| 1 | /* given a Now and an Obj with the object definition portion filled in, | 
|---|
| 2 | * fill in the sky position (s_*) portions. | 
|---|
| 3 | * calculation of positional coordinates reworked by | 
|---|
| 4 | * Michael Sternberg <sternberg@physik.tu-chemnitz.de> | 
|---|
| 5 | *  3/11/98: deflect was using op->s_hlong before being set in cir_pos(). | 
|---|
| 6 | *  4/19/98: just edit a comment | 
|---|
| 7 | */ | 
|---|
| 8 |  | 
|---|
| 9 | #include <stdio.h> | 
|---|
| 10 | #include <math.h> | 
|---|
| 11 | #if defined(__STDC__) | 
|---|
| 12 | #include <stdlib.h> | 
|---|
| 13 | #endif | 
|---|
| 14 |  | 
|---|
| 15 | #include "P_.h" | 
|---|
| 16 | #include "astro.h" | 
|---|
| 17 | #include "circum.h" | 
|---|
| 18 | #include "preferences.h" | 
|---|
| 19 |  | 
|---|
| 20 |  | 
|---|
| 21 | static int obj_planet P_((Now *np, Obj *op)); | 
|---|
| 22 | static int obj_fixed P_((Now *np, Obj *op)); | 
|---|
| 23 | static int obj_elliptical P_((Now *np, Obj *op)); | 
|---|
| 24 | static int obj_hyperbolic P_((Now *np, Obj *op)); | 
|---|
| 25 | static int obj_parabolic P_((Now *np, Obj *op)); | 
|---|
| 26 | static int sun_cir P_((Now *np, Obj *op)); | 
|---|
| 27 | static int moon_cir P_((Now *np, Obj *op)); | 
|---|
| 28 | static void cir_sky P_((Now *np, double lpd, double psi, double rp, double *rho, | 
|---|
| 29 | double lam, double bet, double lsn, double rsn, Obj *op)); | 
|---|
| 30 | static void cir_pos P_((Now *np, double bet, double lam, double *rho, Obj *op)); | 
|---|
| 31 | static void elongation P_((double lam, double bet, double lsn, double *el)); | 
|---|
| 32 | static void deflect P_((double mjd1, double lpd, double psi, double rsn, | 
|---|
| 33 | double lsn, double rho, double *ra, double *dec)); | 
|---|
| 34 | static double h_albsize P_((double H)); | 
|---|
| 35 |  | 
|---|
| 36 | /* given a Now and an Obj, fill in the approprirate s_* fields within Obj. | 
|---|
| 37 | * return 0 if all ok, else -1. | 
|---|
| 38 | */ | 
|---|
| 39 | int | 
|---|
| 40 | obj_cir (np, op) | 
|---|
| 41 | Now *np; | 
|---|
| 42 | Obj *op; | 
|---|
| 43 | { | 
|---|
| 44 | switch (op->o_type) { | 
|---|
| 45 | case FIXED:      return (obj_fixed (np, op)); | 
|---|
| 46 | case ELLIPTICAL: return (obj_elliptical (np, op)); | 
|---|
| 47 | case HYPERBOLIC: return (obj_hyperbolic (np, op)); | 
|---|
| 48 | case PARABOLIC:  return (obj_parabolic (np, op)); | 
|---|
| 49 | case EARTHSAT:   return (obj_earthsat (np, op)); | 
|---|
| 50 | case PLANET:     return (obj_planet (np, op)); | 
|---|
| 51 | default: | 
|---|
| 52 | printf ("obj_cir() called with type %d\n", op->o_type); | 
|---|
| 53 | exit(1); | 
|---|
| 54 | return (-1);        /* just for lint */ | 
|---|
| 55 | } | 
|---|
| 56 | } | 
|---|
| 57 |  | 
|---|
| 58 | static int | 
|---|
| 59 | obj_planet (np, op) | 
|---|
| 60 | Now *np; | 
|---|
| 61 | Obj *op; | 
|---|
| 62 | { | 
|---|
| 63 | double lsn, rsn;        /* true geoc lng of sun; dist from sn to earth*/ | 
|---|
| 64 | double lpd, psi;        /* heliocentric ecliptic long and lat */ | 
|---|
| 65 | double rp;              /* dist from sun */ | 
|---|
| 66 | double rho;             /* dist from earth */ | 
|---|
| 67 | double lam, bet;        /* geocentric ecliptic long and lat */ | 
|---|
| 68 | double dia, mag;        /* angular diameter at 1 AU and magnitude */ | 
|---|
| 69 | int p; | 
|---|
| 70 |  | 
|---|
| 71 | /* validate code and check for a few special cases */ | 
|---|
| 72 | p = op->pl.pl_code; | 
|---|
| 73 | if (p < 0 || p > MOON) { | 
|---|
| 74 | printf ("unknown planet code: %d\n", p); | 
|---|
| 75 | exit(1); | 
|---|
| 76 | } | 
|---|
| 77 | else if (p == SUN) | 
|---|
| 78 | return (sun_cir (np, op)); | 
|---|
| 79 | else if (p == MOON) | 
|---|
| 80 | return (moon_cir (np, op)); | 
|---|
| 81 |  | 
|---|
| 82 | /* find solar ecliptical longitude and distance to sun from earth */ | 
|---|
| 83 | sunpos (mjed, &lsn, &rsn, 0); | 
|---|
| 84 |  | 
|---|
| 85 | /* find helio long/lat; sun/planet and earth/planet dist; ecliptic | 
|---|
| 86 | * long/lat; diameter and mag. | 
|---|
| 87 | */ | 
|---|
| 88 | plans(mjed, p, &lpd, &psi, &rp, &rho, &lam, &bet, &dia, &mag); | 
|---|
| 89 |  | 
|---|
| 90 | /* fill in all of op->s_* stuff except s_size and s_mag */ | 
|---|
| 91 | cir_sky (np, lpd, psi, rp, &rho, lam, bet, lsn, rsn, op); | 
|---|
| 92 |  | 
|---|
| 93 | /* set magnitude and angular size */ | 
|---|
| 94 | set_smag (op, mag); | 
|---|
| 95 | op->s_size = (float)(dia/rho); | 
|---|
| 96 |  | 
|---|
| 97 | return (0); | 
|---|
| 98 | } | 
|---|
| 99 |  | 
