1 | /* given a Now and an Obj with the object definition portion filled in,
|
---|
2 | * fill in the sky position (s_*) portions.
|
---|
3 | * calculation of positional coordinates reworked by
|
---|
4 | * Michael Sternberg <sternberg@physik.tu-chemnitz.de>
|
---|
5 | * 3/11/98: deflect was using op->s_hlong before being set in cir_pos().
|
---|
6 | * 4/19/98: just edit a comment
|
---|
7 | */
|
---|
8 |
|
---|
9 | #include <stdio.h>
|
---|
10 | #include <math.h>
|
---|
11 | #if defined(__STDC__)
|
---|
12 | #include <stdlib.h>
|
---|
13 | #endif
|
---|
14 |
|
---|
15 | #include "P_.h"
|
---|
16 | #include "astro.h"
|
---|
17 | #include "circum.h"
|
---|
18 | #include "preferences.h"
|
---|
19 |
|
---|
20 |
|
---|
21 | static int obj_planet P_((Now *np, Obj *op));
|
---|
22 | static int obj_fixed P_((Now *np, Obj *op));
|
---|
23 | static int obj_elliptical P_((Now *np, Obj *op));
|
---|
24 | static int obj_hyperbolic P_((Now *np, Obj *op));
|
---|
25 | static int obj_parabolic P_((Now *np, Obj *op));
|
---|
26 | static int sun_cir P_((Now *np, Obj *op));
|
---|
27 | static int moon_cir P_((Now *np, Obj *op));
|
---|
28 | static void cir_sky P_((Now *np, double lpd, double psi, double rp, double *rho,
|
---|
29 | double lam, double bet, double lsn, double rsn, Obj *op));
|
---|
30 | static void cir_pos P_((Now *np, double bet, double lam, double *rho, Obj *op));
|
---|
31 | static void elongation P_((double lam, double bet, double lsn, double *el));
|
---|
32 | static void deflect P_((double mjd1, double lpd, double psi, double rsn,
|
---|
33 | double lsn, double rho, double *ra, double *dec));
|
---|
34 | static double h_albsize P_((double H));
|
---|
35 |
|
---|
36 | /* given a Now and an Obj, fill in the approprirate s_* fields within Obj.
|
---|
37 | * return 0 if all ok, else -1.
|
---|
38 | */
|
---|
39 | int
|
---|
40 | obj_cir (np, op)
|
---|
41 | Now *np;
|
---|
42 | Obj *op;
|
---|
43 | {
|
---|
44 | switch (op->o_type) {
|
---|
45 | case FIXED: return (obj_fixed (np, op));
|
---|
46 | case ELLIPTICAL: return (obj_elliptical (np, op));
|
---|
47 | case HYPERBOLIC: return (obj_hyperbolic (np, op));
|
---|
48 | case PARABOLIC: return (obj_parabolic (np, op));
|
---|
49 | case EARTHSAT: return (obj_earthsat (np, op));
|
---|
50 | case PLANET: return (obj_planet (np, op));
|
---|
51 | default:
|
---|
52 | printf ("obj_cir() called with type %d\n", op->o_type);
|
---|
53 | exit(1);
|
---|
54 | return (-1); /* just for lint */
|
---|
55 | }
|
---|
56 | }
|
---|
57 |
|
---|
58 | static int
|
---|
59 | obj_planet (np, op)
|
---|
60 | Now *np;
|
---|
61 | Obj *op;
|
---|
62 | {
|
---|
63 | double lsn, rsn; /* true geoc lng of sun; dist from sn to earth*/
|
---|
64 | double lpd, psi; /* heliocentric ecliptic long and lat */
|
---|
65 | double rp; /* dist from sun */
|
---|
66 | double rho; /* dist from earth */
|
---|
67 | double lam, bet; /* geocentric ecliptic long and lat */
|
---|
68 | double dia, mag; /* angular diameter at 1 AU and magnitude */
|
---|
69 | double f; /* fractional phase from earth */
|
---|
70 | int p;
|
---|
71 |
|
---|
72 | /* validate code and check for a few special cases */
|
---|
73 | p = op->pl.pl_code;
|
---|
74 | if (p < 0 || p > MOON) {
|
---|
75 | printf ("unknown planet code: %d\n", p);
|
---|
76 | exit(1);
|
---|
77 | }
|
---|
78 | else if (p == SUN)
|
---|
79 | return (sun_cir (np, op));
|
---|
80 | else if (p == MOON)
|
---|
81 | return (moon_cir (np, op));
|
---|
82 |
|
---|
83 | /* find solar ecliptical longitude and distance to sun from earth */
|
---|
84 | sunpos (mjed, &lsn, &rsn, 0);
|
---|
85 |
|
---|
86 | /* find helio long/lat; sun/planet and earth/plant dist; ecliptic
|
---|
87 | * long/lat; diameter and mag.
