[1457] | 1 | /* given a Now and an Obj with the object definition portion filled in,
|
---|
| 2 | * fill in the sky position (s_*) portions.
|
---|
| 3 | * calculation of positional coordinates reworked by
|
---|
| 4 | * Michael Sternberg <sternberg@physik.tu-chemnitz.de>
|
---|
| 5 | * 3/11/98: deflect was using op->s_hlong before being set in cir_pos().
|
---|
| 6 | * 4/19/98: just edit a comment
|
---|
| 7 | */
|
---|
| 8 |
|
---|
| 9 | #include <stdio.h>
|
---|
| 10 | #include <math.h>
|
---|
| 11 | #include <stdlib.h>
|
---|
| 12 |
|
---|
| 13 | #include "astro.h"
|
---|
| 14 | #include "preferences.h"
|
---|
| 15 |
|
---|
| 16 |
|
---|
[2551] | 17 | static int obj_planet (Now *np, Obj *op);
|
---|
| 18 | static int obj_binary (Now *np, Obj *op);
|
---|
| 19 | static int obj_2binary (Now *np, Obj *op);
|
---|
| 20 | static int obj_fixed (Now *np, Obj *op);
|
---|
| 21 | static int obj_elliptical (Now *np, Obj *op);
|
---|
| 22 | static int obj_hyperbolic (Now *np, Obj *op);
|
---|
| 23 | static int obj_parabolic (Now *np, Obj *op);
|
---|
| 24 | static int sun_cir (Now *np, Obj *op);
|
---|
| 25 | static int moon_cir (Now *np, Obj *op);
|
---|
| 26 | static double solveKepler (double M, double e);
|
---|
| 27 | static void binaryStarOrbit (double t, double T, double e, double o, double O,
|
---|
| 28 | double i, double a, double P, double *thetap, double *rhop);
|
---|
| 29 | static void cir_sky (Now *np, double lpd, double psi, double rp, double *rho,
|
---|
| 30 | double lam, double bet, double lsn, double rsn, Obj *op);
|
---|
| 31 | static void cir_pos (Now *np, double bet, double lam, double *rho, Obj *op);
|
---|
| 32 | static void elongation (double lam, double bet, double lsn, double *el);
|
---|
| 33 | static void deflect (double mjd1, double lpd, double psi, double rsn,
|
---|
| 34 | double lsn, double rho, double *ra, double *dec);
|
---|
| 35 | static double h_albsize (double H);
|
---|
[1457] | 36 |
|
---|
| 37 | /* given a Now and an Obj, fill in the approprirate s_* fields within Obj.
|
---|
| 38 | * return 0 if all ok, else -1.
|
---|
| 39 | */
|
---|
| 40 | int
|
---|
[2551] | 41 | obj_cir (Now *np, Obj *op)
|
---|
[1457] | 42 | {
|
---|
[2551] | 43 | op->o_flags &= ~NOCIRCUM;
|
---|
[1457] | 44 | switch (op->o_type) {
|
---|
[2551] | 45 | case BINARYSTAR: return (obj_binary (np, op));
|
---|
[1457] | 46 | case FIXED: return (obj_fixed (np, op));
|
---|
| 47 | case ELLIPTICAL: return (obj_elliptical (np, op));
|
---|
| 48 | case HYPERBOLIC: return (obj_hyperbolic (np, op));
|
---|
| 49 | case PARABOLIC: return (obj_parabolic (np, op));
|
---|
| 50 | case EARTHSAT: return (obj_earthsat (np, op));
|
---|
| 51 | case PLANET: return (obj_planet (np, op));
|
---|
| 52 | default:
|
---|
[2551] | 53 | printf ("obj_cir() called with type %d %s\n", op->o_type, op->o_name);
|
---|
| 54 | abort();
|
---|
[1457] | 55 | return (-1); /* just for lint */
|
---|
| 56 | }
|
---|
| 57 | }
|
---|
| 58 |
|
---|
| 59 | static int
|
---|
[2551] | 60 | obj_planet (Now *np, Obj *op)
|
---|
[1457] | 61 | {
|
---|
| 62 | double lsn, rsn; /* true geoc lng of sun; dist from sn to earth*/
|
---|
| 63 | double lpd, psi; /* heliocentric ecliptic long and lat */
|
---|
| 64 | double rp; /* dist from sun */
|
---|
| 65 | double rho; /* dist from earth */
|
---|
| 66 | double lam, bet; /* geocentric ecliptic long and lat */
|
---|
| 67 | double dia, mag; /* angular diameter at 1 AU and magnitude */
|
---|
[2551] | 68 | PLCode p;
|
---|
[1457] | 69 |
|
---|
| 70 | /* validate code and check for a few special cases */
|
---|
[2551] | 71 | p = op->pl_code;
|
---|
| 72 | if (p == SUN)
|
---|
| 73 | return (sun_cir (np, op));
|
---|
| 74 | if (p == MOON)
|
---|
| 75 | return (moon_cir (np, op));
|
---|
| 76 | if (op->pl_moon != X_PLANET)
|
---|
| 77 | return (plmoon_cir (np, op));
|
---|
[1457] | 78 | if (p < 0 || p > MOON) {
|
---|
| 79 | printf ("unknown planet code: %d\n", p);
|
---|
[2551] | 80 | abort();
|
---|
[1457] | 81 | }
|
---|
| 82 |
|
---|
[2551] | 83 | /* planet itself */
|
---|
| 84 |
|
---|
[1457] | 85 | /* find solar ecliptical longitude and distance to sun from earth */
|
---|
| 86 | sunpos (mjed, &lsn, &rsn, 0);
|
---|
| 87 |
|
---|
[1719] | 88 | /* find helio long/lat; sun/planet and earth/planet dist; ecliptic
|
---|
[1457] | 89 | * long/lat; diameter and mag.