|---|
| 100 | static int | 
|---|
| 101 | obj_fixed (np, op) | 
|---|
| 102 | Now *np; | 
|---|
| 103 | Obj *op; | 
|---|
| 104 | { | 
|---|
| 105 | double lsn, rsn;        /* true geoc lng of sun, dist from sn to earth*/ | 
|---|
| 106 | double lam, bet;        /* geocentric ecliptic long and lat */ | 
|---|
| 107 | double ha;              /* local hour angle */ | 
|---|
| 108 | double el;              /* elongation */ | 
|---|
| 109 | double alt, az;         /* current alt, az */ | 
|---|
| 110 | double ra, dec;         /* ra and dec at epoch of date */ | 
|---|
| 111 | double lst; | 
|---|
| 112 |  | 
|---|
| 113 | if (epoch != EOD && (float)epoch != op->f_epoch) { | 
|---|
| 114 | /* want a certain epoch -- if it's not what the database is at | 
|---|
| 115 | * we change the original to save time next time assuming the | 
|---|
| 116 | * user is likely to stick with this for a while. | 
|---|
| 117 | */ | 
|---|
| 118 | double tra = op->f_RA, tdec = op->f_dec; | 
|---|
| 119 | float tepoch = (float)epoch;        /* compare w/float precision */ | 
|---|
| 120 | precess (op->f_epoch, tepoch, &tra, &tdec); | 
|---|
| 121 | op->f_epoch = tepoch; | 
|---|
| 122 | op->f_RA = (float)tra; | 
|---|
| 123 | op->f_dec = (float)tdec; | 
|---|
| 124 | } | 
|---|
| 125 |  | 
|---|
| 126 | /* set ra/dec to astrometric @ epoch of date */ | 
|---|
| 127 | ra = op->f_RA; | 
|---|
| 128 | dec = op->f_dec; | 
|---|
| 129 | precess (op->f_epoch, mjed, &ra, &dec); | 
|---|
| 130 |  | 
|---|
| 131 | /* convert equatoreal ra/dec to mean geocentric ecliptic lat/long */ | 
|---|
| 132 | eq_ecl (mjed, ra, dec, &bet, &lam); | 
|---|
| 133 |  | 
|---|
| 134 | /* find solar ecliptical long.(mean equinox) and distance from earth */ | 
|---|
| 135 | sunpos (mjed, &lsn, &rsn, NULL); | 
|---|
| 136 |  | 
|---|
| 137 | /* allow for relativistic light bending near the sun */ | 
|---|
| 138 | deflect (mjed, lam, bet, lsn, rsn, 1e10, &ra, &dec); | 
|---|
| 139 |  | 
|---|
| 140 | /* TODO: correction for annual parallax would go here */ | 
|---|
| 141 |  | 
|---|
| 142 | /* correct EOD equatoreal for nutation/aberation to form apparent | 
|---|
| 143 | * geocentric | 
|---|
| 144 | */ | 
|---|
| 145 | nut_eq(mjed, &ra, &dec); | 
|---|
| 146 | ab_eq(mjed, lsn, &ra, &dec); | 
|---|
| 147 | op->s_gaera = (float)ra; | 
|---|
| 148 | op->s_gaedec = (float)dec; | 
|---|
| 149 |  | 
|---|
| 150 | /* set s_ra/dec -- apparent if EOD else astrometric */ | 
|---|
| 151 | if (epoch == EOD) { | 
|---|
| 152 | op->s_ra = (float)ra; | 
|---|
| 153 | op->s_dec = (float)dec; | 
|---|
| 154 | } else { | 
|---|
| 155 | /* annual parallax at time mjd is to be added here, too, but | 
|---|
| 156 | * technically in the frame of epoch (usually different from mjd) | 
|---|
| 157 | */ | 
|---|
| 158 | op->s_ra = op->f_RA;        /* already precessed */ | 
|---|
| 159 | op->s_dec = op->f_dec; | 
|---|
| 160 | } | 
|---|
| 161 |  | 
|---|
| 162 | /* compute elongation from ecliptic long/lat and sun geocentric long */ | 
|---|
| 163 | elongation (lam, bet, lsn, &el); | 
|---|
| 164 | el = raddeg(el); | 
|---|
| 165 | op->s_elong = (float)el; | 
|---|
| 166 |  | 
|---|
| 167 | /* these are really the same fields ... | 
|---|
| 168 | op->s_mag = op->f_mag; | 
|---|
| 169 | op->s_size = op->f_size; | 
|---|
| 170 | */ | 
|---|
| 171 |  | 
|---|
| 172 | /* alt, az: correct for refraction; use eod ra/dec. */ | 
|---|
| 173 | now_lst (np, &lst); | 
|---|
| 174 | ha = hrrad(lst) - ra; | 
|---|
| 175 | hadec_aa (lat, ha, dec, &alt, &az); | 
|---|
| 176 | refract (pressure, temp, alt, &alt); | 
|---|
| 177 | op->s_alt = alt; | 
|---|
| 178 | op->s_az = az; | 
|---|
| 179 |  | 
|---|
| 180 | return (0); | 
|---|
| 181 | } | 
|---|
| 182 |  | 
|---|
| 183 | /* compute sky circumstances of an object in heliocentric elliptic orbit at *np. | 
|---|
| 184 | */ | 
|---|
| 185 | static int | 
|---|
| 186 | obj_elliptical (np, op) | 
|---|
| 187 | Now *np; | 
|---|
| 188 | Obj *op; | 
|---|
| 189 | { | 
|---|
| 190 | double lsn, rsn;        /* true geoc lng of sun; dist from sn to earth*/ | 
|---|
| 191 | double dt;              /* light travel time to object */ | 
|---|
| 192 | double lg;              /* helio long of earth */ | 
|---|
| 193 | double nu;              /* true anomaly */ | 
|---|
| 194 | double rp=0;            /* distance from the sun */ | 
|---|
| 195 | double lo, slo, clo;    /* angle from ascending node */ | 
|---|
| 196 | double inc;             /* inclination */ | 
|---|
| 197 | double psi=0;           /* heliocentric latitude */ | 
|---|
