longitude en degres ]-180,180]        (geolng)
 | 
|---|
| 54 | //                 (angle <0 vers l'ouest, >0 vers l'est)
 | 
|---|
| 55 | //             latitude en degres [-90,90] (north>0 sud<0) (geolat)
 | 
|---|
| 56 | //             (colatitude en degres [0,180] (north=0, sud=180) (geocolat))
 | 
|---|
| 57 | //
 | 
|---|
| 58 | // --- Remarque sur la colatitude:
 | 
|---|
| 59 | //   La latitude peut etre remplacee par la colatitude
 | 
|---|
| 60 | //      (ou altitude/elevation par la distance zenitale):
 | 
|---|
| 61 | //      latitude   : [-90,90] avec 0=equateur,  90=pole nord, -90=pole sud
 | 
|---|
| 62 | //      colatitude : [0,180]  avec 0=pole nord, 90=equateur,  180=pole sud
 | 
|---|
| 63 | //      colatitude = 90.-latitude , latitude = 90.-colatitude
 | 
|---|
| 64 |   \endverbatim
 | 
|---|
| 65 | */
 | 
|---|
| 66 | 
 | 
|---|
| 67 | /*! \ingroup XAstroPack
 | 
|---|
| 68 | \brief Given a coordinate type "typ", convert to standard for astropack.
 | 
|---|
| 69 | \verbatim
 | 
|---|
| 70 |  La routine convertit (in place) les coordonnees "coord1","coord2"
 | 
|---|
| 71 |  definies par le type "typ" dans les unites standard de ce systeme
 | 
|---|
| 72 |  de coordonnees.
 | 
|---|
| 73 |  "typ" code le systeme de coordonnees astronomiques et les unites utilisees
 | 
|---|
| 74 | 
 | 
|---|
| 75 |  - Return : 0 = Problem
 | 
|---|
| 76 |             TypAstroCoord du systeme de coordonnees retourne
 | 
|---|
| 77 | 
 | 
|---|
| 78 |  - Les types de coordonnees (A,B) sont definies
 | 
|---|
| 79 |            dans le enum TypAstroCoord (unsigned long):
 | 
|---|
| 80 |    La premiere coordonnee "A" est de type "longitude"
 | 
|---|
| 81 |                           (alpha,longitude,azimuth)
 | 
|---|
| 82 |    La deuxieme coordonnee "B" est de type "latidude"
 | 
|---|
| 83 |                           (delta,latitude,altitude ou elevation)
 | 
|---|
| 84 | 
 | 
|---|
| 85 |  *** Definitions des unites des coordonnees
 | 
|---|
| 86 |  - Coordonnee: 
 | 
|---|
| 87 |       TypCoordH en heure
 | 
|---|
| 88 |       TypCoordD en degre
 | 
|---|
| 89 |       TypCoordR en radian
 | 
|---|
| 90 |  - Coordonnee "A": 
 | 
|---|
| 91 |       TypCoord1H en heure
 | 
|---|
| 92 |       TypCoord1D en degre
 | 
|---|
| 93 |       TypCoord1R en radian
 | 
|---|
| 94 |       - Defaut (pas de bit leve): radians
 | 
|---|
| 95 |  - Coordonnee "B": 
 | 
|---|
| 96 |       TypCoord2H en heure
 | 
|---|
| 97 |       TypCoord2D en degre
 | 
|---|
| 98 |       TypCoord2R en radian
 | 
|---|
| 99 |       - Defaut (pas de bit leve): radians
 | 
|---|
| 100 |  *** Definitions des types d'intervalle utilises
 | 
|---|
| 101 |  - Coordonnee "A":
 | 
|---|
| 102 |       TypCoord1C type intervalle
 | 
|---|
| 103 |                  [0,24[ ou [0,360[ ou [0,2Pi[
 | 
|---|
| 104 |       TypCoord1L type intervalle centre
 | 
|---|
| 105 |                  ]-12,12] ou ]-180,180] ou ]-Pi,Pi]
 | 
|---|
| 106 |       - Defaut (pas de bit leve): TypCoord1C
 | 
|---|
| 107 |  - Coordonnee "B": 
 | 
|---|
| 108 |       TypCoord2C type intervalle (colatitude)
 | 
|---|
| 109 |                  [0,12] ou [0,180] ou [0,Pi]
 | 
|---|
| 110 |       TypCoord2L type intervalle centre (latitude)
 | 
|---|
| 111 |                  [-6,6] ou [-90,90] ou [-Pi/2,Pi/2]
 | 
|---|
| 112 |       - Defaut (pas de bit leve): TypCoord2L (latitude)
 | 
|---|
| 113 |  *** Les systemes de coordonnes astronomiques
 | 
|---|
| 114 |  TypCoordEq  coordonnees Equatoriales alpha,delta
 | 
|---|
| 115 |  TypCoordGal coordonnees Galactiques gLong, gLat
 | 
|---|
| 116 |  TypCoordHor coordonnees Horizontales azimuth,altitude
 | 
|---|
| 117 |  TypCoordEcl coordonnees Ecliptiques EclLong,EclLat
 | 
|---|
| 118 |       (Pas de defaut)
 | 
|---|
| 119 |  *** Les systemes de coordonnes astronomiques "standard"
 | 
|---|
| 120 |  TypCoordEqStd   alpha en heure=[0,24[ delta en degre=[-90,90]
 | 
|---|
| 121 |  TypCoordGalStd  long en degre=[0,360[ lat en degre=[-90,90] (latitude)
 | 
|---|
| 122 |  TypCoordHorStd  long en degre=[0,360[ lat en degre=[-90,90] (latitude)
 | 
|---|
| 123 |  TypCoordEclStd  long en degre=[0,360[ lat en degre=[-90,90] (latitude)
 | 
|---|
| 124 | \endverbatim
 | 
|---|
| 125 | */
 | 
|---|
| 126 | unsigned long CoordConvertToStd(unsigned long typ,double* coord1,double* coord2)
 | 
|---|
| 127 | {
 | 
|---|
| 128 |   unsigned long rc = TypCoordUndef;
 | 
|---|
| 129 | 
 | 
|---|
| 130 |   if(typ&TypCoordEq) {
 | 
|---|
| 131 |     // ---- Equatoriales alpha,delta
 | 
|---|
| 132 |     if     (typ&TypCoord1D)    *coord1 = deghr(*coord1);
 | 
|---|
| 133 |     else if(typ&TypCoord1R)    *coord1 = radhr(*coord1);
 | 
|---|
| 134 |     else if(!(typ&TypCoord1H)) *coord1 = radhr(*coord1);
 | 
|---|
| 135 | 
 | 
|---|