|
---|
88 | */
|
---|
89 | plans(mjed, p, &lpd, &psi, &rp, &rho, &lam, &bet, &dia, &mag);
|
---|
90 |
|
---|
91 | /* fill in all of op->s_* stuff except s_size and s_mag */
|
---|
92 | cir_sky (np, lpd, psi, rp, &rho, lam, bet, lsn, rsn, op);
|
---|
93 |
|
---|
94 | /* compute magnitude and angular size */
|
---|
95 | f = op->s_phase ? 5*log10(rp*rho) - 5*log10(op->s_phase/100) : 100;
|
---|
96 | set_smag (op, mag+f);
|
---|
97 | op->s_size = (float)(dia/rho);
|
---|
98 |
|
---|
99 | return (0);
|
---|
100 | }
|
---|
101 |
|
---|
102 | static int
|
---|
103 | obj_fixed (np, op)
|
---|
104 | Now *np;
|
---|
105 | Obj *op;
|
---|
106 | {
|
---|
107 | double lsn, rsn; /* true geoc lng of sun, dist from sn to earth*/
|
---|
108 | double lam, bet; /* geocentric ecliptic long and lat */
|
---|
109 | double ha; /* local hour angle */
|
---|
110 | double el; /* elongation */
|
---|
111 | double alt, az; /* current alt, az */
|
---|
112 | double ra, dec; /* ra and dec at epoch of date */
|
---|
113 | double lst;
|
---|
114 |
|
---|
115 | if (epoch != EOD && (float)epoch != op->f_epoch) {
|
---|
116 | /* want a certain epoch -- if it's not what the database is at
|
---|
117 | * we change the original to save time next time assuming the
|
---|
118 | * user is likely to stick with this for a while.
|
---|
119 | */
|
---|
120 | double tra = op->f_RA, tdec = op->f_dec;
|
---|
121 | float tepoch = (float)epoch; /* compare w/float precision */
|
---|
122 | precess (op->f_epoch, tepoch, &tra, &tdec);
|
---|
123 | op->f_epoch = tepoch;
|
---|
124 | op->f_RA = (float)tra;
|
---|
125 | op->f_dec = (float)tdec;
|
---|
126 | }
|
---|
127 |
|
---|
128 | /* set ra/dec to astrometric @ epoch of date */
|
---|
129 | ra = op->f_RA;
|
---|
130 | dec = op->f_dec;
|
---|
131 | precess (op->f_epoch, mjd, &ra, &dec);
|
---|
132 |
|
---|
133 | /* convert equatoreal ra/dec to mean geocentric ecliptic lat/long */
|
---|
134 | eq_ecl (mjd, ra, dec, &bet, &lam);
|
---|
135 |
|
---|
136 | /* find solar ecliptical long.(mean equinox) and distance from earth */
|
---|
137 | sunpos (mjed, &lsn, &rsn, NULL);
|
---|
138 |
|
---|
139 | /* allow for relativistic light bending near the sun */
|
---|
140 | deflect (mjd, lam, bet, lsn, rsn, 1e10, &ra, &dec);
|
---|
141 |
|
---|
142 | /* TODO: correction for annual parallax would go here */
|
---|
143 |
|
---|
144 | /* correct EOD equatoreal for nutation/aberation to form apparent
|
---|
145 | * geocentric
|
---|
146 | */
|
---|
147 | nut_eq(mjd, &ra, &dec);
|
---|
148 | ab_eq(mjd, lsn, &ra, &dec);
|
---|
149 | op->s_gaera = (float)ra;
|
---|
150 | op->s_gaedec = (float)dec;
|
---|
151 |
|
---|
152 | /* set s_ra/dec -- apparent if EOD else astrometric */
|
---|
153 | if (epoch == EOD) {
|
---|
154 | op->s_ra = (float)ra;
|
---|
155 | op->s_dec = (float)dec;
|
---|
156 | } else {
|
---|
157 | /* annual parallax at time mjd is to be added here, too, but
|
---|
158 | * technically in the frame of epoch (usually different from mjd)
|
---|
159 | */
|
---|
160 | op->s_ra = op->f_RA; /* already precessed */
|
---|
161 | op->s_dec = op->f_dec;
|
---|
162 | }
|
---|
163 |
|
---|
164 | /* compute elongation from ecliptic long/lat and sun geocentric long */
|
---|
165 | elongation (lam, bet, lsn, &el);
|
---|
166 | el = raddeg(el);
|
---|
167 | op->s_elong = (float)el;
|
---|
168 |
|
---|
169 | /* these are really the same fields ...
|
---|
170 | op->s_mag = op->f_mag;
|
---|
171 | op->s_size = op->f_size;
|
---|
172 | */
|
---|
173 |
|
---|
174 | /* alt, az: correct for refraction; use eod ra/dec. */
|
---|
175 | now_lst (np, &lst);
|
---|
176 | ha = hrrad(lst) - ra;
|
---|
177 | hadec_aa (lat, ha, dec, &alt, &az);
|
---|
178 | refract (pressure, temp, alt, &alt);
|
---|
179 | op->s_alt = alt;
|
---|
180 | op->s_az = az;
|
---|
181 |
|
---|
182 | return (0);
|
---|
183 | }
|
---|
184 |
|
---|
185 | /* compute sky circumstances of an object in heliocentric elliptic orbit at *np.