| 198 | double spsi=0, cpsi=0;  /* trig of heliocentric latitude */ | 
|---|
| 199 | double lpd;             /* heliocentric longitude */ | 
|---|
| 200 | double rho=0;           /* distance from the Earth */ | 
|---|
| 201 | double om;              /* arg of perihelion */ | 
|---|
| 202 | double Om;              /* long of ascending node. */ | 
|---|
| 203 | double lam;             /* geocentric ecliptic longitude */ | 
|---|
| 204 | double bet;             /* geocentric ecliptic latitude */ | 
|---|
| 205 | double ll=0, sll, cll;  /* helio angle between object and earth */ | 
|---|
| 206 | double mag;             /* magnitude */ | 
|---|
| 207 | double e_n;             /* mean daily motion */ | 
|---|
| 208 | double tp;              /* time from perihelion (days) */ | 
|---|
| 209 | double rpd=0; | 
|---|
| 210 | double y; | 
|---|
| 211 | int pass; | 
|---|
| 212 |  | 
|---|
| 213 | /* find location of earth from sun now */ | 
|---|
| 214 | sunpos (mjed, &lsn, &rsn, 0); | 
|---|
| 215 | lg = lsn + PI; | 
|---|
| 216 |  | 
|---|
| 217 | /* mean daily motion is derived fro mean distance */ | 
|---|
| 218 | e_n = 0.9856076686/pow((double)op->e_a, 1.5); | 
|---|
| 219 |  | 
|---|
| 220 | /* correct for light time by computing position at time mjd, then | 
|---|
| 221 | *   again at mjd-dt, where | 
|---|
| 222 | *   dt = time it takes light to travel earth-object distance. | 
|---|
| 223 | */ | 
|---|
| 224 | dt = 0; | 
|---|
| 225 | for (pass = 0; pass < 2; pass++) { | 
|---|
| 226 |  | 
|---|
| 227 | reduce_elements (op->e_epoch, mjd-dt, degrad(op->e_inc), | 
|---|
| 228 | degrad (op->e_om), degrad (op->e_Om), | 
|---|
| 229 | &inc, &om, &Om); | 
|---|
| 230 |  | 
|---|
| 231 | tp = mjed - dt - (op->e_cepoch - op->e_M/e_n); | 
|---|
| 232 | vrc (&nu, &rp, tp, op->e_e, op->e_a*(1-op->e_e)); | 
|---|
| 233 | nu = degrad(nu); | 
|---|
| 234 | lo = nu + om; | 
|---|
| 235 | slo = sin(lo); | 
|---|
| 236 | clo = cos(lo); | 
|---|
| 237 | spsi = slo*sin(inc); | 
|---|
| 238 | y = slo*cos(inc); | 
|---|
| 239 | psi = asin(spsi); | 
|---|
| 240 | lpd = atan(y/clo)+Om; | 
|---|
| 241 | if (clo<0) lpd += PI; | 
|---|
| 242 | range (&lpd, 2*PI); | 
|---|
| 243 | cpsi = cos(psi); | 
|---|
| 244 | rpd = rp*cpsi; | 
|---|
| 245 | ll = lpd-lg; | 
|---|
| 246 | rho = sqrt(rsn*rsn+rp*rp-2*rsn*rp*cpsi*cos(ll)); | 
|---|
| 247 |  | 
|---|
| 248 | dt = rho*LTAU/3600.0/24.0;  /* light travel time, in days / AU */ | 
|---|
| 249 | } | 
|---|
| 250 |  | 
|---|
| 251 | /* compute sin and cos of ll */ | 
|---|
| 252 | sll = sin(ll); | 
|---|
| 253 | cll = cos(ll); | 
|---|
| 254 |  | 
|---|
| 255 | /* find geocentric ecliptic longitude and latitude */ | 
|---|
| 256 | if (rpd < rsn) | 
|---|
| 257 | lam = atan(-1*rpd*sll/(rsn-rpd*cll))+lg+PI; | 
|---|
| 258 | else | 
|---|
| 259 | lam = atan(rsn*sll/(rpd-rsn*cll))+lpd; | 
|---|
| 260 | range (&lam, 2*PI); | 
|---|
| 261 | bet = atan(rpd*spsi*sin(lam-lpd)/(cpsi*rsn*sll)); | 
|---|
| 262 |  | 
|---|
| 263 | /* fill in all of op->s_* stuff except s_size and s_mag */ | 
|---|
| 264 | cir_sky (np, lpd, psi, rp, &rho, lam, bet, lsn, rsn, op); | 
|---|
| 265 |  | 
|---|
| 266 | /* compute magnitude and size */ | 
|---|
| 267 | if (op->e_mag.whichm == MAG_HG) { | 
|---|
| 268 | /* the H and G parameters from the Astro. Almanac. | 
|---|
| 269 | */ | 
|---|
| 270 | if (op->e_size) | 
|---|
| 271 | op->s_size = (float)(op->e_size / rho); | 
|---|
| 272 | else { | 
|---|
| 273 | hg_mag (op->e_mag.m1, op->e_mag.m2, rp, rho, rsn, &mag); | 
|---|
| 274 | op->s_size = (float)(h_albsize (op->e_mag.m1)/rho); | 
|---|
| 275 |  | 
|---|
| 276 | } | 
|---|
| 277 | } else { | 
|---|
| 278 | /* the g/k model of comets */ | 
|---|
| 279 | gk_mag (op->e_mag.m1, op->e_mag.m2, rp, rho, &mag); | 
|---|
| 280 | op->s_size = (float)(op->e_size / rho); | 
|---|
| 281 | } | 
|---|
| 282 | set_smag (op, mag); | 
|---|
| 283 |  | 
|---|
| 284 | return (0); | 
|---|
| 285 | } | 
|---|
| 286 |  | 
|---|
| 287 | /* compute sky circumstances of an object in heliocentric hyperbolic orbit. | 
|---|
| 288 | */ | 
|---|
| 289 | static int | 
|---|
| 290 | obj_hyperbolic (np, op) | 
|---|
| 291 | Now *np; | 
|---|
| 292 | Obj *op; | 
|---|
| 293 | { | 
|---|
| 294 | double lsn, rsn;        /* true geoc lng of sun; dist from sn to earth*/ | 
|---|
| 295 | double dt;              /* light travel time to object */ | 
|---|
| 296 | double lg;              /* helio long of earth */ | 
|---|
| 297 | double nu;              /* true anomaly and eccentric anomaly */ | 
|---|
| 298 | double rp=0;            /* distance from the sun */ | 
|---|