| 136 |     InRange(coord1,24.);
 | 
|---|
| 137 | 
 | 
|---|
| 138 |     if     (typ&TypCoord2H)    *coord2 = hrdeg(*coord2);
 | 
|---|
| 139 |     else if(typ&TypCoord2R)    *coord2 = raddeg(*coord2);
 | 
|---|
| 140 |     else if(!(typ&TypCoord2D)) *coord2 = raddeg(*coord2);
 | 
|---|
| 141 | 
 | 
|---|
| 142 |     if(typ&TypCoord2C) {
 | 
|---|
| 143 |       InRangeCoLat(coord2,TypUniteD);
 | 
|---|
| 144 |       ToCoLat(coord2,TypUniteD);
 | 
|---|
| 145 |     } else InRangeLat(coord2,TypUniteD);
 | 
|---|
| 146 | 
 | 
|---|
| 147 |     rc=TypCoordEqStd;
 | 
|---|
| 148 | 
 | 
|---|
| 149 |   } else if(typ&TypCoordGal || typ&TypCoordHor || typ&TypCoordEcl) {
 | 
|---|
| 150 |     // ---- Galactiques gLong, gLat
 | 
|---|
| 151 |     // ---- Horizontales azimuth,altitude ou elevation
 | 
|---|
| 152 |     // ---- Ecliptiques EclLong,EclLat
 | 
|---|
| 153 |     if     (typ&TypCoord1H)    *coord1 = hrdeg(*coord1);
 | 
|---|
| 154 |     else if(typ&TypCoord1R)    *coord1 = raddeg(*coord1);
 | 
|---|
| 155 |     else if(!(typ&TypCoord1D)) *coord1 = raddeg(*coord1);
 | 
|---|
| 156 | 
 | 
|---|
| 157 |     InRange(coord1,360.);
 | 
|---|
| 158 | 
 | 
|---|
| 159 |     if     (typ&TypCoord2H)    *coord2 = hrdeg(*coord2);
 | 
|---|
| 160 |     else if(typ&TypCoord2R)    *coord2 = raddeg(*coord2);
 | 
|---|
| 161 |     else if(!(typ&TypCoord2D)) *coord2 = raddeg(*coord2);
 | 
|---|
| 162 | 
 | 
|---|
| 163 |     if(typ&TypCoord2C) {
 | 
|---|
| 164 |       InRangeCoLat(coord2,TypUniteD);
 | 
|---|
| 165 |       ToCoLat(coord2,TypUniteD);
 | 
|---|
| 166 |     } else InRangeLat(coord2,TypUniteD);
 | 
|---|
| 167 | 
 | 
|---|
| 168 |     if     (typ&TypCoordGal) rc=TypCoordGalStd;
 | 
|---|
| 169 |     else if(typ&TypCoordHor) rc=TypCoordHorStd;
 | 
|---|
| 170 |     else if(typ&TypCoordEcl) rc=TypCoordEclStd;
 | 
|---|
| 171 | 
 | 
|---|
| 172 |   } else {          // Systeme de coordonnees non-connu
 | 
|---|
| 173 |     rc=TypCoordUndef;
 | 
|---|
| 174 |   }
 | 
|---|
| 175 | 
 | 
|---|
| 176 |   return rc;
 | 
|---|
| 177 | }
 | 
|---|
| 178 | 
 | 
|---|
| 179 | /*! \ingroup XAstroPack
 | 
|---|
| 180 | \brief Retourne te type d'unite pour la coordonnee "coordnum"
 | 
|---|
| 181 |        pour un TypAstroCoord valant "typ"
 | 
|---|
| 182 | \verbatim
 | 
|---|
| 183 |    coordnum : numero de coordonnee: 1 ou 2
 | 
|---|
| 184 |    retourne: TypUniteH si la coordonnee est en heure
 | 
|---|
| 185 |              TypUniteD si la coordonnee est en degre
 | 
|---|
| 186 |              TypUniteR si la coordonnee est en radian
 | 
|---|
| 187 |              TypUniteR par defaut
 | 
|---|
| 188 |              TypCoordUndef si le numero de coordonnee est errone.
 | 
|---|
| 189 | \endverbatim
 | 
|---|
| 190 | */
 | 
|---|
| 191 | unsigned long GetCoordUnit(int coordnum,unsigned long typ)
 | 
|---|
| 192 | {
 | 
|---|
| 193 |  if(coordnum==1) {
 | 
|---|
| 194 |    if     (typ&TypCoord1H) return TypUniteH;
 | 
|---|
| 195 |    else if(typ&TypCoord1D) return TypUniteD;
 | 
|---|
| 196 |    else if(typ&TypCoord1R) return TypUniteR;
 | 
|---|
| 197 |    else                    return TypUniteR;
 | 
|---|
| 198 |  }
 | 
|---|
| 199 |  if(coordnum==2) {
 | 
|---|
| 200 |    if     (typ&TypCoord2H) return TypUniteH;
 | 
|---|
| 201 |    else if(typ&TypCoord2D) return TypUniteD;
 | 
|---|
| 202 |    else if(typ&TypCoord2R) return TypUniteR;
 | 
|---|
| 203 |    else                    return TypUniteR;
 | 
|---|
| 204 |  }
 | 
|---|
| 205 |  return TypCoordUndef;
 | 
|---|
| 206 | }
 | 
|---|
| 207 | 
 | 
|---|
| 208 | /*! \ingroup XAstroPack
 | 
|---|
| 209 | \brief Pour decoder et transcrire en TypAstroCoord une chaine
 | 
|---|
| 210 |        donnant la structure du systeme de coordonnees.
 | 
|---|
| 211 | \verbatim
 | 
|---|
| 212 |   ctype = "CAaBb"
 | 
|---|
| 213 |     C: type de coordonnees: E Equatoriales
 | 
|---|
| 214 |                             G Galactiques
 | 
|---|
| 215 |                             H Horizontales
 | 
|---|
| 216 |                             S Ecliptiques
 | 
|---|
| 217 |                             pas de defaut
 | 
|---|
| 218 |     A: unite de la coordonnee 1 (alpha,longitude etc...)
 | 
|---|
| 219 |                             H heure
 | 
|---|
| 220 |                             D degre
 | 
|---|
| 221 |                             R radian
 | 
|---|
| 222 |                             defaut radian
 | 
|---|
| 223 |     a: type d'intervalle pour la coordonnee 1
 | 
|---|
| 224 |                             C intervalle [0,24[ [0,360[ [0,2*Pi[
 | 
|---|
| 225 |                             L intervalle [-12,12[ [-180,180[ [-Pi,Pi[
 | 
|---|
| 226 |                             (defaut: C)
 | 
|---|
| 227 |     A: unite de la coordonnee 2 (delta,latitude etc...)