|
---|
| 90 | */
|
---|
| 91 | plans(mjed, p, &lpd, &psi, &rp, &rho, &lam, &bet, &dia, &mag);
|
---|
| 92 |
|
---|
| 93 | /* fill in all of op->s_* stuff except s_size and s_mag */
|
---|
| 94 | cir_sky (np, lpd, psi, rp, &rho, lam, bet, lsn, rsn, op);
|
---|
| 95 |
|
---|
[1719] | 96 | /* set magnitude and angular size */
|
---|
| 97 | set_smag (op, mag);
|
---|
[1457] | 98 | op->s_size = (float)(dia/rho);
|
---|
| 99 |
|
---|
| 100 | return (0);
|
---|
| 101 | }
|
---|
| 102 |
|
---|
| 103 | static int
|
---|
[2551] | 104 | obj_binary (Now *np, Obj *op)
|
---|
[1457] | 105 | {
|
---|
[2551] | 106 | /* always compute circumstances of primary */
|
---|
| 107 | if (obj_fixed (np, op) < 0)
|
---|
| 108 | return (0);
|
---|
| 109 |
|
---|
| 110 | /* compute secondary only if requested, and always reset request flag */
|
---|
| 111 | if (!op->b_2compute)
|
---|
| 112 | return (0);
|
---|
| 113 | op->b_2compute = 0;
|
---|
| 114 | return (obj_2binary (np, op));
|
---|
| 115 | }
|
---|
| 116 |
|
---|
| 117 | /* compute position of secondary component of a BINARYSTAR */
|
---|
| 118 | static int
|
---|
| 119 | obj_2binary (Now *np, Obj *op)
|
---|
| 120 | {
|
---|
| 121 | if (op->b_nbp > 0) {
|
---|
| 122 | /* we just have discrete pa/sep, project each from primary */
|
---|
| 123 | int i;
|
---|
| 124 | for (i = 0; i < op->b_nbp; i++) {
|
---|
| 125 | BinPos *bp = &op->b_bp[i];
|
---|
| 126 | bp->bp_dec = op->s_dec + bp->bp_sep*cos(bp->bp_pa);
|
---|
| 127 | bp->bp_ra = op->s_ra + bp->bp_sep*sin(bp->bp_pa)/cos(op->s_dec);
|
---|
| 128 | }
|
---|
| 129 | } else {
|
---|
| 130 | BinOrbit *bp = &op->b_bo;
|
---|
| 131 | double t, theta, rho;
|
---|
| 132 |
|
---|
| 133 | mjd_year (mjd, &t);
|
---|
| 134 | binaryStarOrbit (t, bp->bo_T, bp->bo_e, bp->bo_o, bp->bo_O,
|
---|
| 135 | bp->bo_i, bp->bo_a, bp->bo_P, &theta, &rho);
|
---|
| 136 | bp->bo_pa = (float)theta;
|
---|
| 137 | bp->bo_sep = (float)rho;
|
---|
| 138 | rho = degrad(rho/3600.); /* arc secs to rads */
|
---|
| 139 | bp->bo_dec = op->s_dec + rho*cos(theta);
|
---|
| 140 | bp->bo_ra = op->s_ra + rho*sin(theta)/cos(op->s_dec);
|
---|
| 141 | }
|
---|
| 142 |
|
---|
| 143 | return (0);
|
---|
| 144 | }
|
---|
| 145 |
|
---|
| 146 | /* from W. M. Smart */
|
---|
| 147 | static void
|
---|
| 148 | binaryStarOrbit (
|
---|
| 149 | double t, /* desired ephemeris epoch, year */
|
---|
| 150 | double T, /* epoch of periastron, year */
|
---|
| 151 | double e, /* eccentricity */
|
---|
| 152 | double o, /* argument of periastron, degrees */
|
---|
| 153 | double O, /* ascending node, degrees */
|
---|
| 154 | double i, /* inclination, degrees */
|
---|
| 155 | double a, /* semi major axis, arcsecs */
|
---|
| 156 | double P, /* period, years */
|
---|
| 157 | double *thetap, /* position angle, rads E of N */
|
---|
| 158 | double *rhop) /* separation, arcsecs */
|
---|
| 159 | {
|
---|
| 160 | double M, E, cosE, nu, cosnu, r, rho, theta;
|
---|
| 161 |
|
---|
| 162 | /* find mean anomaly, insure 0..2*PI */
|
---|
| 163 | M = 2*PI/P*(t-T);
|
---|
| 164 | range (&M, 2*PI);
|
---|
| 165 |
|
---|
| 166 | /* solve for eccentric anomaly */
|
---|
| 167 | E = solveKepler (M, e);
|
---|
| 168 | cosE = cos(E);
|
---|
| 169 |
|
---|
| 170 | /* find true anomaly and separation */
|
---|
| 171 | cosnu = (cosE - e)/(1.0 - e*cosE);
|
---|
| 172 | r = a*(1.0 - e*e)/(1.0 + e*cosnu);
|
---|
| 173 | nu = acos(cosnu);
|
---|
| 174 | if (E > PI)
|
---|
| 175 | nu = -nu;
|
---|
| 176 |
|
---|
| 177 | /* project onto sky */
|
---|
| 178 | theta = atan(tan(nu+degrad(o))*cos(degrad(i))) + degrad(O);
|
---|
| 179 | rho = r*cos(nu+degrad(o))/cos(theta-degrad(O));
|
---|
| 180 | if (rho < 0) {
|
---|
| 181 | theta += PI;
|
---|
| 182 | rho = -rho;
|
---|
| 183 | }
|
---|
| 184 | range (&theta, 2*PI);
|
---|
| 185 |
|
---|
| 186 | *thetap = theta;
|
---|
| 187 | *rhop = rho;
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 | /* solve kepler equation using Newton-Raphson search.
|
---|
| 191 | * Charles and Tatum have shown it always converges starting with PI.
|
---|
| 192 | */
|
---|
| 193 | static double
|
---|
| 194 | solveKepler (double M, double e)
|
---|
| 195 | {
|
---|
| 196 | double E, Eprime = PI;
|
---|
| 197 |
|
---|
| 198 | do {
|
---|
| 199 | double cosE = cos(Eprime);
|
---|
| 200 | E = Eprime;
|
---|
| 201 | Eprime = (M - e*(E*cosE - sin(E)))/(1.0 - e*cosE);
|
---|
| 202 | } while (fabs(E-Eprime) > 1e-7);
|
---|
| 203 |
|
---|
| 204 | return (Eprime);
|
---|
| 205 | }
|
---|
| 206 |
|
---|
| 207 | static int
|
---|
| 208 | obj_fixed (Now *np, Obj *op)
|
---|
| 209 | {
|
---|
[1457] | 210 | double lsn, rsn; /* true geoc lng of sun, dist from sn to earth*/
|
---|
| 211 | double lam, bet; /* geocentric ecliptic long and lat */
|
---|
| 212 | double ha; /* local hour angle */
|
---|
| 213 | double el; /* elongation */
|
---|
| 214 | double alt, az; /* current alt, az */
|
---|
[2551] | 215 | double ra, dec; /* ra and dec at equinox of date */
|
---|
| 216 | double rpm, dpm; /* astrometric ra and dec with PM to now */
|
---|
[1457] | 217 | double lst;
|
---|
| 218 |
|
---|
[2551] | 219 | /* on the assumption that the user will stick with their chosen display
|
---|
| 220 | * epoch for a while, we move the defining values to match and avoid
|
---|
| 221 | * precession for every call until it is changed again.
|
---|
| 222 | * N.B. only compare and store jd's to lowest precission (f_epoch).