| 299 | double lo, slo, clo;    /* angle from ascending node */ | 
|---|
| 300 | double inc;             /* inclination */ | 
|---|
| 301 | double psi=0;           /* heliocentric latitude */ | 
|---|
| 302 | double spsi=0, cpsi=0;  /* trig of heliocentric latitude */ | 
|---|
| 303 | double lpd;             /* heliocentric longitude */ | 
|---|
| 304 | double rho=0;           /* distance from the Earth */ | 
|---|
| 305 | double om;              /* arg of perihelion */ | 
|---|
| 306 | double Om;              /* long of ascending node. */ | 
|---|
| 307 | double lam;             /* geocentric ecliptic longitude */ | 
|---|
| 308 | double bet;             /* geocentric ecliptic latitude */ | 
|---|
| 309 | double e;               /* fast eccentricity */ | 
|---|
| 310 | double ll=0, sll, cll;  /* helio angle between object and earth */ | 
|---|
| 311 | double n;               /* mean daily motion */ | 
|---|
| 312 | double mag;             /* magnitude */ | 
|---|
| 313 | double a;               /* mean distance */ | 
|---|
| 314 | double tp;              /* time from perihelion (days) */ | 
|---|
| 315 | double rpd=0; | 
|---|
| 316 | double y; | 
|---|
| 317 | int pass; | 
|---|
| 318 |  | 
|---|
| 319 | /* find solar ecliptical longitude and distance to sun from earth */ | 
|---|
| 320 | sunpos (mjed, &lsn, &rsn, 0); | 
|---|
| 321 |  | 
|---|
| 322 | lg = lsn + PI; | 
|---|
| 323 | e = op->h_e; | 
|---|
| 324 | a = op->h_qp/(e - 1.0); | 
|---|
| 325 | n = .98563/sqrt(a*a*a); | 
|---|
| 326 |  | 
|---|
| 327 | /* correct for light time by computing position at time mjd, then | 
|---|
| 328 | *   again at mjd-dt, where | 
|---|
| 329 | *   dt = time it takes light to travel earth-object distance. | 
|---|
| 330 | */ | 
|---|
| 331 | dt = 0; | 
|---|
| 332 | for (pass = 0; pass < 2; pass++) { | 
|---|
| 333 |  | 
|---|
| 334 | reduce_elements (op->h_epoch, mjd-dt, degrad(op->h_inc), | 
|---|
| 335 | degrad (op->h_om), degrad (op->h_Om), | 
|---|
| 336 | &inc, &om, &Om); | 
|---|
| 337 |  | 
|---|
| 338 | tp = mjed - dt - op->h_ep; | 
|---|
| 339 | vrc (&nu, &rp, tp, op->h_e, op->h_qp); | 
|---|
| 340 | nu = degrad(nu); | 
|---|
| 341 | lo = nu + om; | 
|---|
| 342 | slo = sin(lo); | 
|---|
| 343 | clo = cos(lo); | 
|---|
| 344 | spsi = slo*sin(inc); | 
|---|
| 345 | y = slo*cos(inc); | 
|---|
| 346 | psi = asin(spsi); | 
|---|
| 347 | lpd = atan(y/clo)+Om; | 
|---|
| 348 | if (clo<0) lpd += PI; | 
|---|
| 349 | range (&lpd, 2*PI); | 
|---|
| 350 | cpsi = cos(psi); | 
|---|
| 351 | rpd = rp*cpsi; | 
|---|
| 352 | ll = lpd-lg; | 
|---|
| 353 | rho = sqrt(rsn*rsn+rp*rp-2*rsn*rp*cpsi*cos(ll)); | 
|---|
| 354 |  | 
|---|
| 355 | dt = rho*5.775518e-3;       /* light travel time, in days */ | 
|---|
| 356 | } | 
|---|
| 357 |  | 
|---|
| 358 | /* compute sin and cos of ll */ | 
|---|
| 359 | sll = sin(ll); | 
|---|
| 360 | cll = cos(ll); | 
|---|
| 361 |  | 
|---|
| 362 | /* find geocentric ecliptic longitude and latitude */ | 
|---|
| 363 | if (rpd < rsn) | 
|---|
| 364 | lam = atan(-1*rpd*sll/(rsn-rpd*cll))+lg+PI; | 
|---|
| 365 | else | 
|---|
| 366 | lam = atan(rsn*sll/(rpd-rsn*cll))+lpd; | 
|---|
| 367 | range (&lam, 2*PI); | 
|---|
| 368 | bet = atan(rpd*spsi*sin(lam-lpd)/(cpsi*rsn*sll)); | 
|---|
| 369 |  | 
|---|
| 370 | /* fill in all of op->s_* stuff except s_size and s_mag */ | 
|---|
| 371 | cir_sky (np, lpd, psi, rp, &rho, lam, bet, lsn, rsn, op); | 
|---|
| 372 |  | 
|---|
| 373 | /* compute magnitude and size */ | 
|---|
| 374 | gk_mag (op->h_g, op->h_k, rp, rho, &mag); | 
|---|
| 375 | set_smag (op, mag); | 
|---|
| 376 | op->s_size = (float)(op->h_size / rho); | 
|---|
| 377 |  | 
|---|
| 378 | return (0); | 
|---|
| 379 | } | 
|---|
| 380 |  | 
|---|
| 381 | /* compute sky circumstances of an object in heliocentric hyperbolic orbit. | 
|---|
| 382 | */ | 
|---|
| 383 | static int | 
|---|
| 384 | obj_parabolic (np, op) | 
|---|
| 385 | Now *np; | 
|---|
| 386 | Obj *op; | 
|---|
| 387 | { | 
|---|
| 388 | double lsn, rsn;        /* true geoc lng of sun; dist from sn to earth*/ | 
|---|
| 389 | double lam;             /* geocentric ecliptic longitude */ | 
|---|
| 390 | double bet;             /* geocentric ecliptic latitude */ | 
|---|
| 391 | double mag;             /* magnitude */ | 
|---|
| 392 | double inc, om, Om; | 
|---|
| 393 | double lpd, psi, rp, rho; | 
|---|
| 394 | double dt; | 
|---|
| 395 | int pass; | 
|---|
| 396 |  | 
|---|
| 397 | /* find solar ecliptical longitude and distance to sun from earth */ | 
|---|
| 398 | sunpos (mjed, &lsn, &rsn, 0); | 
|---|
| 399 |  | 
|---|