 | 
|---|
| 228 |                             H heure
 | 
|---|
| 229 |                             D degre
 | 
|---|
| 230 |                             R radian
 | 
|---|
| 231 |                             defaut radian
 | 
|---|
| 232 |     a: type d'intervalle pour la coordonnee 2
 | 
|---|
| 233 |                             C intervalle [0,12] [0,180] [0,Pi]
 | 
|---|
| 234 |                               (type colatitude)
 | 
|---|
| 235 |                             L intervalle [-6,6] [-90,90][ [-Pi/2,Pi/2]
 | 
|---|
| 236 |                             (defaut: L)
 | 
|---|
| 237 | 
 | 
|---|
| 238 |     Exemple: GDCDL : galactiques long=[0,360[ lat=[-90,90]
 | 
|---|
| 239 |              GDxDx ou GDxD: idem
 | 
|---|
| 240 |              Gxxxx ou G : galactiques long=[0,2*Pi[ lat=[-Pi/2,Pi/2]
 | 
|---|
| 241 |     Exemple: EHCDL : equatoriales alpha=[0,24[ delta=[-90,90]
 | 
|---|
| 242 |              EHxDx ou EHxD : idem
 | 
|---|
| 243 |              Exxxx ou E : equatoriales alpha=[0,2*Pi[ delta=[-Pi/2,Pi/2]
 | 
|---|
| 244 |                             
 | 
|---|
| 245 |   - Retourne 0 si probleme dans la chaine
 | 
|---|
| 246 | \endverbatim
 | 
|---|
| 247 | */
 | 
|---|
| 248 | unsigned long DecodeTypAstro(const char *ctype)
 | 
|---|
| 249 | {
 | 
|---|
| 250 |   if(ctype==NULL) return TypCoordUndef;
 | 
|---|
| 251 |   int len = strlen(ctype);
 | 
|---|
| 252 |   if(len<1) return TypCoordUndef;
 | 
|---|
| 253 | 
 | 
|---|
| 254 |   unsigned long typ=0;
 | 
|---|
| 255 |   // Le type de systeme de coordonnees
 | 
|---|
| 256 |   int i = 0;
 | 
|---|
| 257 |   if     (ctype[i]=='e' || ctype[i]=='E') typ=TypCoordEq;
 | 
|---|
| 258 |   else if(ctype[i]=='g' || ctype[i]=='G') typ=TypCoordGal;
 | 
|---|
| 259 |   else if(ctype[i]=='h' || ctype[i]=='H') typ=TypCoordHor;
 | 
|---|
| 260 |   else if(ctype[i]=='s' || ctype[i]=='S') typ=TypCoordEcl;
 | 
|---|
| 261 |   else return TypCoordUndef;
 | 
|---|
| 262 |   // La coordonnee 1
 | 
|---|
| 263 |   i = 1;
 | 
|---|
| 264 |   if(i>=len)
 | 
|---|
| 265 |     {typ |= TypCoord1R|TypCoord1C|TypCoord2R|TypCoord2L; return typ;}
 | 
|---|
| 266 |   if     (ctype[i]=='h' || ctype[i]=='H') typ |= TypCoord1H;
 | 
|---|
| 267 |   else if(ctype[i]=='d' || ctype[i]=='D') typ |= TypCoord1D;
 | 
|---|
| 268 |   else if(ctype[i]=='r' || ctype[i]=='R') typ |= TypCoord1R;
 | 
|---|
| 269 |   else                                    typ |= TypCoord1R;
 | 
|---|
| 270 |   i = 2;
 | 
|---|
| 271 |   if(i>=len) {typ |= TypCoord1C|TypCoord2R|TypCoord2L; return typ;}
 | 
|---|
| 272 |   if     (ctype[i]=='c' || ctype[i]=='C') typ |= TypCoord1C;
 | 
|---|
| 273 |   else if(ctype[i]=='l' || ctype[i]=='L') typ |= TypCoord1L;
 | 
|---|
| 274 |   else                                    typ |= TypCoord1C;
 | 
|---|
| 275 |   // La coordonnee 2
 | 
|---|
| 276 |   i = 3;
 | 
|---|
| 277 |   if(i>=len) {typ |= TypCoord2R|TypCoord2L; return typ;}
 | 
|---|
| 278 |   if     (ctype[i]=='h' || ctype[i]=='H') typ |= TypCoord2H;
 | 
|---|
| 279 |   else if(ctype[i]=='d' || ctype[i]=='D') typ |= TypCoord2D;
 | 
|---|
| 280 |   else if(ctype[i]=='r' || ctype[i]=='R') typ |= TypCoord2R;
 | 
|---|
| 281 |   else                                    typ |= TypCoord2R;
 | 
|---|
| 282 |   i = 4;
 | 
|---|
| 283 |   if(i>=len) {typ |= TypCoord2L; return typ;}
 | 
|---|
| 284 |   if     (ctype[i]=='c' || ctype[i]=='C') typ |= TypCoord2C;
 | 
|---|
| 285 |   else if(ctype[i]=='l' || ctype[i]=='L') typ |= TypCoord2L;
 | 
|---|
| 286 |   else                                    typ |= TypCoord2L;
 | 
|---|
| 287 |   // Return
 | 
|---|
| 288 |   return typ;
 | 
|---|
| 289 | }
 | 
|---|
| 290 | 
 | 
|---|
| 291 | /*! \ingroup XAstroPack
 | 
|---|
| 292 | \brief Idem DecodeTypAstro(char *) mais a l'envers
 | 
|---|
| 293 | */
 | 
|---|
| 294 | string DecodeTypAstro(unsigned long typ)
 | 
|---|
| 295 | {
 | 
|---|
| 296 |  string s = "";
 | 
|---|
| 297 | 
 | 
|---|
| 298 |  if     (typ&TypCoordEq)  s += "E";
 | 
|---|
| 299 |  else if(typ&TypCoordGal) s += "G";
 | 
|---|
| 300 |  else if(typ&TypCoordHor) s += "H";
 | 
|---|
| 301 |  else if(typ&TypCoordEcl) s += "S";
 | 
|---|
| 302 |  else                     s += "x";
 | 
|---|
| 303 | 
 | 
|---|
| 304 |  if     (typ&TypCoord1H) s += "H";
 | 
|---|
| 305 |  else if(typ&TypCoord1D) s += "D";
 | 
|---|
| 306 |  else if(typ&TypCoord1R) s += "R";
 | 
|---|
| 307 |  else                    s += "x";
 | 
|---|
| 308 | 
 | 
|---|
| 309 |  if     (typ&TypCoord1C) s += "C";
 | 
|---|
| 310 |  else if(typ&TypCoord1L) s += "L";
 | 
|---|
| 311 |  else                    s += "x";
 | 
|---|
| 312 | 
 | 
|---|
| 313 |  if     (typ&TypCoord2H) s += "H";
 | 
|---|
| 314 |  else if(typ&TypCoord2D) s += "D";
 | 
|---|
| 315 |  else if(typ&TypCoord2R) s += "R";
 | 
|---|
| 316 |  else                    s += "x";
 | 
|---|
| 317 | 
 | 
|---|
| 318 |  if     (typ&TypCoord2C) s += "C";
 | 
|---|
| 319 |  else if(typ&TypCoord2L) s += "L";
 | 
|---|
| 320 |  else                    s += "x";
 | 
|---|
| 321 | 
 | 
|---|
| 322 |  return s;
 | 
|---|
| 323 | }
 | 
|---|
| 324 | 
 | 
|---|
| 325 | /*! \ingroup XAstroPack
 | 
|---|
| 326 | \brief Pour convertir la latitude en colatitude et vice-versa (in place)
 | 