|
---|
| 223 | * N.B. maintaining J2k ref (which is arbitrary) helps avoid accum err
|
---|
| 224 | */
|
---|
| 225 | if (epoch != EOD && (float)epoch != (float)op->f_epoch) {
|
---|
| 226 | double pr = op->f_RA, pd = op->f_dec, fe = (float)epoch;
|
---|
| 227 | /* first bring back to 2k */
|
---|
| 228 | precess (op->f_epoch, J2000, &pr, &pd);
|
---|
| 229 | pr += op->f_pmRA*(J2000-op->f_epoch);
|
---|
| 230 | pd += op->f_pmdec*(J2000-op->f_epoch);
|
---|
| 231 | /* then to epoch */
|
---|
| 232 | pr += op->f_pmRA*(fe-J2000);
|
---|
| 233 | pd += op->f_pmdec*(fe-J2000);
|
---|
| 234 | precess (J2000, fe, &pr, &pd);
|
---|
| 235 | op->f_RA = (float)pr;
|
---|
| 236 | op->f_dec = (float)pd;
|
---|
| 237 | op->f_epoch = (float)fe;
|
---|
[1457] | 238 | }
|
---|
| 239 |
|
---|
[2551] | 240 | /* apply proper motion .. assume pm epoch reference equals equinox */
|
---|
| 241 | rpm = op->f_RA + op->f_pmRA*(mjd-op->f_epoch);
|
---|
| 242 | dpm = op->f_dec + op->f_pmdec*(mjd-op->f_epoch);
|
---|
| 243 |
|
---|
| 244 | /* set ra/dec to astrometric @ equinox of date */
|
---|
| 245 | ra = rpm;
|
---|
| 246 | dec = dpm;
|
---|
[1719] | 247 | precess (op->f_epoch, mjed, &ra, &dec);
|
---|
[1457] | 248 |
|
---|
| 249 | /* convert equatoreal ra/dec to mean geocentric ecliptic lat/long */
|
---|
[1719] | 250 | eq_ecl (mjed, ra, dec, &bet, &lam);
|
---|
[1457] | 251 |
|
---|
| 252 | /* find solar ecliptical long.(mean equinox) and distance from earth */
|
---|
| 253 | sunpos (mjed, &lsn, &rsn, NULL);
|
---|
| 254 |
|
---|
| 255 | /* allow for relativistic light bending near the sun */
|
---|
[1719] | 256 | deflect (mjed, lam, bet, lsn, rsn, 1e10, &ra, &dec);
|
---|
[1457] | 257 |
|
---|
| 258 | /* TODO: correction for annual parallax would go here */
|
---|
| 259 |
|
---|
| 260 | /* correct EOD equatoreal for nutation/aberation to form apparent
|
---|
| 261 | * geocentric
|
---|
| 262 | */
|
---|
[1719] | 263 | nut_eq(mjed, &ra, &dec);
|
---|
| 264 | ab_eq(mjed, lsn, &ra, &dec);
|
---|
[1457] | 265 | op->s_gaera = (float)ra;
|
---|
| 266 | op->s_gaedec = (float)dec;
|
---|
| 267 |
|
---|
| 268 | /* set s_ra/dec -- apparent if EOD else astrometric */
|
---|
| 269 | if (epoch == EOD) {
|
---|
| 270 | op->s_ra = (float)ra;
|
---|
| 271 | op->s_dec = (float)dec;
|
---|
| 272 | } else {
|
---|
| 273 | /* annual parallax at time mjd is to be added here, too, but
|
---|
[2551] | 274 | * technically in the frame of equinox (usually different from mjd)
|
---|
[1457] | 275 | */
|
---|
[2551] | 276 | op->s_ra = rpm;
|
---|
| 277 | op->s_dec = dpm;
|
---|
[1457] | 278 | }
|
---|
| 279 |
|
---|
| 280 | /* compute elongation from ecliptic long/lat and sun geocentric long */
|
---|
| 281 | elongation (lam, bet, lsn, &el);
|
---|
| 282 | el = raddeg(el);
|
---|
| 283 | op->s_elong = (float)el;
|
---|
| 284 |
|
---|
| 285 | /* these are really the same fields ...
|
---|
| 286 | op->s_mag = op->f_mag;
|
---|
| 287 | op->s_size = op->f_size;
|
---|
| 288 | */
|
---|
| 289 |
|
---|
| 290 | /* alt, az: correct for refraction; use eod ra/dec. */
|
---|
| 291 | now_lst (np, &lst);
|
---|
| 292 | ha = hrrad(lst) - ra;
|
---|
| 293 | hadec_aa (lat, ha, dec, &alt, &az);
|
---|
| 294 | refract (pressure, temp, alt, &alt);
|
---|
| 295 | op->s_alt = alt;
|
---|
| 296 | op->s_az = az;
|
---|
| 297 |
|
---|
| 298 | return (0);
|
---|
| 299 | }
|
---|
| 300 |
|
---|
| 301 | /* compute sky circumstances of an object in heliocentric elliptic orbit at *np.
|
---|
| 302 | */
|
---|
| 303 | static int
|
---|
[2551] | 304 | obj_elliptical (Now *np, Obj *op)
|
---|
[1457] | 305 | {
|
---|
| 306 | double lsn, rsn; /* true geoc lng of sun; dist from sn to earth*/
|
---|
| 307 | double dt; /* light travel time to object */
|
---|
| 308 | double lg; /* helio long of earth */
|
---|
[1719] | 309 | double nu; /* true anomaly */
|
---|
[1457] | 310 | double rp=0; /* distance from the sun */
|
---|
| 311 | double lo, slo, clo; /* angle from ascending node */
|
---|
| 312 | double inc; /* inclination */
|
---|
| 313 | double psi=0; /* heliocentric latitude */
|
---|
| 314 | double spsi=0, cpsi=0; /* trig of heliocentric latitude */
|
---|
| 315 | double lpd; /* heliocentric longitude */
|
---|
| 316 | double rho=0; /* distance from the Earth */
|
---|
| 317 | double om; /* arg of perihelion */
|
---|
| 318 | double Om; /* long of ascending node. */
|
---|
| 319 | double lam; /* geocentric ecliptic longitude */
|
---|
| 320 | double bet; /* geocentric ecliptic latitude */
|
---|
| 321 | double ll=0, sll, cll; /* helio angle between object and earth */
|
---|
| 322 | double mag; /* magnitude */
|
---|
| 323 | double e_n; /* mean daily motion */
|
---|
[1719] | 324 | double tp; /* time from perihelion (days) */
|
---|
[1457] | 325 | double rpd=0;
|
---|
| 326 | double y;
|
---|
| 327 | int pass;
|
---|
| 328 |
|
---|
| 329 | /* find location of earth from sun now */
|
---|
| 330 | sunpos (mjed, &lsn, &rsn, 0);
|
---|
| 331 | lg = lsn + PI;
|
---|
| 332 |
|
---|
| 333 | /* mean daily motion is derived fro mean distance */
|
---|
| 334 | e_n = 0.9856076686/pow((double)op->e_a, 1.5);
|
---|
| 335 |
|
---|
| 336 | /* correct for light time by computing position at time mjd, then
|
---|
| 337 | * again at mjd-dt, where
|
---|
| 338 | * dt = time it takes light to travel earth-object distance.