| 400 | /* two passes to correct lam and bet for light travel time. */ | 
|---|
| 401 | dt = 0.0; | 
|---|
| 402 | for (pass = 0; pass < 2; pass++) { | 
|---|
| 403 | reduce_elements (op->p_epoch, mjd-dt, degrad(op->p_inc), | 
|---|
| 404 | degrad(op->p_om), degrad(op->p_Om), &inc, &om, &Om); | 
|---|
| 405 | comet (mjed-dt, op->p_ep, inc, om, op->p_qp, Om, | 
|---|
| 406 | &lpd, &psi, &rp, &rho, &lam, &bet); | 
|---|
| 407 | dt = rho*LTAU/3600.0/24.0;  /* light travel time, in days / AU */ | 
|---|
| 408 | } | 
|---|
| 409 |  | 
|---|
| 410 | /* fill in all of op->s_* stuff except s_size and s_mag */ | 
|---|
| 411 | cir_sky (np, lpd, psi, rp, &rho, lam, bet, lsn, rsn, op); | 
|---|
| 412 |  | 
|---|
| 413 | /* compute magnitude and size */ | 
|---|
| 414 | gk_mag (op->p_g, op->p_k, rp, rho, &mag); | 
|---|
| 415 | set_smag (op, mag); | 
|---|
| 416 | op->s_size = (float)(op->p_size / rho); | 
|---|
| 417 |  | 
|---|
| 418 | return (0); | 
|---|
| 419 | } | 
|---|
| 420 |  | 
|---|
| 421 | /* find sun's circumstances now. | 
|---|
| 422 | */ | 
|---|
| 423 | static int | 
|---|
| 424 | sun_cir (np, op) | 
|---|
| 425 | Now *np; | 
|---|
| 426 | Obj *op; | 
|---|
| 427 | { | 
|---|
| 428 | double lsn, rsn;        /* true geoc lng of sun; dist from sn to earth*/ | 
|---|
| 429 | double bsn;             /* true latitude beta of sun */ | 
|---|
| 430 | double dhlong; | 
|---|
| 431 |  | 
|---|
| 432 | sunpos (mjed, &lsn, &rsn, &bsn);/* sun's true coordinates; mean ecl. */ | 
|---|
| 433 |  | 
|---|
| 434 | op->s_sdist = 0.0; | 
|---|
| 435 | op->s_elong = 0.0; | 
|---|
| 436 | op->s_phase = 100.0; | 
|---|
| 437 | set_smag (op, -26.8);   /* TODO */ | 
|---|
| 438 | dhlong = lsn-PI;        /* geo- to helio- centric */ | 
|---|
| 439 | range (&dhlong, 2*PI); | 
|---|
| 440 | op->s_hlong = (float)dhlong; | 
|---|
| 441 | op->s_hlat = (float)(-bsn); | 
|---|
| 442 |  | 
|---|
| 443 | /* fill sun's ra/dec, alt/az in op */ | 
|---|
| 444 | cir_pos (np, bsn, lsn, &rsn, op); | 
|---|
| 445 | op->s_edist = (float)rsn; | 
|---|
| 446 | op->s_size = (float)(raddeg(4.65242e-3/rsn)*3600*2); | 
|---|
| 447 |  | 
|---|
| 448 | return (0); | 
|---|
| 449 | } | 
|---|
| 450 |  | 
|---|
| 451 | /* find moon's circumstances now. | 
|---|
| 452 | */ | 
|---|
| 453 | static int | 
|---|
| 454 | moon_cir (np, op) | 
|---|
| 455 | Now *np; | 
|---|
| 456 | Obj *op; | 
|---|
| 457 | { | 
|---|
| 458 | double lsn, rsn;        /* true geoc lng of sun; dist from sn to earth*/ | 
|---|
| 459 | double lam;             /* geocentric ecliptic longitude */ | 
|---|
| 460 | double bet;             /* geocentric ecliptic latitude */ | 
|---|
| 461 | double edistau;         /* earth-moon dist, in au */ | 
|---|
| 462 | double el;              /* elongation, rads east */ | 
|---|
| 463 | double ms;              /* sun's mean anomaly */ | 
|---|
| 464 | double md;              /* moon's mean anomaly */ | 
|---|
| 465 | double i; | 
|---|
| 466 |  | 
|---|
| 467 | moon (mjed, &lam, &bet, &edistau, &ms, &md);    /* mean ecliptic & EOD*/ | 
|---|
| 468 | sunpos (mjed, &lsn, &rsn, NULL);                /* mean ecliptic & EOD*/ | 
|---|
| 469 |  | 
|---|
| 470 | op->s_hlong = (float)lam;               /* save geo in helio fields */ | 
|---|
| 471 | op->s_hlat = (float)bet; | 
|---|
| 472 |  | 
|---|
| 473 | /* find angular separation from sun */ | 
|---|
| 474 | elongation (lam, bet, lsn, &el); | 
|---|
| 475 | op->s_elong = (float)raddeg(el);                /* want degrees */ | 
|---|
| 476 |  | 
|---|
| 477 | /* solve triangle of earth, sun, and elongation for moon-sun dist */ | 
|---|
| 478 | op->s_sdist = (float) sqrt (edistau*edistau + rsn*rsn | 
|---|
| 479 | - 2.0*edistau*rsn*cos(el)); | 
|---|
| 480 |  | 
|---|
| 481 | /* TODO: improve mag; this is based on a flat moon model. */ | 
|---|
| 482 | set_smag (op, -12.7 + 2.5*(log10(PI) - log10(PI/2*(1+1.e-6-cos(el))))); | 
|---|
| 483 |  | 
|---|
| 484 | /* find phase -- allow for projection effects */ | 
|---|
| 485 | i = 0.1468*sin(el)*(1 - 0.0549*sin(md))/(1 - 0.0167*sin(ms)); | 
|---|
| 486 | op->s_phase = (float)((1+cos(PI-el-degrad(i)))/2*100); | 
|---|
| 487 |  | 
|---|
| 488 | /* fill moon's ra/dec, alt/az in op and update for topo dist */ | 
|---|
| 489 | cir_pos (np, bet, lam, &edistau, op); | 
|---|
| 490 |  | 
|---|
| 491 | op->s_edist = (float)edistau; | 
|---|
| 492 | op->s_size = (float)(3600*2.0*raddeg(asin(MRAD/MAU/edistau))); | 
|---|
| 493 | /* moon angular dia, seconds */ | 
|---|
| 494 |  | 
|---|
| 495 | return (0); | 
|---|
| 496 | } | 
|---|
| 497 |  | 
|---|
| 498 | /* fill in all of op->s_* stuff except s_size and s_mag. | 