|---|
| 327 | \verbatim
 | 
|---|
| 328 |   val = valeur a convertir qui doit etre:
 | 
|---|
| 329 |       si type "latitude"   dans [-6,6] [-90,90] [-Pi/2,Pi/2]
 | 
|---|
| 330 |       si type "colatitude" dans [0,12] [0,180] [0,Pi]
 | 
|---|
| 331 |   typ = type d'unite: heure  TypUniteH
 | 
|---|
| 332 |                       degre  TypUniteD
 | 
|---|
| 333 |                       radian TypUniteR
 | 
|---|
| 334 |         (Defaut: radian TypUniteR)
 | 
|---|
| 335 | \endverbatim
 | 
|---|
| 336 | */
 | 
|---|
| 337 | void ToCoLat(double *val,unsigned long typ)
 | 
|---|
| 338 | {
 | 
|---|
| 339 |  if     (typ&TypUniteH) *val = 6.    - *val;
 | 
|---|
| 340 |  else if(typ&TypUniteD) *val = 90.   - *val;
 | 
|---|
| 341 |  else if(typ&TypUniteR) *val = PI/2. - *val;
 | 
|---|
| 342 |  else *val = PI/2. - *val;
 | 
|---|
| 343 | }
 | 
|---|
| 344 | 
 | 
|---|
| 345 | /*! \ingroup XAstroPack
 | 
|---|
| 346 | \brief Pour remettre la valeur de la COLATITUDE "val" dans la dynamique [0.,range]
 | 
|---|
| 347 | \verbatim
 | 
|---|
| 348 |   val = valeur a convertir qui doit etre mise dans [0,12] [0,180] [0,Pi]
 | 
|---|
| 349 |   typ = type d'unite: heure  TypUniteH
 | 
|---|
| 350 |                       degre  TypUniteD
 | 
|---|
| 351 |                       radian TypUniteR
 | 
|---|
| 352 |   ex en degre: 0 -> 0 ,  90 ->  90 ,  180 -> 180 ,  270 -> 90 ,  360 -> 0
 | 
|---|
| 353 |                         -90 ->  90 , -180 -> 180 , -270 -> 90 , -360 -> 0
 | 
|---|
| 354 | \endverbatim
 | 
|---|
| 355 | */
 | 
|---|
| 356 | void InRangeCoLat(double *val,unsigned long typ)
 | 
|---|
| 357 | {
 | 
|---|
| 358 |  double range=PI;
 | 
|---|
| 359 |  if(typ==TypUniteH) range=12.; else if(typ==TypUniteD) range=180.;
 | 
|---|
| 360 |  InRange(val,2.*range,range);
 | 
|---|
| 361 |  if(*val<0.) *val*=-1.;
 | 
|---|
| 362 | }
 | 
|---|
| 363 | 
 | 
|---|
| 364 | /*! \ingroup XAstroPack
 | 
|---|
| 365 | \brief Pour remettre la valeur de la LATITUDE "val" dans la dynamique [-range/2,range/2]
 | 
|---|
| 366 | \verbatim
 | 
|---|
| 367 |   val = valeur a convertir qui doit etre mise dans [-6,6] [-90,90] [-Pi/2,Pi/2]
 | 
|---|
| 368 |   typ = type d'unite: heure  TypUniteH
 | 
|---|
| 369 |                       degre  TypUniteD
 | 
|---|
| 370 |                       radian TypUniteR
 | 
|---|
| 371 |   ex en degre: 0 -> 0 ,  90 ->  90 ,  180 -> 0 ,  270 -> -90 ,  360 -> 0
 | 
|---|
| 372 |                         -90 -> -90 , -180 -> 0 , -270 ->  90 , -360 -> 0
 | 
|---|
| 373 | \endverbatim
 | 
|---|
| 374 | */
 | 
|---|
| 375 | void InRangeLat(double *val,unsigned long typ)
 | 
|---|
| 376 | {
 | 
|---|
| 377 |  double range = PI;
 | 
|---|
| 378 |  if(typ==TypUniteH) range = 12.; else if(typ==TypUniteD) range = 180.;
 | 
|---|
| 379 |  InRange(val,2.*range,range);
 | 
|---|
| 380 |  if(*val>range/2.) *val = range - *val;
 | 
|---|
| 381 |    else if(*val<-range/2.) *val = -(range + *val);
 | 
|---|
| 382 | }
 | 
|---|
| 383 | 
 | 
|---|
| 384 | /*! \ingroup XAstroPack
 | 
|---|
| 385 | \brief Compute MJD from date
 | 
|---|
| 386 | \verbatim
 | 
|---|
| 387 |  MJD =  modified Julian date (number of days elapsed since 1900 jan 0.5),
 | 
|---|
| 388 |  dy is the decimale value of the day: dy = int(dy) + utc/24.
 | 
|---|
| 389 | \endverbatim
 | 
|---|
| 390 | */
 | 
|---|
| 391 | double MJDfrDate(double dy,int mn,int yr)
 | 
|---|
| 392 | {
 | 
|---|
| 393 | double mjd;
 | 
|---|
| 394 | cal_mjd(mn,dy,yr,&mjd);
 | 
|---|
| 395 | return mjd;
 | 
|---|
| 396 | }
 | 
|---|
| 397 | 
 | 
|---|
| 398 | /*! \ingroup XAstroPack
 | 
|---|
| 399 | \brief Compute date from MJD
 | 
|---|
| 400 | */
 | 
|---|
| 401 | void DatefrMJD(double mjd,double *dy,int *mn,int *yr)
 | 
|---|
| 402 | {
 | 
|---|
| 403 | mjd_cal(mjd,mn,dy,yr);
 | 
|---|
| 404 | }
 | 
|---|
| 405 | 
 | 
|---|
| 406 | /*! \ingroup XAstroPack
 | 
|---|
| 407 | \brief  Given a mjd, return the year as a double.
 | 
|---|
| 408 | */
 | 
|---|
| 409 | double YearfrMJD(double mjd)
 | 
|---|
| 410 | {
 | 
|---|
| 411 | double yr;
 | 
|---|
| 412 | mjd_year(mjd,&yr);
 | 
|---|
| 413 | return yr;
 | 
|---|
| 414 | }
 | 
|---|
| 415 | 
 | 
|---|
| 416 | /*! \ingroup XAstroPack
 | 
|---|
| 417 | \brief Given a decimal year, return mjd
 | 
|---|
| 418 | */
 | 
|---|
| 419 | double MJDfrYear(double yr)
 | 
|---|
| 420 | {
 | 
|---|
| 421 | double mjd;
 | 
|---|
| 422 | year_mjd(yr,&mjd);
 | 
|---|
| 423 | return mjd;
 | 
|---|
| 424 | }
 | 
|---|
| 425 | 
 | 
|---|
| 426 | /*! \ingroup XAstroPack
 | 
|---|
| 427 | \brief Given a mjd, return the year and number of days since 00:00 Jan 1
 | 
|---|
| 428 | \warning: if mjd = 2 January -> number of days = 1
 | 
|---|
| 429 | */
 | 
|---|
| 430 | void YDfrMJD(double mjd,double *dy,int *yr)
 | 
|---|
| 431 | {
 | 
|---|
| 432 | mjd_dayno(mjd,yr,dy);
 | 
|---|
| 433 | }
 | 
|---|
| 434 | 
 | 
|---|
| 435 | /*! \ingroup XAstroPack
 | 
|---|
| 436 | \brief Given a year, 
 | 
|---|
| 437 | */
 | 
|---|
| 438 | int IsLeapYear(int y)
 | 
|---|
| 439 | {
 | 
|---|
| 440 | return isleapyear(y);
 | 
|---|
| 441 | }
 | 
|---|
| 442 | 
 | 
|---|
| 443 | /*! \ingroup XAstroPack
 | 
|---|
| 444 | \brief given an mjd, set *dow to 0..6 according to which day of the week it falls on (0=sunday).