|
---|
186 | */
|
---|
187 | static int
|
---|
188 | obj_elliptical (np, op)
|
---|
189 | Now *np;
|
---|
190 | Obj *op;
|
---|
191 | {
|
---|
192 | double lsn, rsn; /* true geoc lng of sun; dist from sn to earth*/
|
---|
193 | double dt; /* light travel time to object */
|
---|
194 | double lg; /* helio long of earth */
|
---|
195 | double nu, ea; /* true anomaly and eccentric anomaly */
|
---|
196 | double ma; /* mean anomaly */
|
---|
197 | double rp=0; /* distance from the sun */
|
---|
198 | double lo, slo, clo; /* angle from ascending node */
|
---|
199 | double inc; /* inclination */
|
---|
200 | double psi=0; /* heliocentric latitude */
|
---|
201 | double spsi=0, cpsi=0; /* trig of heliocentric latitude */
|
---|
202 | double lpd; /* heliocentric longitude */
|
---|
203 | double rho=0; /* distance from the Earth */
|
---|
204 | double om; /* arg of perihelion */
|
---|
205 | double Om; /* long of ascending node. */
|
---|
206 | double lam; /* geocentric ecliptic longitude */
|
---|
207 | double bet; /* geocentric ecliptic latitude */
|
---|
208 | double e; /* fast eccentricity */
|
---|
209 | double ll=0, sll, cll; /* helio angle between object and earth */
|
---|
210 | double mag; /* magnitude */
|
---|
211 | double e_n; /* mean daily motion */
|
---|
212 | double rpd=0;
|
---|
213 | double y;
|
---|
214 | int pass;
|
---|
215 |
|
---|
216 | /* find location of earth from sun now */
|
---|
217 | sunpos (mjed, &lsn, &rsn, 0);
|
---|
218 | lg = lsn + PI;
|
---|
219 |
|
---|
220 | /* faster access to eccentricty */
|
---|
221 | e = op->e_e;
|
---|
222 |
|
---|
223 | /* mean daily motion is derived fro mean distance */
|
---|
224 | e_n = 0.9856076686/pow((double)op->e_a, 1.5);
|
---|
225 |
|
---|
226 | /* correct for light time by computing position at time mjd, then
|
---|
227 | * again at mjd-dt, where
|
---|
228 | * dt = time it takes light to travel earth-object distance.
|
---|
229 | */
|
---|
230 | dt = 0;
|
---|
231 | for (pass = 0; pass < 2; pass++) {
|
---|
232 |
|
---|
233 | reduce_elements (op->e_epoch, mjd-dt, degrad(op->e_inc),
|
---|
234 | degrad (op->e_om), degrad (op->e_Om),
|
---|
235 | &inc, &om, &Om);
|
---|
236 |
|
---|
237 | ma = degrad (op->e_M + (mjed - op->e_cepoch - dt) * e_n);
|
---|
238 | anomaly (ma, e, &nu, &ea);
|
---|
239 | rp = op->e_a * (1-e*e) / (1+e*cos(nu));
|
---|
240 | lo = nu + om;
|
---|
241 | slo = sin(lo);
|
---|
242 | clo = cos(lo);
|
---|
243 | spsi = slo*sin(inc);
|
---|
244 | y = slo*cos(inc);
|
---|
245 | psi = asin(spsi);
|
---|
246 | lpd = atan(y/clo)+Om;
|
---|
247 | if (clo<0) lpd += PI;
|
---|
248 | range (&lpd, 2*PI);
|
---|
249 | cpsi = cos(psi);
|
---|
250 | rpd = rp*cpsi;
|
---|
251 | ll = lpd-lg;
|
---|
252 | rho = sqrt(rsn*rsn+rp*rp-2*rsn*rp*cpsi*cos(ll));
|
---|
253 |
|
---|
254 | dt = rho*LTAU/3600.0/24.0; /* light travel time, in days / AU */
|
---|
255 | }
|
---|
256 |
|
---|
257 | /* compute sin and cos of ll */
|
---|
258 | sll = sin(ll);
|
---|
259 | cll = cos(ll);
|
---|
260 |
|
---|
261 | /* find geocentric ecliptic longitude and latitude */
|
---|
262 | if (rpd < rsn)
|
---|
263 | lam = atan(-1*rpd*sll/(rsn-rpd*cll))+lg+PI;
|
---|
264 | else
|
---|
265 | lam = atan(rsn*sll/(rpd-rsn*cll))+lpd;
|
---|
266 | range (&lam, 2*PI);
|
---|
267 | bet = atan(rpd*spsi*sin(lam-lpd)/(cpsi*rsn*sll));
|
---|
268 |
|
---|
269 | /* fill in all of op->s_* stuff except s_size and s_mag */
|
---|
270 | cir_sky (np, lpd, psi, rp, &rho, lam, bet, lsn, rsn, op);
|
---|
271 |
|
---|
272 | /* compute magnitude and size */
|
---|
273 | if (op->e_mag.whichm == MAG_HG) {
|
---|
274 | /* the H and G parameters from the Astro. Almanac.
|
---|
275 | */
|
---|
276 | if (op->e_size)
|
---|
277 | op->s_size = (float)(op->e_size / rho);
|
---|
278 | else {
|
---|
279 | hg_mag (op->e_mag.m1, op->e_mag.m2, rp, rho, rsn, &mag);
|
---|
280 | op->s_size = (float)(h_albsize (op->e_mag.m1)/rho);
|
---|
281 |
|
---|
282 | }
|
---|
283 | } else {
|
---|
284 | /* the g/k model of comets */
|
---|
285 | gk_mag (op->e_mag.m1, op->e_mag.m2, rp, rho, &mag);
|
---|
286 | op->s_size = (float)(op->e_size / rho);
|
---|
287 | }
|
---|
288 | set_smag (op, mag);
|
---|
289 |
|
---|
290 | return (0);
|
---|
291 | }
|
---|
292 |
|
---|
293 | /* compute sky circumstances of an object in heliocentric hyperbolic orbit.