|
---|
| 339 | */
|
---|
| 340 | dt = 0;
|
---|
| 341 | for (pass = 0; pass < 2; pass++) {
|
---|
| 342 |
|
---|
| 343 | reduce_elements (op->e_epoch, mjd-dt, degrad(op->e_inc),
|
---|
| 344 | degrad (op->e_om), degrad (op->e_Om),
|
---|
| 345 | &inc, &om, &Om);
|
---|
| 346 |
|
---|
[1719] | 347 | tp = mjed - dt - (op->e_cepoch - op->e_M/e_n);
|
---|
[2551] | 348 | if (vrc (&nu, &rp, tp, op->e_e, op->e_a*(1-op->e_e)) < 0)
|
---|
| 349 | op->o_flags |= NOCIRCUM;
|
---|
[1719] | 350 | nu = degrad(nu);
|
---|
[1457] | 351 | lo = nu + om;
|
---|
| 352 | slo = sin(lo);
|
---|
| 353 | clo = cos(lo);
|
---|
| 354 | spsi = slo*sin(inc);
|
---|
| 355 | y = slo*cos(inc);
|
---|
| 356 | psi = asin(spsi);
|
---|
| 357 | lpd = atan(y/clo)+Om;
|
---|
| 358 | if (clo<0) lpd += PI;
|
---|
| 359 | range (&lpd, 2*PI);
|
---|
| 360 | cpsi = cos(psi);
|
---|
| 361 | rpd = rp*cpsi;
|
---|
| 362 | ll = lpd-lg;
|
---|
| 363 | rho = sqrt(rsn*rsn+rp*rp-2*rsn*rp*cpsi*cos(ll));
|
---|
| 364 |
|
---|
| 365 | dt = rho*LTAU/3600.0/24.0; /* light travel time, in days / AU */
|
---|
| 366 | }
|
---|
| 367 |
|
---|
| 368 | /* compute sin and cos of ll */
|
---|
| 369 | sll = sin(ll);
|
---|
| 370 | cll = cos(ll);
|
---|
| 371 |
|
---|
| 372 | /* find geocentric ecliptic longitude and latitude */
|
---|
| 373 | if (rpd < rsn)
|
---|
| 374 | lam = atan(-1*rpd*sll/(rsn-rpd*cll))+lg+PI;
|
---|
| 375 | else
|
---|
| 376 | lam = atan(rsn*sll/(rpd-rsn*cll))+lpd;
|
---|
| 377 | range (&lam, 2*PI);
|
---|
| 378 | bet = atan(rpd*spsi*sin(lam-lpd)/(cpsi*rsn*sll));
|
---|
| 379 |
|
---|
| 380 | /* fill in all of op->s_* stuff except s_size and s_mag */
|
---|
| 381 | cir_sky (np, lpd, psi, rp, &rho, lam, bet, lsn, rsn, op);
|
---|
| 382 |
|
---|
| 383 | /* compute magnitude and size */
|
---|
| 384 | if (op->e_mag.whichm == MAG_HG) {
|
---|
| 385 | /* the H and G parameters from the Astro. Almanac.
|
---|
| 386 | */
|
---|
| 387 | if (op->e_size)
|
---|
| 388 | op->s_size = (float)(op->e_size / rho);
|
---|
| 389 | else {
|
---|
| 390 | hg_mag (op->e_mag.m1, op->e_mag.m2, rp, rho, rsn, &mag);
|
---|
| 391 | op->s_size = (float)(h_albsize (op->e_mag.m1)/rho);
|
---|
| 392 |
|
---|
| 393 | }
|
---|
| 394 | } else {
|
---|
| 395 | /* the g/k model of comets */
|
---|
| 396 | gk_mag (op->e_mag.m1, op->e_mag.m2, rp, rho, &mag);
|
---|
| 397 | op->s_size = (float)(op->e_size / rho);
|
---|
| 398 | }
|
---|
| 399 | set_smag (op, mag);
|
---|
| 400 |
|
---|
| 401 | return (0);
|
---|
| 402 | }
|
---|
| 403 |
|
---|
| 404 | /* compute sky circumstances of an object in heliocentric hyperbolic orbit.
|
---|
| 405 | */
|
---|
| 406 | static int
|
---|
[2551] | 407 | obj_hyperbolic (Now *np, Obj *op)
|
---|
[1457] | 408 | {
|
---|
| 409 | double lsn, rsn; /* true geoc lng of sun; dist from sn to earth*/
|
---|
| 410 | double dt; /* light travel time to object */
|
---|
| 411 | double lg; /* helio long of earth */
|
---|
[1719] | 412 | double nu; /* true anomaly and eccentric anomaly */
|
---|
[1457] | 413 | double rp=0; /* distance from the sun */
|
---|
| 414 | double lo, slo, clo; /* angle from ascending node */
|
---|
| 415 | double inc; /* inclination */
|
---|
| 416 | double psi=0; /* heliocentric latitude */
|
---|
| 417 | double spsi=0, cpsi=0; /* trig of heliocentric latitude */
|
---|
| 418 | double lpd; /* heliocentric longitude */
|
---|
| 419 | double rho=0; /* distance from the Earth */
|
---|
| 420 | double om; /* arg of perihelion */
|
---|
| 421 | double Om; /* long of ascending node. */
|
---|
| 422 | double lam; /* geocentric ecliptic longitude */
|
---|
| 423 | double bet; /* geocentric ecliptic latitude */
|
---|
| 424 | double e; /* fast eccentricity */
|
---|
| 425 | double ll=0, sll, cll; /* helio angle between object and earth */
|
---|
| 426 | double mag; /* magnitude */
|
---|
| 427 | double a; /* mean distance */
|
---|
[1719] | 428 | double tp; /* time from perihelion (days) */
|
---|
[1457] | 429 | double rpd=0;
|
---|
| 430 | double y;
|
---|
| 431 | int pass;
|
---|
| 432 |
|
---|
| 433 | /* find solar ecliptical longitude and distance to sun from earth */
|
---|
| 434 | sunpos (mjed, &lsn, &rsn, 0);
|
---|
| 435 |
|
---|
| 436 | lg = lsn + PI;
|
---|
| 437 | e = op->h_e;
|
---|
| 438 | a = op->h_qp/(e - 1.0);
|
---|
| 439 |
|
---|
| 440 | /* correct for light time by computing position at time mjd, then
|
---|
| 441 | * again at mjd-dt, where
|
---|
| 442 | * dt = time it takes light to travel earth-object distance.