 | 
|---|
| 445 | \return return 0 if ok else -1 if can't figure it out.
 | 
|---|
| 446 | */
 | 
|---|
| 447 | int DayOrder(double mjd,int *dow)
 | 
|---|
| 448 | {
 | 
|---|
| 449 | return mjd_dow(mjd,dow);
 | 
|---|
| 450 | }
 | 
|---|
| 451 | 
 | 
|---|
| 452 | /*! \ingroup XAstroPack
 | 
|---|
| 453 | \brief given a mjd, return the the number of days in the month.
 | 
|---|
| 454 | */
 | 
|---|
| 455 | int DaysInMonth(double mjd)
 | 
|---|
| 456 | {
 | 
|---|
| 457 | int ndays;
 | 
|---|
| 458 | mjd_dpm(mjd,&ndays);
 | 
|---|
| 459 | return ndays;
 | 
|---|
| 460 | }
 | 
|---|
| 461 | 
 | 
|---|
| 462 | /*! \ingroup XAstroPack
 | 
|---|
| 463 | \brief Given a mjd, truncate it to the beginning of the whole day
 | 
|---|
| 464 | */
 | 
|---|
| 465 | double MJDat0hFrMJD(double mjd)
 | 
|---|
| 466 | {
 | 
|---|
| 467 | return mjd_day(mjd);
 | 
|---|
| 468 | }
 | 
|---|
| 469 | 
 | 
|---|
| 470 | /*! \ingroup XAstroPack
 | 
|---|
| 471 | \brief Given a mjd, return the number of hours past midnight of the whole day
 | 
|---|
| 472 | */
 | 
|---|
| 473 | double HfrMJD(double mjd)
 | 
|---|
| 474 | {
 | 
|---|
| 475 | return mjd_hr(mjd);
 | 
|---|
| 476 | }
 | 
|---|
| 477 | 
 | 
|---|
| 478 | /*! \ingroup XAstroPack
 | 
|---|
| 479 | \brief Give GST from UTC
 | 
|---|
| 480 | \verbatim
 | 
|---|
| 481 |  Given a modified julian date, mjd, and a universally coordinated time, utc,
 | 
|---|
| 482 |  return greenwich mean siderial time, *gst.
 | 
|---|
| 483 |  N.B. mjd must be at the beginning of the day.
 | 
|---|
| 484 | \endverbatim
 | 
|---|
| 485 | */
 | 
|---|
| 486 | double GSTfrUTC(double mjd0,double utc)
 | 
|---|
| 487 | {
 | 
|---|
| 488 | double gst;
 | 
|---|
| 489 | utc_gst(mjd0,utc,&gst);
 | 
|---|
| 490 | return gst;
 | 
|---|
| 491 | }
 | 
|---|
| 492 | 
 | 
|---|
| 493 | /*! \ingroup XAstroPack
 | 
|---|
| 494 | \brief Give UTC from GST
 | 
|---|
| 495 | \verbatim
 | 
|---|
| 496 |  Given a modified julian date, mjd, and a greenwich mean siderial time, gst,
 | 
|---|
| 497 |  return universally coordinated time, *utc.
 | 
|---|
| 498 |  N.B. mjd must be at the beginning of the day.
 | 
|---|
| 499 | \endverbatim
 | 
|---|
| 500 | */                                                                             
 | 
|---|
| 501 | double UTCfrGST(double mjd0,double gst)
 | 
|---|
| 502 | {
 | 
|---|
| 503 | double utc;
 | 
|---|
| 504 | gst_utc(mjd0,gst,&utc);
 | 
|---|
| 505 | return utc;
 | 
|---|
| 506 | }
 | 
|---|
| 507 | 
 | 
|---|
| 508 | /*! \ingroup XAstroPack
 | 
|---|
| 509 | \brief Given apparent altitude find airmass.
 | 
|---|
| 510 | */                                                                             
 | 
|---|
| 511 | double AirmassfrAlt(double alt)
 | 
|---|
| 512 | {
 | 
|---|
| 513 | double x;
 | 
|---|
| 514 | alt = degrad(alt);
 | 
|---|
| 515 | airmass(alt,&x);
 | 
|---|
| 516 | return x;
 | 
|---|
| 517 | }
 | 
|---|
| 518 | 
 | 
|---|
| 519 | /*! \ingroup XAstroPack
 | 
|---|
| 520 | \brief given geocentric time "jd" and coords of a distant object at "ra/dec" (J2000),
 | 
|---|
| 521 | find the difference "hcp" in time between light arriving at earth vs the sun.
 | 
|---|
| 522 | \return "hcp" must be subtracted from "geocentric jd" to get "heliocentric jd".
 | 
|---|
| 523 | \warning "jd" is the TRUE Julian day (jd = mjd+MJD0).
 | 
|---|
| 524 | */
 | 
|---|
| 525 | double HelioCorr(double jd,double ra,double dec)
 | 
|---|
| 526 | {
 | 
|---|
| 527 | double hcp;
 | 
|---|
| 528 | ra=hrrad(ra);
 | 
|---|
| 529 | dec=degrad(dec);
 | 
|---|
| 530 | heliocorr(jd,ra,dec,&hcp);
 | 
|---|
| 531 | return hcp;
 | 
|---|
| 532 | }
 | 
|---|
| 533 | 
 | 
|---|
| 534 | /*! \ingroup XAstroPack
 | 
|---|
| 535 | \brief gmst0() - return Greenwich Mean Sidereal Time at 0h UT
 | 
|---|
| 536 | \param mjd0 = date at 0h UT in julian days since MJD0
 | 
|---|
| 537 | */                                                                             
 | 
|---|
| 538 | double GST0(double mjd0)
 | 
|---|
| 539 | /* Copie depuis le code de Xephem (utc_gst.c) car pas prototype*/
 | 
|---|
| 540 | {
 | 
|---|
| 541 |  double T, x;
 | 
|---|
| 542 |  T = ((int)(mjd0 - 0.5) + 0.5 - J2000)/36525.0;
 | 
|---|
| 543 |  x = 24110.54841 +
 | 
|---|
| 544 |      (8640184.812866 + (0.093104 - 6.2e-6 * T) * T) * T;
 | 
|---|
| 545 |  x /= 3600.0;
 | 
|---|
| 546 |  range(&x, 24.0);
 | 
|---|
| 547 |  return (x);
 | 
|---|
| 548 | }
 | 
|---|
| 549 | 
 | 
|---|
| 550 | /*! \ingroup XAstroPack
 | 
|---|
| 551 | \brief return local sidereal time from modified julian day and longitude
 | 
|---|
| 552 | \warning nutation or obliquity correction are taken into account.
