1 | /* given a Now and an Obj with the object definition portion filled in,
|
---|
2 | * fill in the sky position (s_*) portions.
|
---|
3 | * calculation of positional coordinates reworked by
|
---|
4 | * Michael Sternberg <sternberg@physik.tu-chemnitz.de>
|
---|
5 | * 3/11/98: deflect was using op->s_hlong before being set in cir_pos().
|
---|
6 | * 4/19/98: just edit a comment
|
---|
7 | */
|
---|
8 |
|
---|
9 | #include <stdio.h>
|
---|
10 | #include <math.h>
|
---|
11 | #if defined(__STDC__)
|
---|
12 | #include <stdlib.h>
|
---|
13 | #endif
|
---|
14 |
|
---|
15 | #include "P_.h"
|
---|
16 | #include "astro.h"
|
---|
17 | #include "circum.h"
|
---|
18 | #include "preferences.h"
|
---|
19 |
|
---|
20 |
|
---|
21 | static int obj_planet P_((Now *np, Obj *op));
|
---|
22 | static int obj_fixed P_((Now *np, Obj *op));
|
---|
23 | static int obj_elliptical P_((Now *np, Obj *op));
|
---|
24 | static int obj_hyperbolic P_((Now *np, Obj *op));
|
---|
25 | static int obj_parabolic P_((Now *np, Obj *op));
|
---|
26 | static int sun_cir P_((Now *np, Obj *op));
|
---|
27 | static int moon_cir P_((Now *np, Obj *op));
|
---|
28 | static void cir_sky P_((Now *np, double lpd, double psi, double rp, double *rho,
|
---|
29 | double lam, double bet, double lsn, double rsn, Obj *op));
|
---|
30 | static void cir_pos P_((Now *np, double bet, double lam, double *rho, Obj *op));
|
---|
31 | static void elongation P_((double lam, double bet, double lsn, double *el));
|
---|
32 | static void deflect P_((double mjd1, double lpd, double psi, double rsn,
|
---|
33 | double lsn, double rho, double *ra, double *dec));
|
---|
34 | static double h_albsize P_((double H));
|
---|
35 |
|
---|
36 | /* given a Now and an Obj, fill in the approprirate s_* fields within Obj.
|
---|
37 | * return 0 if all ok, else -1.
|
---|
38 | */
|
---|
39 | int
|
---|
40 | obj_cir (np, op)
|
---|
41 | Now *np;
|
---|
42 | Obj *op;
|
---|
43 | {
|
---|
44 | switch (op->o_type) {
|
---|
45 | case FIXED: return (obj_fixed (np, op));
|
---|
46 | case ELLIPTICAL: return (obj_elliptical (np, op));
|
---|
47 | case HYPERBOLIC: return (obj_hyperbolic (np, op));
|
---|
48 | case PARABOLIC: return (obj_parabolic (np, op));
|
---|
49 | case EARTHSAT: return (obj_earthsat (np, op));
|
---|
50 | case PLANET: return (obj_planet (np, op));
|
---|
51 | default:
|
---|
52 | printf ("obj_cir() called with type %d\n", op->o_type);
|
---|
53 | exit(1);
|
---|
54 | return (-1); /* just for lint */
|
---|
55 | }
|
---|
56 | }
|
---|
57 |
|
---|
58 | static int
|
---|
59 | obj_planet (np, op)
|
---|
60 | Now *np;
|
---|
61 | Obj *op;
|
---|
62 | {
|
---|
63 | double lsn, rsn; /* true geoc lng of sun; dist from sn to earth*/
|
---|
64 | double lpd, psi; /* heliocentric ecliptic long and lat */
|
---|
65 | double rp; /* dist from sun */
|
---|
66 | double rho; /* dist from earth */
|
---|
67 | double lam, bet; /* geocentric ecliptic long and lat */
|
---|
68 | double dia, mag; /* angular diameter at 1 AU and magnitude */
|
---|
69 | int p;
|
---|
70 |
|
---|
71 | /* validate code and check for a few special cases */
|
---|
72 | p = op->pl.pl_code;
|
---|
73 | if (p < 0 || p > MOON) {
|
---|
74 | printf ("unknown planet code: %d\n", p);
|
---|
75 | exit(1);
|
---|
76 | }
|
---|
77 | else if (p == SUN)
|
---|
78 | return (sun_cir (np, op));
|
---|
79 | else if (p == MOON)
|
---|
80 | return (moon_cir (np, op));
|
---|
81 |
|
---|
82 | /* find solar ecliptical longitude and distance to sun from earth */
|
---|
83 | sunpos (mjed, &lsn, &rsn, 0);
|
---|
84 |
|
---|
85 | /* find helio long/lat; sun/planet and earth/planet dist; ecliptic
|
---|
86 | * long/lat; diameter and mag.