|
---|
| 443 | */
|
---|
| 444 | dt = 0;
|
---|
| 445 | for (pass = 0; pass < 2; pass++) {
|
---|
| 446 |
|
---|
| 447 | reduce_elements (op->h_epoch, mjd-dt, degrad(op->h_inc),
|
---|
| 448 | degrad (op->h_om), degrad (op->h_Om),
|
---|
| 449 | &inc, &om, &Om);
|
---|
| 450 |
|
---|
[1719] | 451 | tp = mjed - dt - op->h_ep;
|
---|
[2551] | 452 | if (vrc (&nu, &rp, tp, op->h_e, op->h_qp) < 0)
|
---|
| 453 | op->o_flags |= NOCIRCUM;
|
---|
[1719] | 454 | nu = degrad(nu);
|
---|
[1457] | 455 | lo = nu + om;
|
---|
| 456 | slo = sin(lo);
|
---|
| 457 | clo = cos(lo);
|
---|
| 458 | spsi = slo*sin(inc);
|
---|
| 459 | y = slo*cos(inc);
|
---|
| 460 | psi = asin(spsi);
|
---|
| 461 | lpd = atan(y/clo)+Om;
|
---|
| 462 | if (clo<0) lpd += PI;
|
---|
| 463 | range (&lpd, 2*PI);
|
---|
| 464 | cpsi = cos(psi);
|
---|
| 465 | rpd = rp*cpsi;
|
---|
| 466 | ll = lpd-lg;
|
---|
| 467 | rho = sqrt(rsn*rsn+rp*rp-2*rsn*rp*cpsi*cos(ll));
|
---|
| 468 |
|
---|
| 469 | dt = rho*5.775518e-3; /* light travel time, in days */
|
---|
| 470 | }
|
---|
| 471 |
|
---|
| 472 | /* compute sin and cos of ll */
|
---|
| 473 | sll = sin(ll);
|
---|
| 474 | cll = cos(ll);
|
---|
| 475 |
|
---|
| 476 | /* find geocentric ecliptic longitude and latitude */
|
---|
| 477 | if (rpd < rsn)
|
---|
| 478 | lam = atan(-1*rpd*sll/(rsn-rpd*cll))+lg+PI;
|
---|
| 479 | else
|
---|
| 480 | lam = atan(rsn*sll/(rpd-rsn*cll))+lpd;
|
---|
| 481 | range (&lam, 2*PI);
|
---|
| 482 | bet = atan(rpd*spsi*sin(lam-lpd)/(cpsi*rsn*sll));
|
---|
| 483 |
|
---|
| 484 | /* fill in all of op->s_* stuff except s_size and s_mag */
|
---|
| 485 | cir_sky (np, lpd, psi, rp, &rho, lam, bet, lsn, rsn, op);
|
---|
| 486 |
|
---|
| 487 | /* compute magnitude and size */
|
---|
| 488 | gk_mag (op->h_g, op->h_k, rp, rho, &mag);
|
---|
| 489 | set_smag (op, mag);
|
---|
| 490 | op->s_size = (float)(op->h_size / rho);
|
---|
| 491 |
|
---|
| 492 | return (0);
|
---|
| 493 | }
|
---|
| 494 |
|
---|
| 495 | /* compute sky circumstances of an object in heliocentric hyperbolic orbit.
|
---|
| 496 | */
|
---|
| 497 | static int
|
---|
[2551] | 498 | obj_parabolic (Now *np, Obj *op)
|
---|
[1457] | 499 | {
|
---|
| 500 | double lsn, rsn; /* true geoc lng of sun; dist from sn to earth*/
|
---|
| 501 | double lam; /* geocentric ecliptic longitude */
|
---|
| 502 | double bet; /* geocentric ecliptic latitude */
|
---|
| 503 | double mag; /* magnitude */
|
---|
| 504 | double inc, om, Om;
|
---|
| 505 | double lpd, psi, rp, rho;
|
---|
| 506 | double dt;
|
---|
| 507 | int pass;
|
---|
| 508 |
|
---|
| 509 | /* find solar ecliptical longitude and distance to sun from earth */
|
---|
| 510 | sunpos (mjed, &lsn, &rsn, 0);
|
---|
| 511 |
|
---|
| 512 | /* two passes to correct lam and bet for light travel time. */
|
---|
| 513 | dt = 0.0;
|
---|
| 514 | for (pass = 0; pass < 2; pass++) {
|
---|
| 515 | reduce_elements (op->p_epoch, mjd-dt, degrad(op->p_inc),
|
---|
| 516 | degrad(op->p_om), degrad(op->p_Om), &inc, &om, &Om);
|
---|
| 517 | comet (mjed-dt, op->p_ep, inc, om, op->p_qp, Om,
|
---|
| 518 | &lpd, &psi, &rp, &rho, &lam, &bet);
|
---|
| 519 | dt = rho*LTAU/3600.0/24.0; /* light travel time, in days / AU */
|
---|
| 520 | }
|
---|
| 521 |
|
---|
| 522 | /* fill in all of op->s_* stuff except s_size and s_mag */
|
---|
| 523 | cir_sky (np, lpd, psi, rp, &rho, lam, bet, lsn, rsn, op);
|
---|
| 524 |
|
---|
| 525 | /* compute magnitude and size */
|
---|
| 526 | gk_mag (op->p_g, op->p_k, rp, rho, &mag);
|
---|
| 527 | set_smag (op, mag);
|
---|
| 528 | op->s_size = (float)(op->p_size / rho);
|
---|
| 529 |
|
---|
| 530 | return (0);
|
---|
| 531 | }
|
---|
| 532 |
|
---|
| 533 | /* find sun's circumstances now.
|
---|
| 534 | */
|
---|
| 535 | static int
|
---|
[2551] | 536 | sun_cir (Now *np, Obj *op)
|
---|
[1457] | 537 | {
|
---|
| 538 | double lsn, rsn; /* true geoc lng of sun; dist from sn to earth*/
|
---|
| 539 | double bsn; /* true latitude beta of sun */
|
---|
| 540 | double dhlong;
|
---|
| 541 |
|
---|
| 542 | sunpos (mjed, &lsn, &rsn, &bsn);/* sun's true coordinates; mean ecl. */
|
---|
| 543 |
|
---|
| 544 | op->s_sdist = 0.0;
|
---|
| 545 | op->s_elong = 0.0;
|
---|
| 546 | op->s_phase = 100.0;
|
---|
| 547 | set_smag (op, -26.8); /* TODO */
|
---|
| 548 | dhlong = lsn-PI; /* geo- to helio- centric */
|
---|
| 549 | range (&dhlong, 2*PI);
|
---|
| 550 | op->s_hlong = (float)dhlong;
|
---|
| 551 | op->s_hlat = (float)(-bsn);
|
---|
| 552 |
|
---|
| 553 | /* fill sun's ra/dec, alt/az in op */
|
---|
| 554 | cir_pos (np, bsn, lsn, &rsn, op);
|
---|
| 555 | op->s_edist = (float)rsn;
|
---|
| 556 | op->s_size = (float)(raddeg(4.65242e-3/rsn)*3600*2);
|
---|
| 557 |
|
---|
| 558 | return (0);
|
---|
| 559 | }
|
---|
| 560 |
|
---|
| 561 | /* find moon's circumstances now.