 | 
|---|
| 553 | */                                                                             
 | 
|---|
| 554 | double LSTfrMJD(double mjd,double geolng)
 | 
|---|
| 555 | {
 | 
|---|
| 556 |   double eps,lst,deps,dpsi;
 | 
|---|
| 557 |   utc_gst(mjd_day(mjd),mjd_hr(mjd),&lst);
 | 
|---|
| 558 |   lst += deghr(geolng);
 | 
|---|
| 559 |   obliquity(mjd,&eps);
 | 
|---|
| 560 |   nutation(mjd,&deps,&dpsi);
 | 
|---|
| 561 |   lst += radhr(dpsi*cos(eps+deps));
 | 
|---|
| 562 |   InRange(&lst,24.);
 | 
|---|
| 563 |   return lst;
 | 
|---|
| 564 | }
 | 
|---|
| 565 | 
 | 
|---|
| 566 | /*! \ingroup XAstroPack
 | 
|---|
| 567 | \brief Give a time in h:mn:s from a decimal hour
 | 
|---|
| 568 | \verbatim
 | 
|---|
| 569 | // INPUT: hd
 | 
|---|
| 570 | // OUTPUT: h mn s   (h,mn,s >=< 0)
 | 
|---|
| 571 | // REMARQUE: si hd<0 alors h<0 ET mn<0 ET s<0
 | 
|---|
| 572 | // EX: 12.51 -> h=12  mn=30  s=10 ; 
 | 
|---|
| 573 | //    -12.51 -> h=-12 mn=-30 s=-10 ; 
 | 
|---|
| 574 | \endverbatim
 | 
|---|
| 575 | */                                                                             
 | 
|---|
| 576 | void HMSfrHdec(double hd,int *h,int *mn,double *s)
 | 
|---|
| 577 | {
 | 
|---|
| 578 |  int sgn=1;
 | 
|---|
| 579 |  if(hd<0.) {sgn=-1; hd*=-1.;}
 | 
|---|
| 580 |  *h  = int(hd);
 | 
|---|
| 581 |  *mn = int((hd-(double)(*h))*60.);
 | 
|---|
| 582 |  *s  = (hd - (double)(*h) - (double)(*mn)/60.)*3600.;
 | 
|---|
| 583 |  // pb precision
 | 
|---|
| 584 |  if(*s<0.) *s = 0.;
 | 
|---|
| 585 |  if(*s>60. || *s==60.) {*s-=60.; *mn+=1;} // s=double attention comparaison
 | 
|---|
| 586 |  if(*mn<0) *mn = 0;
 | 
|---|
| 587 |  if(*mn>=60) {*mn-=60; *h+=1;}
 | 
|---|
| 588 |  *h *= sgn; *mn *= sgn; *s *= (double)sgn;
 | 
|---|
| 589 | }
 | 
|---|
| 590 | 
 | 
|---|
| 591 | /*! \ingroup XAstroPack
 | 
|---|
| 592 | \brief Give a decimal hour from a time in h:mn:s
 | 
|---|
| 593 | \verbatim
 | 
|---|
| 594 | // INPUT: h , mn , s  (h,mn,s >=< 0)
 | 
|---|
| 595 | // RETURN:  en heures decimales
 | 
|---|
| 596 | // REMARQUE: pour avoir hd=-12.51 <- h=-12 mn=-30 s=-10
 | 
|---|
| 597 | \endverbatim
 | 
|---|
| 598 | */                                                                             
 | 
|---|
| 599 | double HdecfrHMS(int h,int mn,double s)
 | 
|---|
| 600 | {
 | 
|---|
| 601 |  return ((double)h + (double)mn/60. + s/3600.);
 | 
|---|
| 602 | }
 | 
|---|
| 603 | 
 | 
|---|
| 604 | /*! \ingroup XAstroPack
 | 
|---|
| 605 | \brief Give a time string from a time in h:mn:s
 | 
|---|
| 606 | \verbatim
 | 
|---|
| 607 | // INPUT: h , mn , s   (h,mn,s >=< 0)
 | 
|---|
| 608 | // RETURN: string h:mn:s
 | 
|---|
| 609 | \endverbatim
 | 
|---|
| 610 | */                                                                             
 | 
|---|
| 611 | string ToStringHMS(int h,int mn,double s)
 | 
|---|
| 612 | {
 | 
|---|
| 613 |  double hd = HdecfrHMS(h,mn,s); // put in range
 | 
|---|
| 614 |  HMSfrHdec(hd,&h,&mn,&s);
 | 
|---|
| 615 |  char str[128];
 | 
|---|
| 616 |  if(hd<0.)
 | 
|---|
| 617 |    sprintf(str,"-%d:%d:%.3f",-h,-mn,-s);
 | 
|---|
| 618 |  else
 | 
|---|
| 619 |    sprintf(str,"%d:%d:%.3f",h,mn,s);
 | 
|---|
| 620 |  string dum = str;
 | 
|---|
| 621 |  return dum;
 | 
|---|
| 622 | }
 | 
|---|
| 623 | 
 | 
|---|
| 624 | /*! \ingroup XAstroPack
 | 
|---|
| 625 | \brief Give a time string from a decimal hour
 | 
|---|
| 626 | */                                                                             
 | 
|---|
| 627 | string ToStringHdec(double hd)
 | 
|---|
| 628 | {
 | 
|---|
| 629 |  int h,mn; double s;
 | 
|---|
| 630 |  HMSfrHdec(hd,&h,&mn,&s);
 | 
|---|
| 631 |  return ToStringHMS(h,mn,s);
 | 
|---|
| 632 | }
 | 
|---|
| 633 | 
 | 
|---|
| 634 | /*! \ingroup XAstroPack
 | 
|---|
| 635 | \brief Compute precession between 2 dates.