|---|
| 499 | * this is used for sol system objects (except sun and moon); never FIXED. | 
|---|
| 500 | */ | 
|---|
| 501 | static void | 
|---|
| 502 | cir_sky (np, lpd, psi, rp, rho, lam, bet, lsn, rsn, op) | 
|---|
| 503 | Now *np; | 
|---|
| 504 | double lpd, psi;        /* heliocentric ecliptic long and lat */ | 
|---|
| 505 | double rp;              /* dist from sun */ | 
|---|
| 506 | double *rho;            /* dist from earth: in as geo, back as geo or topo */ | 
|---|
| 507 | double lam, bet;        /* true geocentric ecliptic long and lat */ | 
|---|
| 508 | double lsn, rsn;        /* true geoc lng of sun; dist from sn to earth*/ | 
|---|
| 509 | Obj *op; | 
|---|
| 510 | { | 
|---|
| 511 | double el;              /* elongation */ | 
|---|
| 512 | double f;               /* fractional phase from earth */ | 
|---|
| 513 |  | 
|---|
| 514 | /* compute elongation and phase */ | 
|---|
| 515 | elongation (lam, bet, lsn, &el); | 
|---|
| 516 | el = raddeg(el); | 
|---|
| 517 | op->s_elong = (float)el; | 
|---|
| 518 | f = 0.25 * ((rp+ *rho)*(rp+ *rho) - rsn*rsn)/(rp* *rho); | 
|---|
| 519 | op->s_phase = (float)(f*100.0); /* percent */ | 
|---|
| 520 |  | 
|---|
| 521 | /* set heliocentric long/lat; mean ecliptic and EOD */ | 
|---|
| 522 | op->s_hlong = (float)lpd; | 
|---|
| 523 | op->s_hlat = (float)psi; | 
|---|
| 524 |  | 
|---|
| 525 | /* fill solar sys body's ra/dec, alt/az in op */ | 
|---|
| 526 | cir_pos (np, bet, lam, rho, op);        /* updates rho */ | 
|---|
| 527 |  | 
|---|
| 528 | /* set earth/planet and sun/planet distance */ | 
|---|
| 529 | op->s_edist = (float)(*rho); | 
|---|
| 530 | op->s_sdist = (float)rp; | 
|---|
| 531 | } | 
|---|
| 532 |  | 
|---|
| 533 | /* fill equatoreal and horizontal op-> fields; stern | 
|---|
| 534 | * | 
|---|
| 535 | *    input:          lam/bet/rho geocentric mean ecliptic and equinox of day | 
|---|
| 536 | * | 
|---|
| 537 | * algorithm at EOD: | 
|---|
| 538 | *   ecl_eq     --> ra/dec      geocentric mean equatoreal EOD (via mean obliq) | 
|---|
| 539 | *   deflect    --> ra/dec        relativistic deflection | 
|---|
| 540 | *   nut_eq     --> ra/dec      geocentric true equatoreal EOD | 
|---|
| 541 | *   ab_eq      --> ra/dec      geocentric apparent equatoreal EOD | 
|---|
| 542 | *                                      if (PREF_GEO)  --> output | 
|---|
| 543 | *   ta_par     --> ra/dec      topocentric apparent equatoreal EOD | 
|---|
| 544 | *                                      if (!PREF_GEO)  --> output | 
|---|
| 545 | *   hadec_aa   --> alt/az      topocentric horizontal | 
|---|
| 546 | *   refract    --> alt/az      observed --> output | 
|---|
| 547 | * | 
|---|
| 548 | * algorithm at fixed epoch: | 
|---|
| 549 | *   ecl_eq     --> ra/dec      geocentric mean equatoreal EOD (via mean obliq) | 
|---|
| 550 | *   deflect    --> ra/dec        relativistic deflection [for alt/az only] | 
|---|
| 551 | *   nut_eq     --> ra/dec      geocentric true equatoreal EOD [for aa only] | 
|---|
| 552 | *   ab_eq      --> ra/dec      geocentric apparent equatoreal EOD [for aa only] | 
|---|
| 553 | *   ta_par     --> ra/dec      topocentric apparent equatoreal EOD | 
|---|
| 554 | *     precess  --> ra/dec      topocentric equatoreal fixed equinox [eq only] | 
|---|
| 555 | *                                      --> output | 
|---|
| 556 | *   hadec_aa   --> alt/az      topocentric horizontal | 
|---|
| 557 | *   refract    --> alt/az      observed --> output | 
|---|
| 558 | */ | 
|---|
| 559 | static void | 
|---|
| 560 | cir_pos (np, bet, lam, rho, op) | 
|---|
| 561 | Now *np; | 
|---|
| 562 | double bet, lam;/* geo lat/long (mean ecliptic of date) */ | 
|---|
| 563 | double *rho;    /* in: geocentric dist in AU; out: geo- or topocentic dist */ | 
|---|
| 564 | Obj *op;        /* object to set s_ra/dec as per epoch */ | 
|---|
| 565 | { | 
|---|
| 566 | double ra, dec;         /* apparent ra/dec, corrected for nut/ab */ | 
|---|
| 567 | double tra, tdec;       /* astrometric ra/dec, no nut/ab */ | 
|---|
| 568 | double lsn, rsn;        /* solar geocentric (mean ecliptic of date) */ | 
|---|
| 569 | double ha_in, ha_out;   /* local hour angle before/after parallax */ | 
|---|
| 570 | double dec_out;         /* declination after parallax */ | 
|---|
| 571 | double dra, ddec;       /* parallax correction */ | 
|---|
| 572 | double alt, az;         /* current alt, az */ | 
|---|
| 573 | double lst;             /* local sidereal time */ | 
|---|
| 574 | double rho_topo;        /* topocentric distance in earth radii */ | 