|
---|
| 562 | */
|
---|
| 563 | static int
|
---|
[2551] | 564 | moon_cir (Now *np, Obj *op)
|
---|
[1457] | 565 | {
|
---|
| 566 | double lsn, rsn; /* true geoc lng of sun; dist from sn to earth*/
|
---|
| 567 | double lam; /* geocentric ecliptic longitude */
|
---|
| 568 | double bet; /* geocentric ecliptic latitude */
|
---|
| 569 | double edistau; /* earth-moon dist, in au */
|
---|
| 570 | double el; /* elongation, rads east */
|
---|
| 571 | double ms; /* sun's mean anomaly */
|
---|
| 572 | double md; /* moon's mean anomaly */
|
---|
| 573 | double i;
|
---|
| 574 |
|
---|
| 575 | moon (mjed, &lam, &bet, &edistau, &ms, &md); /* mean ecliptic & EOD*/
|
---|
| 576 | sunpos (mjed, &lsn, &rsn, NULL); /* mean ecliptic & EOD*/
|
---|
| 577 |
|
---|
| 578 | op->s_hlong = (float)lam; /* save geo in helio fields */
|
---|
| 579 | op->s_hlat = (float)bet;
|
---|
| 580 |
|
---|
| 581 | /* find angular separation from sun */
|
---|
| 582 | elongation (lam, bet, lsn, &el);
|
---|
| 583 | op->s_elong = (float)raddeg(el); /* want degrees */
|
---|
| 584 |
|
---|
| 585 | /* solve triangle of earth, sun, and elongation for moon-sun dist */
|
---|
| 586 | op->s_sdist = (float) sqrt (edistau*edistau + rsn*rsn
|
---|
| 587 | - 2.0*edistau*rsn*cos(el));
|
---|
| 588 |
|
---|
| 589 | /* TODO: improve mag; this is based on a flat moon model. */
|
---|
[2551] | 590 | i = -12.7 + 2.5*(log10(PI) - log10(PI/2*(1+1.e-6-cos(el))))
|
---|
| 591 | + 5*log10(edistau/.0025) /* dist */;
|
---|
| 592 | set_smag (op, i);
|
---|
[1457] | 593 |
|
---|
| 594 | /* find phase -- allow for projection effects */
|
---|
| 595 | i = 0.1468*sin(el)*(1 - 0.0549*sin(md))/(1 - 0.0167*sin(ms));
|
---|
| 596 | op->s_phase = (float)((1+cos(PI-el-degrad(i)))/2*100);
|
---|
| 597 |
|
---|
| 598 | /* fill moon's ra/dec, alt/az in op and update for topo dist */
|
---|
| 599 | cir_pos (np, bet, lam, &edistau, op);
|
---|
| 600 |
|
---|
| 601 | op->s_edist = (float)edistau;
|
---|
| 602 | op->s_size = (float)(3600*2.0*raddeg(asin(MRAD/MAU/edistau)));
|
---|
| 603 | /* moon angular dia, seconds */
|
---|
| 604 |
|
---|
| 605 | return (0);
|
---|
| 606 | }
|
---|
| 607 |
|
---|
| 608 | /* fill in all of op->s_* stuff except s_size and s_mag.
|
---|
| 609 | * this is used for sol system objects (except sun and moon); never FIXED.
|
---|
| 610 | */
|
---|
| 611 | static void
|
---|
[2551] | 612 | cir_sky (
|
---|
| 613 | Now *np,
|
---|
| 614 | double lpd, /* heliocentric ecliptic longitude */
|
---|
| 615 | double psi, /* heliocentric ecliptic lat */
|
---|
| 616 | double rp, /* dist from sun */
|
---|
| 617 | double *rho, /* dist from earth: in as geo, back as geo or topo */
|
---|
| 618 | double lam, /* true geocentric ecliptic long */
|
---|
| 619 | double bet, /* true geocentric ecliptic lat */
|
---|
| 620 | double lsn, /* true geoc lng of sun */
|
---|
| 621 | double rsn, /* dist from sn to earth*/
|
---|
| 622 | Obj *op)
|
---|
[1457] | 623 | {
|
---|
| 624 | double el; /* elongation */
|
---|
| 625 | double f; /* fractional phase from earth */
|
---|
| 626 |
|
---|
| 627 | /* compute elongation and phase */
|
---|
| 628 | elongation (lam, bet, lsn, &el);
|
---|
| 629 | el = raddeg(el);
|
---|
| 630 | op->s_elong = (float)el;
|
---|
| 631 | f = 0.25 * ((rp+ *rho)*(rp+ *rho) - rsn*rsn)/(rp* *rho);
|
---|
| 632 | op->s_phase = (float)(f*100.0); /* percent */
|
---|
| 633 |
|
---|
| 634 | /* set heliocentric long/lat; mean ecliptic and EOD */
|
---|
| 635 | op->s_hlong = (float)lpd;
|
---|
| 636 | op->s_hlat = (float)psi;
|
---|
| 637 |
|
---|
| 638 | /* fill solar sys body's ra/dec, alt/az in op */
|
---|
| 639 | cir_pos (np, bet, lam, rho, op); /* updates rho */
|
---|
| 640 |
|
---|
| 641 | /* set earth/planet and sun/planet distance */
|
---|
| 642 | op->s_edist = (float)(*rho);
|
---|
| 643 | op->s_sdist = (float)rp;
|
---|
| 644 | }
|
---|
| 645 |
|
---|
| 646 | /* fill equatoreal and horizontal op-> fields; stern
|
---|
| 647 | *
|
---|
| 648 | * input: lam/bet/rho geocentric mean ecliptic and equinox of day
|
---|
| 649 | *
|
---|
| 650 | * algorithm at EOD:
|
---|
| 651 | * ecl_eq --> ra/dec geocentric mean equatoreal EOD (via mean obliq)
|
---|
| 652 | * deflect --> ra/dec relativistic deflection
|
---|
| 653 | * nut_eq --> ra/dec geocentric true equatoreal EOD
|
---|
| 654 | * ab_eq --> ra/dec geocentric apparent equatoreal EOD
|
---|
| 655 | * if (PREF_GEO) --> output
|
---|
| 656 | * ta_par --> ra/dec topocentric apparent equatoreal EOD
|
---|
| 657 | * if (!PREF_GEO) --> output
|
---|
| 658 | * hadec_aa --> alt/az topocentric horizontal
|
---|
| 659 | * refract --> alt/az observed --> output
|
---|
| 660 | *
|
---|
[2551] | 661 | * algorithm at fixed equinox:
|
---|
[1457] | 662 | * ecl_eq --> ra/dec geocentric mean equatoreal EOD (via mean obliq)
|
---|
| 663 | * deflect --> ra/dec relativistic deflection [for alt/az only]
|
---|
| 664 | * nut_eq --> ra/dec geocentric true equatoreal EOD [for aa only]
|
---|
| 665 | * ab_eq --> ra/dec geocentric apparent equatoreal EOD [for aa only]
|
---|