 | 
|---|
| 636 | */                                                                             
 | 
|---|
| 637 | void Precess(double mjd1,double mjd2,double ra1,double dec1,double *ra2,double *dec2)
 | 
|---|
| 638 | {
 | 
|---|
| 639 |  ra1  = hrrad(ra1);   // radians
 | 
|---|
| 640 |  dec1 = degrad(dec1);  // radians
 | 
|---|
| 641 |  precess(mjd1,mjd2,&ra1,&dec1);
 | 
|---|
| 642 |  *ra2 = radhr(ra1); InRange(ra2,24.);
 | 
|---|
| 643 |  *dec2 = raddeg(dec1);
 | 
|---|
| 644 | }
 | 
|---|
| 645 | 
 | 
|---|
| 646 | /*! \ingroup XAstroPack
 | 
|---|
| 647 | \brief Convert equatorial coordinates for the given epoch into galactic coordinates
 | 
|---|
| 648 | */                                                                             
 | 
|---|
| 649 | void EqtoGal(double mjd,double ra,double dec, double *glng,double *glat)
 | 
|---|
| 650 | // Coordonnees equatoriales -> Coordonnees galactiques
 | 
|---|
| 651 | {
 | 
|---|
| 652 |  ra  = hrrad(ra);   // radians
 | 
|---|
| 653 |  dec = degrad(dec);  // radians
 | 
|---|
| 654 |  eq_gal(mjd,ra,dec,glat,glng);
 | 
|---|
| 655 |  // Vraiment bizarre, sur Linux-g++ glng>=360 ne comprend pas glng==360 ! (CMV)
 | 
|---|
| 656 |  *glng = raddeg(*glng); InRange(glng,360.);
 | 
|---|
| 657 |  *glat = raddeg(*glat);
 | 
|---|
| 658 | }
 | 
|---|
| 659 | 
 | 
|---|
| 660 | /*! \ingroup XAstroPack
 | 
|---|
| 661 | \brief Convert galactic coordinates into equatorial coordinates at the given epoch
 | 
|---|
| 662 | */                                                                             
 | 
|---|
| 663 | void GaltoEq(double mjd,double glng,double glat,double *ra,double *dec)
 | 
|---|
| 664 | // Coordonnees galactiques -> Coordonnees equatoriales
 | 
|---|
| 665 | {
 | 
|---|
| 666 |  glng = degrad(glng);  // radians
 | 
|---|
| 667 |  glat = degrad(glat);  // radians
 | 
|---|
| 668 |  gal_eq (mjd,glat,glng,ra,dec);
 | 
|---|
| 669 |  *ra = radhr(*ra); InRange(ra,24.);
 | 
|---|
| 670 |  *dec = raddeg(*dec);
 | 
|---|
| 671 | }
 | 
|---|
| 672 | 
 | 
|---|
| 673 | /*! \ingroup XAstroPack
 | 
|---|
| 674 | \brief Convert equatorial coordinates (with hour angle instead of right ascension) into horizontal coordinates.
 | 
|---|
| 675 | */                                                                             
 | 
|---|
| 676 | void EqHtoHor(double geolat,double ha,double dec,double *az,double *alt)
 | 
|---|
| 677 | // Coordonnees equatoriales -> Coordonnees horizontales
 | 
|---|
| 678 | {
 | 
|---|
| 679 |  geolat = degrad(geolat);  // radians
 | 
|---|
| 680 |  ha  = hrrad(ha);   // radians
 | 
|---|
| 681 |  dec = degrad(dec);  // radians
 | 
|---|
| 682 |  hadec_aa (geolat,ha,dec,alt,az);
 | 
|---|
| 683 |  *alt = raddeg(*alt);
 | 
|---|
| 684 |  *az  = raddeg(*az); InRange(az,360.);
 | 
|---|
| 685 | }
 | 
|---|
| 686 | 
 | 
|---|
| 687 | /*! \ingroup XAstroPack
 | 
|---|
| 688 |  Convert horizontal coordinates into equatorial coordinates (with hour angle instead of right ascension).
 | 
|---|
| 689 | */                                                                             
 | 
|---|
| 690 | void HortoEqH(double geolat,double az,double alt,double *ha,double *dec)
 | 
|---|
| 691 | // Coordonnees horizontales -> Coordonnees equatoriales
 | 
|---|
| 692 | {
 | 
|---|
| 693 |  geolat = degrad(geolat);  // radians
 | 
|---|
| 694 |  alt = degrad(alt);  // radians
 | 
|---|
| 695 |  az  = degrad(az);  // radians
 | 
|---|
| 696 |  aa_hadec (geolat,alt,az,ha,dec);
 | 
|---|
| 697 |  *ha = radhr(*ha); InRange(ha,24.,12.);
 | 
|---|
| 698 |  *dec = raddeg(*dec);
 | 
|---|
| 699 | }
 | 
|---|
| 700 | 
 | 
|---|
| 701 | /*! \ingroup XAstroPack
 | 
|---|
| 702 | \brief Convert equatorial coordinates into horizontal coordinates.
 | 
|---|
| 703 | */                                                                             
 | 
|---|
| 704 | void EqtoHor(double geolat,double lst,double ra,double dec,double *az,double *alt)
 | 
|---|
| 705 | // Coordonnees equatoriales -> Coordonnees horizontales
 | 
|---|
| 706 | {
 | 
|---|
| 707 |  double ha = lst - ra; InRange(&ha,24.,12.);
 | 
|---|
| 708 |  geolat = degrad(geolat);  // radians
 | 
|---|
| 709 |  ha = hrrad(ha);   // radians
 | 
|---|
| 710 |  dec = degrad(dec);  // radians
 | 
|---|
| 711 |  hadec_aa (geolat,ha,dec,alt,az);
 | 
|---|
| 712 |  *alt = raddeg(*alt);
 | 
|---|
| 713 |  *az  = raddeg(*az); InRange(az,360.);
 | 
|---|
| 714 | }
 | 
|---|
| 715 | 
 | 
|---|
| 716 | /*! \ingroup XAstroPack
 | 
|---|
| 717 |  Convert horizontal coordinates into equatorial coordinates.
 | 
|---|
| 718 | */                                                                             
 | 
|---|
| 719 | void HortoEq(double geolat,double lst,double az,double alt,double *ra,double *dec)
 | 
|---|
| 720 | // Coordonnees horizontales -> Coordonnees equatoriales
 | 
|---|
| 721 | {
 | 
|---|
| 722 |  double ha;
 | 
|---|
| 723 |  geolat = degrad(geolat);  // radians
 | 
|---|
| 724 |  alt = degrad(alt);  // radians
 | 
|---|
| 725 |  az  = degrad(az);  // radians
 | 
|---|
| 726 |  aa_hadec (geolat,alt,az,&ha,dec);
 | 
|---|
| 727 |  *ra = lst - radhr(ha); InRange(ra,24.);
 | 
|---|
| 728 |  *dec = raddeg(*dec);
 | 
|---|
| 729 | }
 | 
|---|
| 730 | 
 | 
|---|
| 731 | /*! \ingroup XAstroPack
 | 
|---|
| 732 | \brief Convert equatorial coordinates into geocentric ecliptic coordinates given the modified Julian date.
 | 
|---|
| 733 | \warning Correction for the effect on the angle of the obliquity due to nutation is not included.
 | 
|---|
| 734 | */                                                                             
 | 
|---|
| 735 | void EqtoEcl(double mjd,double ra,double dec,double *eclng,double *eclat)
 | 
|---|
| 736 | // Coordonnees equatoriales -> Coordonnees ecliptiques
 | 
|---|
| 737 | {
 | 
|---|
| 738 |  ra = hrrad(ra);   // radians
 | 
|---|
| 739 |  dec = degrad(dec);  // radians
 | 
|---|
| 740 |  eq_ecl(mjd,ra,dec,eclat,eclng);
 | 
|---|
| 741 |  *eclng = raddeg(*eclng); InRange(eclng,360.);
 | 
|---|
| 742 |  *eclat = raddeg(*eclat);
 | 
|---|
| 743 | }
 | 
|---|
| 744 | 
 | 
|---|
| 745 | /*! \ingroup XAstroPack
 | 
|---|
| 746 | \brief Convert geocentric ecliptic coordinates into equatorial coordinates given the modified Julian date.