|
---|
294 | */
|
---|
295 | static int
|
---|
296 | obj_hyperbolic (np, op)
|
---|
297 | Now *np;
|
---|
298 | Obj *op;
|
---|
299 | {
|
---|
300 | double lsn, rsn; /* true geoc lng of sun; dist from sn to earth*/
|
---|
301 | double dt; /* light travel time to object */
|
---|
302 | double lg; /* helio long of earth */
|
---|
303 | double nu, ea; /* true anomaly and eccentric anomaly */
|
---|
304 | double ma; /* mean anomaly */
|
---|
305 | double rp=0; /* distance from the sun */
|
---|
306 | double lo, slo, clo; /* angle from ascending node */
|
---|
307 | double inc; /* inclination */
|
---|
308 | double psi=0; /* heliocentric latitude */
|
---|
309 | double spsi=0, cpsi=0; /* trig of heliocentric latitude */
|
---|
310 | double lpd; /* heliocentric longitude */
|
---|
311 | double rho=0; /* distance from the Earth */
|
---|
312 | double om; /* arg of perihelion */
|
---|
313 | double Om; /* long of ascending node. */
|
---|
314 | double lam; /* geocentric ecliptic longitude */
|
---|
315 | double bet; /* geocentric ecliptic latitude */
|
---|
316 | double e; /* fast eccentricity */
|
---|
317 | double ll=0, sll, cll; /* helio angle between object and earth */
|
---|
318 | double n; /* mean daily motion */
|
---|
319 | double mag; /* magnitude */
|
---|
320 | double a; /* mean distance */
|
---|
321 | double rpd=0;
|
---|
322 | double y;
|
---|
323 | int pass;
|
---|
324 |
|
---|
325 | /* find solar ecliptical longitude and distance to sun from earth */
|
---|
326 | sunpos (mjed, &lsn, &rsn, 0);
|
---|
327 |
|
---|
328 | lg = lsn + PI;
|
---|
329 | e = op->h_e;
|
---|
330 | a = op->h_qp/(e - 1.0);
|
---|
331 | n = .98563/sqrt(a*a*a);
|
---|
332 |
|
---|
333 | /* correct for light time by computing position at time mjd, then
|
---|
334 | * again at mjd-dt, where
|
---|
335 | * dt = time it takes light to travel earth-object distance.
|
---|
336 | */
|
---|
337 | dt = 0;
|
---|
338 | for (pass = 0; pass < 2; pass++) {
|
---|
339 |
|
---|
340 | reduce_elements (op->h_epoch, mjd-dt, degrad(op->h_inc),
|
---|
341 | degrad (op->h_om), degrad (op->h_Om),
|
---|
342 | &inc, &om, &Om);
|
---|
343 |
|
---|
344 | ma = degrad ((mjed - op->h_ep - dt) * n);
|
---|
345 | anomaly (ma, e, &nu, &ea);
|
---|
346 | rp = a * (e*e-1.0) / (1.0+e*cos(nu));
|
---|
347 | lo = nu + om;
|
---|
348 | slo = sin(lo);
|
---|
349 | clo = cos(lo);
|
---|
350 | spsi = slo*sin(inc);
|
---|
351 | y = slo*cos(inc);
|
---|
352 | psi = asin(spsi);
|
---|
353 | lpd = atan(y/clo)+Om;
|
---|
354 | if (clo<0) lpd += PI;
|
---|
355 | range (&lpd, 2*PI);
|
---|
356 | cpsi = cos(psi);
|
---|
357 | rpd = rp*cpsi;
|
---|
358 | ll = lpd-lg;
|
---|
359 | rho = sqrt(rsn*rsn+rp*rp-2*rsn*rp*cpsi*cos(ll));
|
---|
360 |
|
---|
361 | dt = rho*5.775518e-3; /* light travel time, in days */
|
---|
362 | }
|
---|
363 |
|
---|
364 | /* compute sin and cos of ll */
|
---|
365 | sll = sin(ll);
|
---|
366 | cll = cos(ll);
|
---|
367 |
|
---|
368 | /* find geocentric ecliptic longitude and latitude */
|
---|
369 | if (rpd < rsn)
|
---|
370 | lam = atan(-1*rpd*sll/(rsn-rpd*cll))+lg+PI;
|
---|
371 | else
|
---|
372 | lam = atan(rsn*sll/(rpd-rsn*cll))+lpd;
|
---|
373 | range (&lam, 2*PI);
|
---|
374 | bet = atan(rpd*spsi*sin(lam-lpd)/(cpsi*rsn*sll));
|
---|
375 |
|
---|
376 | /* fill in all of op->s_* stuff except s_size and s_mag */
|
---|
377 | cir_sky (np, lpd, psi, rp, &rho, lam, bet, lsn, rsn, op);
|
---|
378 |
|
---|
379 | /* compute magnitude and size */
|
---|
380 | gk_mag (op->h_g, op->h_k, rp, rho, &mag);
|
---|
381 | set_smag (op, mag);
|
---|
382 | op->s_size = (float)(op->h_size / rho);
|
---|
383 |
|
---|
384 | return (0);
|
---|
385 | }
|
---|
386 |
|
---|
387 | /* compute sky circumstances of an object in heliocentric hyperbolic orbit.