|---|
| 575 |  | 
|---|
| 576 | /* convert to equatoreal [mean equator, with mean obliquity] */ | 
|---|
| 577 | ecl_eq (mjed, bet, lam, &ra, &dec); | 
|---|
| 578 | tra = ra;       /* keep mean coordinates */ | 
|---|
| 579 | tdec = dec; | 
|---|
| 580 |  | 
|---|
| 581 | /* get sun position */ | 
|---|
| 582 | sunpos(mjed, &lsn, &rsn, NULL); | 
|---|
| 583 |  | 
|---|
| 584 | /* allow for relativistic light bending near the sun. | 
|---|
| 585 | * (avoid calling deflect() for the sun itself). | 
|---|
| 586 | */ | 
|---|
| 587 | if (!is_planet(op,SUN) && !is_planet(op,MOON)) | 
|---|
| 588 | deflect (mjed, op->s_hlong, op->s_hlat, lsn, rsn, *rho, &ra, &dec); | 
|---|
| 589 |  | 
|---|
| 590 | /* correct ra/dec to form geocentric apparent */ | 
|---|
| 591 | nut_eq (mjed, &ra, &dec); | 
|---|
| 592 | if (!is_planet(op,MOON)) | 
|---|
| 593 | ab_eq (mjed, lsn, &ra, &dec); | 
|---|
| 594 | op->s_gaera = (float)ra; | 
|---|
| 595 | op->s_gaedec = (float)dec; | 
|---|
| 596 |  | 
|---|
| 597 | /* find parallax correction for equatoreal coords */ | 
|---|
| 598 | now_lst (np, &lst); | 
|---|
| 599 | ha_in = hrrad(lst) - ra; | 
|---|
| 600 | rho_topo = *rho * MAU/ERAD;             /* convert to earth radii */ | 
|---|
| 601 | ta_par (ha_in, dec, lat, elev, &rho_topo, &ha_out, &dec_out); | 
|---|
| 602 |  | 
|---|
| 603 | /* transform into alt/az and apply refraction */ | 
|---|
| 604 | hadec_aa (lat, ha_out, dec_out, &alt, &az); | 
|---|
| 605 | refract (pressure, temp, alt, &alt); | 
|---|
| 606 | op->s_alt = alt; | 
|---|
| 607 | op->s_az = az; | 
|---|
| 608 |  | 
|---|
| 609 | /* Get parallax differences and apply to apparent or astrometric place | 
|---|
| 610 | * as needed.  For the astrometric place, rotating the CORRECTIONS | 
|---|
| 611 | * back from the nutated equator to the mean equator will be | 
|---|
| 612 | * neglected.  This is an effect of about 0.1" at moon distance. | 
|---|
| 613 | * We currently don't have an inverse nutation rotation. | 
|---|
| 614 | */ | 
|---|
| 615 | if (pref_get(PREF_EQUATORIAL) == PREF_GEO) { | 
|---|
| 616 | /* no topo corrections to eq. coords */ | 
|---|
| 617 | dra = ddec = 0.0; | 
|---|
| 618 | } else { | 
|---|
| 619 | dra = ha_in - ha_out;       /* ra sign is opposite of ha */ | 
|---|
| 620 | ddec = dec_out - dec; | 
|---|
| 621 | *rho = rho_topo * ERAD/MAU; /* return topocentric distance in AU */ | 
|---|
| 622 | } | 
|---|
| 623 |  | 
|---|
| 624 | /* fill in ra/dec fields */ | 
|---|
| 625 | if (epoch == EOD) {             /* apparent geo/topocentric */ | 
|---|
| 626 | ra = ra + dra; | 
|---|
| 627 | dec = dec + ddec; | 
|---|
| 628 | } else {                        /* astrometric geo/topocent */ | 
|---|
| 629 | ra = tra + dra; | 
|---|
| 630 | dec = tdec + ddec; | 
|---|
| 631 | precess (mjed, epoch, &ra, &dec); | 
|---|
| 632 | } | 
|---|
| 633 | range(&ra, 2*PI); | 
|---|
| 634 | op->s_ra = (float)ra; | 
|---|
| 635 | op->s_dec = (float)dec; | 
|---|
| 636 | } | 
|---|
| 637 |  | 
|---|
| 638 | /* given geocentric ecliptic longitude and latitude, lam and bet, of some object | 
|---|
| 639 | * and the longitude of the sun, lsn, find the elongation, el. this is the | 
|---|
| 640 | * actual angular separation of the object from the sun, not just the difference | 
|---|
| 641 | * in the longitude. the sign, however, IS set simply as a test on longitude | 
|---|
| 642 | * such that el will be >0 for an evening object <0 for a morning object. | 
|---|
| 643 | * to understand the test for el sign, draw a graph with lam going from 0-2*PI | 
|---|
| 644 | *   down the vertical axis, lsn going from 0-2*PI across the hor axis. then | 
|---|
| 645 | *   define the diagonal regions bounded by the lines lam=lsn+PI, lam=lsn and | 
|---|
| 646 | *   lam=lsn-PI. the "morning" regions are any values to the lower left of the | 
|---|
| 647 | *   first line and bounded within the second pair of lines. | 
|---|
| 648 | * all angles in radians. | 
|---|
| 649 | */ | 
|---|
| 650 | static void | 
|---|
| 651 | elongation (lam, bet, lsn, el) | 
|---|
| 652 | double lam, bet, lsn; | 
|---|
| 653 | double *el; | 
|---|
| 654 | { | 
|---|
| 655 | *el = acos(cos(bet)*cos(lam-lsn)); | 
|---|
| 656 | if (lam>lsn+PI || (lam>lsn-PI && lam<lsn)) *el = - *el; | 
|---|
| 657 | } | 
|---|
| 658 |  | 
|---|
| 659 | /* apply relativistic light bending correction to ra/dec; stern | 
|---|
| 660 | * | 
|---|
| 661 | * The algorithm is from: | 
|---|
| 662 | * Mean and apparent place computations in the new IAU | 
|---|
| 663 | * system. III - Apparent, topocentric, and astrometric | 