| 666 | * ta_par --> ra/dec topocentric apparent equatoreal EOD
|
---|
| 667 | * precess --> ra/dec topocentric equatoreal fixed equinox [eq only]
|
---|
| 668 | * --> output
|
---|
| 669 | * hadec_aa --> alt/az topocentric horizontal
|
---|
| 670 | * refract --> alt/az observed --> output
|
---|
| 671 | */
|
---|
| 672 | static void
|
---|
[2551] | 673 | cir_pos (
|
---|
| 674 | Now *np,
|
---|
| 675 | double bet, /* geo lat (mean ecliptic of date) */
|
---|
| 676 | double lam, /* geo long (mean ecliptic of date) */
|
---|
| 677 | double *rho, /* in: geocentric dist in AU; out: geo- or topocentic dist */
|
---|
| 678 | Obj *op) /* object to set s_ra/dec as per equinox */
|
---|
[1457] | 679 | {
|
---|
| 680 | double ra, dec; /* apparent ra/dec, corrected for nut/ab */
|
---|
| 681 | double tra, tdec; /* astrometric ra/dec, no nut/ab */
|
---|
| 682 | double lsn, rsn; /* solar geocentric (mean ecliptic of date) */
|
---|
| 683 | double ha_in, ha_out; /* local hour angle before/after parallax */
|
---|
| 684 | double dec_out; /* declination after parallax */
|
---|
| 685 | double dra, ddec; /* parallax correction */
|
---|
| 686 | double alt, az; /* current alt, az */
|
---|
| 687 | double lst; /* local sidereal time */
|
---|
| 688 | double rho_topo; /* topocentric distance in earth radii */
|
---|
| 689 |
|
---|
| 690 | /* convert to equatoreal [mean equator, with mean obliquity] */
|
---|
[1719] | 691 | ecl_eq (mjed, bet, lam, &ra, &dec);
|
---|
[1457] | 692 | tra = ra; /* keep mean coordinates */
|
---|
| 693 | tdec = dec;
|
---|
| 694 |
|
---|
| 695 | /* get sun position */
|
---|
| 696 | sunpos(mjed, &lsn, &rsn, NULL);
|
---|
| 697 |
|
---|
| 698 | /* allow for relativistic light bending near the sun.
|
---|
| 699 | * (avoid calling deflect() for the sun itself).
|
---|
| 700 | */
|
---|
| 701 | if (!is_planet(op,SUN) && !is_planet(op,MOON))
|
---|
[1719] | 702 | deflect (mjed, op->s_hlong, op->s_hlat, lsn, rsn, *rho, &ra, &dec);
|
---|
[1457] | 703 |
|
---|
| 704 | /* correct ra/dec to form geocentric apparent */
|
---|
[1719] | 705 | nut_eq (mjed, &ra, &dec);
|
---|
[1457] | 706 | if (!is_planet(op,MOON))
|
---|
[1719] | 707 | ab_eq (mjed, lsn, &ra, &dec);
|
---|
[1457] | 708 | op->s_gaera = (float)ra;
|
---|
| 709 | op->s_gaedec = (float)dec;
|
---|
| 710 |
|
---|
| 711 | /* find parallax correction for equatoreal coords */
|
---|
| 712 | now_lst (np, &lst);
|
---|
| 713 | ha_in = hrrad(lst) - ra;
|
---|
| 714 | rho_topo = *rho * MAU/ERAD; /* convert to earth radii */
|
---|
| 715 | ta_par (ha_in, dec, lat, elev, &rho_topo, &ha_out, &dec_out);
|
---|
| 716 |
|
---|
| 717 | /* transform into alt/az and apply refraction */
|
---|
| 718 | hadec_aa (lat, ha_out, dec_out, &alt, &az);
|
---|
| 719 | refract (pressure, temp, alt, &alt);
|
---|
| 720 | op->s_alt = alt;
|
---|
| 721 | op->s_az = az;
|
---|
| 722 |
|
---|
| 723 | /* Get parallax differences and apply to apparent or astrometric place
|
---|
| 724 | * as needed. For the astrometric place, rotating the CORRECTIONS
|
---|
| 725 | * back from the nutated equator to the mean equator will be
|
---|
| 726 | * neglected. This is an effect of about 0.1" at moon distance.
|
---|
| 727 | * We currently don't have an inverse nutation rotation.
|
---|
| 728 | */
|
---|
| 729 | if (pref_get(PREF_EQUATORIAL) == PREF_GEO) {
|
---|
| 730 | /* no topo corrections to eq. coords */
|
---|
| 731 | dra = ddec = 0.0;
|
---|
| 732 | } else {
|
---|
| 733 | dra = ha_in - ha_out; /* ra sign is opposite of ha */
|
---|
| 734 | ddec = dec_out - dec;
|
---|
| 735 | *rho = rho_topo * ERAD/MAU; /* return topocentric distance in AU */
|
---|
| 736 | }
|
---|
| 737 |
|
---|
| 738 | /* fill in ra/dec fields */
|
---|
| 739 | if (epoch == EOD) { /* apparent geo/topocentric */
|
---|
| 740 | ra = ra + dra;
|
---|
| 741 | dec = dec + ddec;
|
---|
| 742 | } else { /* astrometric geo/topocent */
|
---|
| 743 | ra = tra + dra;
|
---|
| 744 | dec = tdec + ddec;
|
---|
[1719] | 745 | precess (mjed, epoch, &ra, &dec);
|
---|
[1457] | 746 | }
|
---|
| 747 | range(&ra, 2*PI);
|
---|
| 748 | op->s_ra = (float)ra;
|
---|
| 749 | op->s_dec = (float)dec;
|
---|
| 750 | }
|
---|
| 751 |
|
---|
| 752 | /* given geocentric ecliptic longitude and latitude, lam and bet, of some object
|
---|
| 753 | * and the longitude of the sun, lsn, find the elongation, el. this is the
|
---|
| 754 | * actual angular separation of the object from the sun, not just the difference
|
---|
| 755 | * in the longitude. the sign, however, IS set simply as a test on longitude
|
---|
| 756 | * such that el will be >0 for an evening object <0 for a morning object.
|
---|
| 757 | * to understand the test for el sign, draw a graph with lam going from 0-2*PI
|
---|
| 758 | * down the vertical axis, lsn going from 0-2*PI across the hor axis. then
|
---|
| 759 | * define the diagonal regions bounded by the lines lam=lsn+PI, lam=lsn and
|
---|
| 760 | * lam=lsn-PI. the "morning" regions are any values to the lower left of the
|
---|
| 761 | * first line and bounded within the second pair of lines.