|
---|
388 | */
|
---|
389 | static int
|
---|
390 | obj_parabolic (np, op)
|
---|
391 | Now *np;
|
---|
392 | Obj *op;
|
---|
393 | {
|
---|
394 | double lsn, rsn; /* true geoc lng of sun; dist from sn to earth*/
|
---|
395 | double lam; /* geocentric ecliptic longitude */
|
---|
396 | double bet; /* geocentric ecliptic latitude */
|
---|
397 | double mag; /* magnitude */
|
---|
398 | double inc, om, Om;
|
---|
399 | double lpd, psi, rp, rho;
|
---|
400 | double dt;
|
---|
401 | int pass;
|
---|
402 |
|
---|
403 | /* find solar ecliptical longitude and distance to sun from earth */
|
---|
404 | sunpos (mjed, &lsn, &rsn, 0);
|
---|
405 |
|
---|
406 | /* two passes to correct lam and bet for light travel time. */
|
---|
407 | dt = 0.0;
|
---|
408 | for (pass = 0; pass < 2; pass++) {
|
---|
409 | reduce_elements (op->p_epoch, mjd-dt, degrad(op->p_inc),
|
---|
410 | degrad(op->p_om), degrad(op->p_Om), &inc, &om, &Om);
|
---|
411 | comet (mjed-dt, op->p_ep, inc, om, op->p_qp, Om,
|
---|
412 | &lpd, &psi, &rp, &rho, &lam, &bet);
|
---|
413 | dt = rho*LTAU/3600.0/24.0; /* light travel time, in days / AU */
|
---|
414 | }
|
---|
415 |
|
---|
416 | /* fill in all of op->s_* stuff except s_size and s_mag */
|
---|
417 | cir_sky (np, lpd, psi, rp, &rho, lam, bet, lsn, rsn, op);
|
---|
418 |
|
---|
419 | /* compute magnitude and size */
|
---|
420 | gk_mag (op->p_g, op->p_k, rp, rho, &mag);
|
---|
421 | set_smag (op, mag);
|
---|
422 | op->s_size = (float)(op->p_size / rho);
|
---|
423 |
|
---|
424 | return (0);
|
---|
425 | }
|
---|
426 |
|
---|
427 | /* find sun's circumstances now.
|
---|
428 | */
|
---|
429 | static int
|
---|
430 | sun_cir (np, op)
|
---|
431 | Now *np;
|
---|
432 | Obj *op;
|
---|
433 | {
|
---|
434 | double lsn, rsn; /* true geoc lng of sun; dist from sn to earth*/
|
---|
435 | double bsn; /* true latitude beta of sun */
|
---|
436 | double dhlong;
|
---|
437 |
|
---|
438 | sunpos (mjed, &lsn, &rsn, &bsn);/* sun's true coordinates; mean ecl. */
|
---|
439 |
|
---|
440 | op->s_sdist = 0.0;
|
---|
441 | op->s_elong = 0.0;
|
---|
442 | op->s_phase = 100.0;
|
---|
443 | set_smag (op, -26.8); /* TODO */
|
---|
444 | dhlong = lsn-PI; /* geo- to helio- centric */
|
---|
445 | range (&dhlong, 2*PI);
|
---|
446 | op->s_hlong = (float)dhlong;
|
---|
447 | op->s_hlat = (float)(-bsn);
|
---|
448 |
|
---|
449 | /* fill sun's ra/dec, alt/az in op */
|
---|
450 | cir_pos (np, bsn, lsn, &rsn, op);
|
---|
451 | op->s_edist = (float)rsn;
|
---|
452 | op->s_size = (float)(raddeg(4.65242e-3/rsn)*3600*2);
|
---|
453 |
|
---|
454 | return (0);
|
---|
455 | }
|
---|
456 |
|
---|
457 | /* find moon's circumstances now.
|
---|
458 | */
|
---|
459 | static int
|
---|
460 | moon_cir (np, op)
|
---|
461 | Now *np;
|
---|
462 | Obj *op;
|
---|
463 | {
|
---|
464 | double lsn, rsn; /* true geoc lng of sun; dist from sn to earth*/
|
---|
465 | double lam; /* geocentric ecliptic longitude */
|
---|
466 | double bet; /* geocentric ecliptic latitude */
|
---|
467 | double edistau; /* earth-moon dist, in au */
|
---|
468 | double el; /* elongation, rads east */
|
---|
469 | double ms; /* sun's mean anomaly */
|
---|
470 | double md; /* moon's mean anomaly */
|
---|
471 | double i;
|
---|
472 |
|
---|
473 | moon (mjed, &lam, &bet, &edistau, &ms, &md); /* mean ecliptic & EOD*/
|
---|
474 | sunpos (mjed, &lsn, &rsn, NULL); /* mean ecliptic & EOD*/
|
---|
475 |
|
---|
476 | op->s_hlong = (float)lam; /* save geo in helio fields */
|
---|
477 | op->s_hlat = (float)bet;
|
---|
478 |
|
---|
479 | /* find angular separation from sun */
|
---|
480 | elongation (lam, bet, lsn, &el);
|
---|
481 | op->s_elong = (float)raddeg(el); /* want degrees */
|
---|
482 |
|
---|
483 | /* solve triangle of earth, sun, and elongation for moon-sun dist */
|
---|
484 | op->s_sdist = (float) sqrt (edistau*edistau + rsn*rsn
|
---|
485 | - 2.0*edistau*rsn*cos(el));
|
---|
486 |
|
---|
487 | /* TODO: improve mag; this is based on a flat moon model. */
|
---|
488 | set_smag (op, -12.7 + 2.5*(log10(PI) - log10(PI/2*(1+1.e-6-cos(el)))));
|
---|
489 |
|
---|
490 | /* find phase -- allow for projection effects */
|
---|
491 | i = 0.1468*sin(el)*(1 - 0.0549*sin(md))/(1 - 0.0167*sin(ms));
|
---|
492 | op->s_phase = (float)((1+cos(PI-el-degrad(i)))/2*100);
|
---|
493 |
|
---|
494 | /* fill moon's ra/dec, alt/az in op and update for topo dist */
|
---|
495 | cir_pos (np, bet, lam, &edistau, op);
|
---|
496 |
|
---|
497 | op->s_edist = (float)edistau;
|
---|
498 | op->s_size = (float)(3600*2.0*raddeg(asin(MRAD/MAU/edistau)));
|
---|
499 | /* moon angular dia, seconds */
|
---|
500 |
|
---|
501 | return (0);
|
---|
502 | }
|
---|
503 |
|
---|
504 | /* fill in all of op->s_* stuff except s_size and s_mag.