|---|
| 664 | * places of planets and stars | 
|---|
| 665 | * KAPLAN, G. H.;  HUGHES, J. A.;  SEIDELMANN, P. K.; | 
|---|
| 666 | * SMITH, C. A.;  YALLOP, B. D. | 
|---|
| 667 | * Astronomical Journal (ISSN 0004-6256), vol. 97, April 1989, p. 1197-1210. | 
|---|
| 668 | * | 
|---|
| 669 | * This article is a very good collection of formulea for geocentric and | 
|---|
| 670 | * topocentric place calculation in general.  The apparent and | 
|---|
| 671 | * astrometric place calculation in this file currently does not follow | 
|---|
| 672 | * the strict algorithm from this paper and hence is not fully correct. | 
|---|
| 673 | * The entire calculation is currently based on the rotating EOD frame and | 
|---|
| 674 | * not the "inertial" J2000 frame. | 
|---|
| 675 | */ | 
|---|
| 676 | static void | 
|---|
| 677 | deflect (mjd1, lpd, psi, lsn, rsn, rho, ra, dec) | 
|---|
| 678 | double mjd1;            /* epoch */ | 
|---|
| 679 | double lpd, psi;        /* heliocentric ecliptical long / lat */ | 
|---|
| 680 | double rsn, lsn;        /* distance and longitude of sun */ | 
|---|
| 681 | double rho;             /* geocentric distance */ | 
|---|
| 682 | double *ra, *dec;       /* geocentric equatoreal */ | 
|---|
| 683 | { | 
|---|
| 684 | double hra, hdec;       /* object heliocentric equatoreal */ | 
|---|
| 685 | double el;              /* HELIOCENTRIC elongation object--earth */ | 
|---|
| 686 | double g1, g2;          /* relativistic weights */ | 
|---|
| 687 | double u[3];            /* object geocentric cartesian */ | 
|---|
| 688 | double q[3];            /* object heliocentric cartesian unit vect */ | 
|---|
| 689 | double e[3];            /* earth heliocentric cartesian unit vect */ | 
|---|
| 690 | double qe, uq, eu;      /* scalar products */ | 
|---|
| 691 | int i;                  /* counter */ | 
|---|
| 692 |  | 
|---|
| 693 | #define G       1.32712438e20   /* heliocentric grav const; in m^3*s^-2 */ | 
|---|
| 694 | #define c       299792458.0     /* speed of light in m/s */ | 
|---|
| 695 |  | 
|---|
| 696 | elongation(lpd, psi, lsn-PI, &el); | 
|---|
| 697 | el = fabs(el); | 
|---|
| 698 | /* only continue if object is within about 10 deg around the sun | 
|---|
| 699 | * and not obscured by the sun's disc (radius 0.25 deg) | 
|---|
| 700 | * | 
|---|
| 701 | * precise geocentric deflection is:  g1 * tan(el/2) | 
|---|
| 702 | *      radially outwards from sun;  the vector munching below | 
|---|
| 703 | *      just applys this component-wise | 
|---|
| 704 | *      Note:   el = HELIOCENTRIC elongation. | 
|---|
| 705 | *              g1 is always about 0.004 arc seconds | 
|---|
| 706 | *              g2 varies from 0 (highest contribution) to 2 | 
|---|
| 707 | */ | 
|---|
| 708 | if (el<degrad(170) || el>degrad(179.75)) return; | 
|---|
| 709 |  | 
|---|
| 710 | /* get cartesian vectors */ | 
|---|
| 711 | sphcart(*ra, *dec, rho, u, u+1, u+2); | 
|---|
| 712 |  | 
|---|
| 713 | ecl_eq(mjd1, psi, lpd, &hra, &hdec); | 
|---|
| 714 | sphcart(hra, hdec, 1.0, q, q+1, q+2); | 
|---|
| 715 |  | 
|---|
| 716 | ecl_eq(mjd1, 0.0, lsn-PI, &hra, &hdec); | 
|---|
| 717 | sphcart(hra, hdec, 1.0, e, e+1, e+2); | 
|---|
| 718 |  | 
|---|
| 719 | /* evaluate scalar products */ | 
|---|
| 720 | qe = uq = eu = 0.0; | 
|---|
| 721 | for(i=0; i<=2; ++i) { | 
|---|
| 722 | qe += q[i]*e[i]; | 
|---|
| 723 | uq += u[i]*q[i]; | 
|---|
| 724 | eu += e[i]*u[i]; | 
|---|
| 725 | } | 
|---|
| 726 |  | 
|---|
| 727 | g1 = 2*G/(c*c*MAU)/rsn; | 
|---|
| 728 | g2 = 1 + qe; | 
|---|
| 729 |  | 
|---|
| 730 | /* now deflect geocentric vector */ | 
|---|
| 731 | g1 /= g2; | 
|---|
| 732 | for(i=0; i<=2; ++i) | 
|---|
| 733 | u[i] += g1*(uq*e[i] - eu*q[i]); | 
|---|
| 734 |  | 
|---|
| 735 | /* back to spherical */ | 
|---|
| 736 | cartsph(u[0], u[1], u[2], ra, dec, &rho);       /* rho thrown away */ | 
|---|
| 737 | } | 
|---|
| 738 |  | 
|---|
| 739 | /* estimate size in arc seconds @ 1AU from absolute magnitude, H, and assuming | 
|---|
| 740 | * an albedo of 0.1. With this assumption an object with diameter of 1500m | 
|---|
| 741 | * has an absolute mag of 18. | 
|---|
| 742 | */ | 
|---|
| 743 | static double | 
|---|
| 744 | h_albsize (H) | 
|---|
| 745 | double H; | 
|---|
| 746 | { | 
|---|
| 747 | return (3600*raddeg(.707*1500*pow(2.51,(18-H)/2)/MAU)); | 
|---|
| 748 | } | 
|---|
| 749 |  | 
|---|
| 750 | /* For RCS Only -- Do Not Edit */ | 
|---|
| 751 | static char *rcsid[2] = {(char *)rcsid, "@(#) $RCSfile: circum.c,v $ $Date: 2001-10-22 12:08:26 $ $Revision: 1.2 $ $Name: not supported by cvs2svn $"}; | 
|---|