|
---|
| 762 | * all angles in radians.
|
---|
| 763 | */
|
---|
| 764 | static void
|
---|
[2551] | 765 | elongation (double lam, double bet, double lsn, double *el)
|
---|
[1457] | 766 | {
|
---|
| 767 | *el = acos(cos(bet)*cos(lam-lsn));
|
---|
| 768 | if (lam>lsn+PI || (lam>lsn-PI && lam<lsn)) *el = - *el;
|
---|
| 769 | }
|
---|
| 770 |
|
---|
| 771 | /* apply relativistic light bending correction to ra/dec; stern
|
---|
| 772 | *
|
---|
| 773 | * The algorithm is from:
|
---|
| 774 | * Mean and apparent place computations in the new IAU
|
---|
| 775 | * system. III - Apparent, topocentric, and astrometric
|
---|
| 776 | * places of planets and stars
|
---|
| 777 | * KAPLAN, G. H.; HUGHES, J. A.; SEIDELMANN, P. K.;
|
---|
| 778 | * SMITH, C. A.; YALLOP, B. D.
|
---|
| 779 | * Astronomical Journal (ISSN 0004-6256), vol. 97, April 1989, p. 1197-1210.
|
---|
| 780 | *
|
---|
| 781 | * This article is a very good collection of formulea for geocentric and
|
---|
| 782 | * topocentric place calculation in general. The apparent and
|
---|
| 783 | * astrometric place calculation in this file currently does not follow
|
---|
| 784 | * the strict algorithm from this paper and hence is not fully correct.
|
---|
| 785 | * The entire calculation is currently based on the rotating EOD frame and
|
---|
| 786 | * not the "inertial" J2000 frame.
|
---|
| 787 | */
|
---|
| 788 | static void
|
---|
[2551] | 789 | deflect (
|
---|
| 790 | double mjd1, /* equinox */
|
---|
| 791 | double lpd, double psi, /* heliocentric ecliptical long / lat */
|
---|
| 792 | double rsn, double lsn, /* distance and longitude of sun */
|
---|
| 793 | double rho, /* geocentric distance */
|
---|
| 794 | double *ra, double *dec)/* geocentric equatoreal */
|
---|
[1457] | 795 | {
|
---|
| 796 | double hra, hdec; /* object heliocentric equatoreal */
|
---|
| 797 | double el; /* HELIOCENTRIC elongation object--earth */
|
---|
| 798 | double g1, g2; /* relativistic weights */
|
---|
| 799 | double u[3]; /* object geocentric cartesian */
|
---|
| 800 | double q[3]; /* object heliocentric cartesian unit vect */
|
---|
| 801 | double e[3]; /* earth heliocentric cartesian unit vect */
|
---|
| 802 | double qe, uq, eu; /* scalar products */
|
---|
| 803 | int i; /* counter */
|
---|
| 804 |
|
---|
| 805 | #define G 1.32712438e20 /* heliocentric grav const; in m^3*s^-2 */
|
---|
| 806 | #define c 299792458.0 /* speed of light in m/s */
|
---|
| 807 |
|
---|
| 808 | elongation(lpd, psi, lsn-PI, &el);
|
---|
| 809 | el = fabs(el);
|
---|
[2641] | 810 | /* only continue if object is within about 10 deg around the sun,
|
---|
| 811 | * not obscured by the sun's disc (radius 0.25 deg) and farther away
|
---|
| 812 | * than the sun.
|
---|
[1457] | 813 | *
|
---|
| 814 | * precise geocentric deflection is: g1 * tan(el/2)
|
---|
| 815 | * radially outwards from sun; the vector munching below
|
---|
| 816 | * just applys this component-wise
|
---|
| 817 | * Note: el = HELIOCENTRIC elongation.
|
---|
| 818 | * g1 is always about 0.004 arc seconds
|
---|
| 819 | * g2 varies from 0 (highest contribution) to 2
|
---|
| 820 | */
|
---|
[2641] | 821 | if (el<degrad(170) || el>degrad(179.75) || rho<rsn) return;
|
---|
[1457] | 822 |
|
---|
| 823 | /* get cartesian vectors */
|
---|
| 824 | sphcart(*ra, *dec, rho, u, u+1, u+2);
|
---|
| 825 |
|
---|
| 826 | ecl_eq(mjd1, psi, lpd, &hra, &hdec);
|
---|
| 827 | sphcart(hra, hdec, 1.0, q, q+1, q+2);
|
---|
| 828 |
|
---|
| 829 | ecl_eq(mjd1, 0.0, lsn-PI, &hra, &hdec);
|
---|
| 830 | sphcart(hra, hdec, 1.0, e, e+1, e+2);
|
---|
| 831 |
|
---|
| 832 | /* evaluate scalar products */
|
---|
| 833 | qe = uq = eu = 0.0;
|
---|
| 834 | for(i=0; i<=2; ++i) {
|
---|
| 835 | qe += q[i]*e[i];
|
---|
| 836 | uq += u[i]*q[i];
|
---|
| 837 | eu += e[i]*u[i];
|
---|
| 838 | }
|
---|
| 839 |
|
---|
| 840 | g1 = 2*G/(c*c*MAU)/rsn;
|
---|
| 841 | g2 = 1 + qe;
|
---|
| 842 |
|
---|
| 843 | /* now deflect geocentric vector */
|
---|
| 844 | g1 /= g2;
|
---|
| 845 | for(i=0; i<=2; ++i)
|
---|
| 846 | u[i] += g1*(uq*e[i] - eu*q[i]);
|
---|
| 847 |
|
---|
| 848 | /* back to spherical */
|
---|
| 849 | cartsph(u[0], u[1], u[2], ra, dec, &rho); /* rho thrown away */
|
---|
| 850 | }
|
---|
| 851 |
|
---|
| 852 | /* estimate size in arc seconds @ 1AU from absolute magnitude, H, and assuming
|
---|
| 853 | * an albedo of 0.1. With this assumption an object with diameter of 1500m
|
---|
| 854 | * has an absolute mag of 18.
|
---|
| 855 | */
|
---|
| 856 | static double
|
---|
[2551] | 857 | h_albsize (double H)
|
---|
[1457] | 858 | {
|
---|
| 859 | return (3600*raddeg(.707*1500*pow(2.51,(18-H)/2)/MAU));
|
---|
| 860 | }
|
---|
| 861 |
|
---|
| 862 | /* For RCS Only -- Do Not Edit */
|
---|
[3654] | 863 | static char *rcsid[2] = {(char *)rcsid, "@(#) $RCSfile: circum.c,v $ $Date: 2009-07-16 10:34:36 $ $Revision: 1.9 $ $Name: not supported by cvs2svn $"};
|
---|