|
---|
505 | * this is used for sol system objects (except sun and moon); never FIXED.
|
---|
506 | */
|
---|
507 | static void
|
---|
508 | cir_sky (np, lpd, psi, rp, rho, lam, bet, lsn, rsn, op)
|
---|
509 | Now *np;
|
---|
510 | double lpd, psi; /* heliocentric ecliptic long and lat */
|
---|
511 | double rp; /* dist from sun */
|
---|
512 | double *rho; /* dist from earth: in as geo, back as geo or topo */
|
---|
513 | double lam, bet; /* true geocentric ecliptic long and lat */
|
---|
514 | double lsn, rsn; /* true geoc lng of sun; dist from sn to earth*/
|
---|
515 | Obj *op;
|
---|
516 | {
|
---|
517 | double el; /* elongation */
|
---|
518 | double f; /* fractional phase from earth */
|
---|
519 |
|
---|
520 | /* compute elongation and phase */
|
---|
521 | elongation (lam, bet, lsn, &el);
|
---|
522 | el = raddeg(el);
|
---|
523 | op->s_elong = (float)el;
|
---|
524 | f = 0.25 * ((rp+ *rho)*(rp+ *rho) - rsn*rsn)/(rp* *rho);
|
---|
525 | op->s_phase = (float)(f*100.0); /* percent */
|
---|
526 |
|
---|
527 | /* set heliocentric long/lat; mean ecliptic and EOD */
|
---|
528 | op->s_hlong = (float)lpd;
|
---|
529 | op->s_hlat = (float)psi;
|
---|
530 |
|
---|
531 | /* fill solar sys body's ra/dec, alt/az in op */
|
---|
532 | cir_pos (np, bet, lam, rho, op); /* updates rho */
|
---|
533 |
|
---|
534 | /* set earth/planet and sun/planet distance */
|
---|
535 | op->s_edist = (float)(*rho);
|
---|
536 | op->s_sdist = (float)rp;
|
---|
537 | }
|
---|
538 |
|
---|
539 | /* fill equatoreal and horizontal op-> fields; stern
|
---|
540 | *
|
---|
541 | * input: lam/bet/rho geocentric mean ecliptic and equinox of day
|
---|
542 | *
|
---|
543 | * algorithm at EOD:
|
---|
544 | * ecl_eq --> ra/dec geocentric mean equatoreal EOD (via mean obliq)
|
---|
545 | * deflect --> ra/dec relativistic deflection
|
---|
546 | * nut_eq --> ra/dec geocentric true equatoreal EOD
|
---|
547 | * ab_eq --> ra/dec geocentric apparent equatoreal EOD
|
---|
548 | * if (PREF_GEO) --> output
|
---|
549 | * ta_par --> ra/dec topocentric apparent equatoreal EOD
|
---|
550 | * if (!PREF_GEO) --> output
|
---|
551 | * hadec_aa --> alt/az topocentric horizontal
|
---|
552 | * refract --> alt/az observed --> output
|
---|
553 | *
|
---|
554 | * algorithm at fixed epoch:
|
---|
555 | * ecl_eq --> ra/dec geocentric mean equatoreal EOD (via mean obliq)
|
---|
556 | * deflect --> ra/dec relativistic deflection [for alt/az only]
|
---|
557 | * nut_eq --> ra/dec geocentric true equatoreal EOD [for aa only]
|
---|
558 | * ab_eq --> ra/dec geocentric apparent equatoreal EOD [for aa only]
|
---|
559 | * ta_par --> ra/dec topocentric apparent equatoreal EOD
|
---|
560 | * precess --> ra/dec topocentric equatoreal fixed equinox [eq only]
|
---|
561 | * --> output
|
---|
562 | * hadec_aa --> alt/az topocentric horizontal
|
---|
563 | * refract --> alt/az observed --> output
|
---|
564 | */
|
---|
565 | static void
|
---|
566 | cir_pos (np, bet, lam, rho, op)
|
---|
567 | Now *np;
|
---|
568 | double bet, lam;/* geo lat/long (mean ecliptic of date) */
|
---|
569 | double *rho; /* in: geocentric dist in AU; out: geo- or topocentic dist */
|
---|
570 | Obj *op; /* object to set s_ra/dec as per epoch */
|
---|
571 | {
|
---|
572 | double ra, dec; /* apparent ra/dec, corrected for nut/ab */
|
---|
573 | double tra, tdec; /* astrometric ra/dec, no nut/ab */
|
---|
574 | double lsn, rsn; /* solar geocentric (mean ecliptic of date) */
|
---|
575 | double ha_in, ha_out; /* local hour angle before/after parallax */
|
---|
576 | double dec_out; /* declination after parallax */
|
---|
577 | double dra, ddec; /* parallax correction */
|
---|
578 | double alt, az; /* current alt, az */
|
---|
579 | double lst; /* local sidereal time */
|
---|
580 | double rho_topo; /* topocentric distance in earth radii */
|
---|
581 |
|
---|
582 | /* convert to equatoreal [mean equator, with mean obliquity] */
|
---|
583 | ecl_eq (mjd, bet, lam, &ra, &dec);
|
---|
584 | tra = ra; /* keep mean coordinates */
|
---|
585 | tdec = dec;
|
---|
586 |
|
---|
587 | /* get sun position */
|
---|
588 | sunpos(mjed, &lsn, &rsn, NULL);
|
---|
589 |
|
---|
590 | /* allow for relativistic light bending near the sun.