 | 
|---|
| 747 | \warning Correction for the effect on the angle of the obliquity due to nutation is not included.
 | 
|---|
| 748 | */                                                                             
 | 
|---|
| 749 | void EcltoEq(double mjd,double eclng,double eclat,double *ra,double *dec)
 | 
|---|
| 750 | // Coordonnees ecliptiques -> Coordonnees equatoriales
 | 
|---|
| 751 | {
 | 
|---|
| 752 |  eclat = degrad(eclat);  // radians
 | 
|---|
| 753 |  eclng = degrad(eclng);  // radians
 | 
|---|
| 754 |  ecl_eq(mjd,eclat,eclng,ra,dec); 
 | 
|---|
| 755 |  *ra = radhr(*ra); InRange(ra,24.);
 | 
|---|
| 756 |  *dec = raddeg(*dec);
 | 
|---|
| 757 | }
 | 
|---|
| 758 | 
 | 
|---|
| 759 | /*! \ingroup XAstroPack
 | 
|---|
| 760 | \brief Give Sun position
 | 
|---|
| 761 | \verbatim
 | 
|---|
| 762 |  given the modified JD, mjd, return the true geocentric ecliptic longitude
 | 
|---|
| 763 |  of the sun for the mean equinox of the date, *eclsn, in degres, the
 | 
|---|
| 764 |  sun-earth distance, *rsn, in AU, and the latitude *ecbsn, in degres
 | 
|---|
| 765 |  (since this is always <= 1.2 arcseconds, in can be neglected by
 | 
|---|
| 766 |  calling with ecbsn = NULL).
 | 
|---|
| 767 |  - REMARQUE:
 | 
|---|
| 768 |  * if the APPARENT ecliptic longitude is required, correct the longitude for
 | 
|---|
| 769 |  *   nutation to the true equinox of date and for aberration (light travel time,
 | 
|---|
| 770 |  *   approximately  -9.27e7/186000/(3600*24*365)*2*pi = -9.93e-5 radians).
 | 
|---|
| 771 | \endverbatim
 | 
|---|
| 772 | */
 | 
|---|
| 773 | void SunPos(double mjd,double *eclsn,double *ecbsn,double *rsn)
 | 
|---|
| 774 | {
 | 
|---|
| 775 |  sunpos(mjd,eclsn,rsn,ecbsn);
 | 
|---|
| 776 |  *eclsn = raddeg(*eclsn); InRange(eclsn,360.);
 | 
|---|
| 777 |  if(ecbsn!=NULL) *ecbsn = raddeg(*ecbsn);
 | 
|---|
| 778 | }
 | 
|---|
| 779 | 
 | 
|---|
| 780 | /*! \ingroup XAstroPack
 | 
|---|
| 781 | \brief Give Moon position
 | 
|---|
| 782 | \verbatim
 | 
|---|
| 783 |  given the mjd, find the geocentric ecliptic longitude, lam, and latitude,
 | 
|---|
| 784 |  bet, and geocentric distance, rho in a.u. for the moon.  also return
 | 
|---|
| 785 |  the sun's mean anomaly, *msp, and the moon's mean anomaly, *mdp. 
 | 
|---|
| 786 |  (for the mean equinox)
 | 
|---|
| 787 | \endverbatim
 | 
|---|
| 788 | */
 | 
|---|
| 789 | void MoonPos(double mjd,double *eclmn,double *ecbmn,double *rho)
 | 
|---|
| 790 | {
 | 
|---|
| 791 |   double msp,mdp;
 | 
|---|
| 792 |   moon(mjd,eclmn,ecbmn,rho,&msp,&mdp);
 | 
|---|
| 793 |  *eclmn = raddeg(*eclmn); InRange(eclmn,360.);
 | 
|---|
| 794 |  *ecbmn = raddeg(*ecbmn);
 | 
|---|
| 795 | }
 | 
|---|
| 796 | 
 | 
|---|
| 797 | /*! \ingroup XAstroPack
 | 
|---|
| 798 | \brief Give planet position
 | 
|---|
| 799 | \verbatim
 | 
|---|
| 800 |  * given a modified Julian date, mjd, and a planet, p, find:
 | 
|---|
| 801 |  *   sunecl: heliocentric longitude, 
 | 
|---|
| 802 |  *   sunecb: heliocentric latitude,
 | 
|---|
| 803 |  *   sundist:  distance from the sun to the planet, 
 | 
|---|
| 804 |  *   geodist: distance from the Earth to the planet,
 | 
|---|
| 805 |  *         none corrected for light time, ie, they are the true values for the
 | 
|---|
| 806 |  *         given instant.
 | 
|---|
| 807 |  *   geoecl:  geocentric ecliptic longitude, 
 | 
|---|
| 808 |  *   geoecb:  geocentric ecliptic latitude,
 | 
|---|
| 809 |  *         each corrected for light time, ie, they are the apparent values as
 | 
|---|
| 810 |  *         seen from the center of the Earth for the given instant.
 | 
|---|
| 811 |  *   diamang:  angular diameter in arcsec at 1 AU, 
 | 
|---|
| 812 |  *   mag:  visual magnitude when 1 AU from sun and earth at 0 phase angle.
 | 
|---|
| 813 |  *   (for the mean equinox)
 | 
|---|
| 814 |  * all angles are in degres, all distances in AU.
 | 
|---|
| 815 |  *
 | 
|---|
| 816 |  * corrections for nutation and abberation must be made by the caller. The RA 
 | 
|---|
| 817 |  *   and DEC calculated from the fully-corrected ecliptic coordinates are then
 | 
|---|
| 818 |  *   the apparent geocentric coordinates. Further corrections can be made, if
 | 
|---|
| 819 |  *   required, for atmospheric refraction and geocentric parallax.
 | 
|---|
| 820 |  \endverbatim
 | 
|---|
| 821 | */
 | 
|---|
| 822 | void PlanetPos(double mjd,PLCode numplan,double *sunecl,double *sunecb,double *sundist
 | 
|---|
| 823 |               ,double *geodist,double *geoecl,double *geoecb
 | 
|---|
| 824 |               ,double *diamang,double *mag)
 | 
|---|
| 825 | {
 | 
|---|
| 826 |  plans(mjd,numplan,sunecl,sunecb,sundist,geodist,geoecl,geoecb,diamang,mag);
 | 
|---|
| 827 |  *geoecl = raddeg(*geoecl); InRange(geoecl,360.);
 | 
|---|
| 828 |  *geoecb = raddeg(*geoecb);
 | 
|---|
| 829 |  *sunecl = raddeg(*sunecl); InRange(sunecl,360.);
 | 
|---|
| 830 |  *sunecb = raddeg(*sunecb);
 | 
|---|
| 831 | }
 | 
|---|