|
---|
591 | * (avoid calling deflect() for the sun itself).
|
---|
592 | */
|
---|
593 | if (!is_planet(op,SUN) && !is_planet(op,MOON))
|
---|
594 | deflect (mjd, op->s_hlong, op->s_hlat, lsn, rsn, *rho, &ra, &dec);
|
---|
595 |
|
---|
596 | /* correct ra/dec to form geocentric apparent */
|
---|
597 | nut_eq (mjd, &ra, &dec);
|
---|
598 | if (!is_planet(op,MOON))
|
---|
599 | ab_eq (mjd, lsn, &ra, &dec);
|
---|
600 | op->s_gaera = (float)ra;
|
---|
601 | op->s_gaedec = (float)dec;
|
---|
602 |
|
---|
603 | /* find parallax correction for equatoreal coords */
|
---|
604 | now_lst (np, &lst);
|
---|
605 | ha_in = hrrad(lst) - ra;
|
---|
606 | rho_topo = *rho * MAU/ERAD; /* convert to earth radii */
|
---|
607 | ta_par (ha_in, dec, lat, elev, &rho_topo, &ha_out, &dec_out);
|
---|
608 |
|
---|
609 | /* transform into alt/az and apply refraction */
|
---|
610 | hadec_aa (lat, ha_out, dec_out, &alt, &az);
|
---|
611 | refract (pressure, temp, alt, &alt);
|
---|
612 | op->s_alt = alt;
|
---|
613 | op->s_az = az;
|
---|
614 |
|
---|
615 | /* Get parallax differences and apply to apparent or astrometric place
|
---|
616 | * as needed. For the astrometric place, rotating the CORRECTIONS
|
---|
617 | * back from the nutated equator to the mean equator will be
|
---|
618 | * neglected. This is an effect of about 0.1" at moon distance.
|
---|
619 | * We currently don't have an inverse nutation rotation.
|
---|
620 | */
|
---|
621 | if (pref_get(PREF_EQUATORIAL) == PREF_GEO) {
|
---|
622 | /* no topo corrections to eq. coords */
|
---|
623 | dra = ddec = 0.0;
|
---|
624 | } else {
|
---|
625 | dra = ha_in - ha_out; /* ra sign is opposite of ha */
|
---|
626 | ddec = dec_out - dec;
|
---|
627 | *rho = rho_topo * ERAD/MAU; /* return topocentric distance in AU */
|
---|
628 | }
|
---|
629 |
|
---|
630 | /* fill in ra/dec fields */
|
---|
631 | if (epoch == EOD) { /* apparent geo/topocentric */
|
---|
632 | ra = ra + dra;
|
---|
633 | dec = dec + ddec;
|
---|
634 | } else { /* astrometric geo/topocent */
|
---|
635 | ra = tra + dra;
|
---|
636 | dec = tdec + ddec;
|
---|
637 | precess (mjd, epoch, &ra, &dec);
|
---|
638 | }
|
---|
639 | range(&ra, 2*PI);
|
---|
640 | op->s_ra = (float)ra;
|
---|
641 | op->s_dec = (float)dec;
|
---|
642 | }
|
---|
643 |
|
---|
644 | /* given geocentric ecliptic longitude and latitude, lam and bet, of some object
|
---|
645 | * and the longitude of the sun, lsn, find the elongation, el. this is the
|
---|
646 | * actual angular separation of the object from the sun, not just the difference
|
---|
647 | * in the longitude. the sign, however, IS set simply as a test on longitude
|
---|
648 | * such that el will be >0 for an evening object <0 for a morning object.
|
---|
649 | * to understand the test for el sign, draw a graph with lam going from 0-2*PI
|
---|
650 | * down the vertical axis, lsn going from 0-2*PI across the hor axis. then
|
---|
651 | * define the diagonal regions bounded by the lines lam=lsn+PI, lam=lsn and
|
---|
652 | * lam=lsn-PI. the "morning" regions are any values to the lower left of the
|
---|
653 | * first line and bounded within the second pair of lines.
|
---|
654 | * all angles in radians.
|
---|
655 | */
|
---|
656 | static void
|
---|
657 | elongation (lam, bet, lsn, el)
|
---|
658 | double lam, bet, lsn;
|
---|
659 | double *el;
|
---|
660 | {
|
---|
661 | *el = acos(cos(bet)*cos(lam-lsn));
|
---|
662 | if (lam>lsn+PI || (lam>lsn-PI && lam<lsn)) *el = - *el;
|
---|
663 | }
|
---|
664 |
|
---|
665 | /* apply relativistic light bending correction to ra/dec; stern
|
---|
666 | *
|
---|
667 | * The algorithm is from:
|
---|
668 | * Mean and apparent place computations in the new IAU
|
---|
669 | * system. III - Apparent, topocentric, and astrometric
|
---|
670 | * places of planets and stars
|
---|
671 | * KAPLAN, G. H.; HUGHES, J. A.; SEIDELMANN, P. K.;
|
---|
672 | * SMITH, C. A.; YALLOP, B. D.
|
---|
673 | * Astronomical Journal (ISSN 0004-6256), vol. 97, April 1989, p. 1197-1210.
|
---|
674 | *
|
---|
675 | * This article is a very good collection of formulea for geocentric and
|
---|
676 | * topocentric place calculation in general. The apparent and
|
---|
677 | * astrometric place calculation in this file currently does not follow
|
---|
678 | * the strict algorithm from this paper and hence is not fully correct.
|
---|
679 | * The entire calculation is currently based on the rotating EOD frame and
|
---|
680 | * not the "inertial" J2000 frame.
|
---|
681 | */
|
---|
682 | static void
|
---|
683 | deflect (mjd1, lpd, psi, lsn, rsn, rho, ra, dec)
|
---|
684 | double mjd1; /* epoch */
|
---|
685 | double lpd, psi; /* heliocentric ecliptical long / lat */
|
---|
686 | double rsn, lsn; /* distance and longitude of sun */
|
---|
687 | double rho; /* geocentric distance */
|
---|
688 | double *ra, *dec; /* geocentric equatoreal */
|
---|
689 | {
|
---|
690 | double hra, hdec; /* object heliocentric equatoreal */
|
---|
691 | double el; /* HELIOCENTRIC elongation object--earth */
|
---|
692 | double g1, g2; /* relativistic weights */
|
---|
693 | double u[3]; /* object geocentric cartesian */
|
---|
694 | double q[3]; /* object heliocentric cartesian unit vect */
|
---|
695 | double e[3]; /* earth heliocentric cartesian unit vect */
|
---|
696 | double qe, uq, eu; /* scalar products */
|
---|
697 | int i; /* counter */
|
---|
698 |
|
---|
699 | #define G 1.32712438e20 /* heliocentric grav const; in m^3*s^-2 */
|
---|
700 | #define c 299792458.0 /* speed of light in m/s */
|
---|
701 |
|
---|
702 | elongation(lpd, psi, lsn-PI, &el);
|
---|
703 | el = fabs(el);
|
---|
704 | /* only continue if object is within about 10 deg around the sun
|
---|
705 | * and not obscured by the sun's disc (radius 0.25 deg)
|
---|
706 | *
|
---|
707 | * precise geocentric deflection is: g1 * tan(el/2)
|
---|
708 | * radially outwards from sun; the vector munching below
|
---|
709 | * just applys this component-wise
|
---|
710 | * Note: el = HELIOCENTRIC elongation.
|
---|
711 | * g1 is always about 0.004 arc seconds
|
---|
712 | * g2 varies from 0 (highest contribution) to 2
|
---|
713 | */
|
---|
714 | if (el<degrad(170) || el>degrad(179.75)) return;
|
---|
715 |
|
---|
716 | /* get cartesian vectors */
|
---|
717 | sphcart(*ra, *dec, rho, u, u+1, u+2);
|
---|
718 |
|
---|
719 | ecl_eq(mjd1, psi, lpd, &hra, &hdec);
|
---|
720 | sphcart(hra, hdec, 1.0, q, q+1, q+2);
|
---|
721 |
|
---|
722 | ecl_eq(mjd1, 0.0, lsn-PI, &hra, &hdec);
|
---|
723 | sphcart(hra, hdec, 1.0, e, e+1, e+2);
|
---|
724 |
|
---|
725 | /* evaluate scalar products */
|
---|
726 | qe = uq = eu = 0.0;
|
---|
727 | for(i=0; i<=2; ++i) {
|
---|
728 | qe += q[i]*e[i];
|
---|
729 | uq += u[i]*q[i];
|
---|
730 | eu += e[i]*u[i];
|
---|
731 | }
|
---|
732 |
|
---|
733 | g1 = 2*G/(c*c*MAU)/rsn;
|
---|
734 | g2 = 1 + qe;
|
---|
735 |
|
---|
736 | /* now deflect geocentric vector */
|
---|
737 | g1 /= g2;
|
---|
738 | for(i=0; i<=2; ++i)
|
---|
739 | u[i] += g1*(uq*e[i] - eu*q[i]);
|
---|
740 |
|
---|
741 | /* back to spherical */
|
---|
742 | cartsph(u[0], u[1], u[2], ra, dec, &rho); /* rho thrown away */
|
---|
743 | }
|
---|
744 |
|
---|
745 | /* estimate size in arc seconds @ 1AU from absolute magnitude, H, and assuming
|
---|
746 | * an albedo of 0.1. With this assumption an object with diameter of 1500m
|
---|
747 | * has an absolute mag of 18.
|
---|
748 | */
|
---|
749 | static double
|
---|
750 | h_albsize (H)
|
---|
751 | double H;
|
---|
752 | {
|
---|
753 | return (3600*raddeg(.707*1500*pow(2.51,(18-H)/2)/MAU));
|
---|
754 | }
|
---|
755 |
|
---|
756 | /* For RCS Only -- Do Not Edit */
|
---|
757 | static char *rcsid[2] = {(char *)rcsid, "@(#) $RCSfile: circum.c,v $ $Date: 2001-04-10 14:40:46 $ $Revision: 1.1.1.1 $ $Name: not supported by cvs2svn $"};
|
---|