|
---|
87 | */
|
---|
88 | plans(mjed, p, &lpd, &psi, &rp, &rho, &lam, &bet, &dia, &mag);
|
---|
89 |
|
---|
90 | /* fill in all of op->s_* stuff except s_size and s_mag */
|
---|
91 | cir_sky (np, lpd, psi, rp, &rho, lam, bet, lsn, rsn, op);
|
---|
92 |
|
---|
93 | /* set magnitude and angular size */
|
---|
94 | set_smag (op, mag);
|
---|
95 | op->s_size = (float)(dia/rho);
|
---|
96 |
|
---|
97 | return (0);
|
---|
98 | }
|
---|
99 |
|
---|
100 | static int
|
---|
101 | obj_fixed (np, op)
|
---|
102 | Now *np;
|
---|
103 | Obj *op;
|
---|
104 | {
|
---|
105 | double lsn, rsn; /* true geoc lng of sun, dist from sn to earth*/
|
---|
106 | double lam, bet; /* geocentric ecliptic long and lat */
|
---|
107 | double ha; /* local hour angle */
|
---|
108 | double el; /* elongation */
|
---|
109 | double alt, az; /* current alt, az */
|
---|
110 | double ra, dec; /* ra and dec at epoch of date */
|
---|
111 | double lst;
|
---|
112 |
|
---|
113 | if (epoch != EOD && (float)epoch != op->f_epoch) {
|
---|
114 | /* want a certain epoch -- if it's not what the database is at
|
---|
115 | * we change the original to save time next time assuming the
|
---|
116 | * user is likely to stick with this for a while.
|
---|
117 | */
|
---|
118 | double tra = op->f_RA, tdec = op->f_dec;
|
---|
119 | float tepoch = (float)epoch; /* compare w/float precision */
|
---|
120 | precess (op->f_epoch, tepoch, &tra, &tdec);
|
---|
121 | op->f_epoch = tepoch;
|
---|
122 | op->f_RA = (float)tra;
|
---|
123 | op->f_dec = (float)tdec;
|
---|
124 | }
|
---|
125 |
|
---|
126 | /* set ra/dec to astrometric @ epoch of date */
|
---|
127 | ra = op->f_RA;
|
---|
128 | dec = op->f_dec;
|
---|
129 | precess (op->f_epoch, mjed, &ra, &dec);
|
---|
130 |
|
---|
131 | /* convert equatoreal ra/dec to mean geocentric ecliptic lat/long */
|
---|
132 | eq_ecl (mjed, ra, dec, &bet, &lam);
|
---|
133 |
|
---|
134 | /* find solar ecliptical long.(mean equinox) and distance from earth */
|
---|
135 | sunpos (mjed, &lsn, &rsn, NULL);
|
---|
136 |
|
---|
137 | /* allow for relativistic light bending near the sun */
|
---|
138 | deflect (mjed, lam, bet, lsn, rsn, 1e10, &ra, &dec);
|
---|
139 |
|
---|
140 | /* TODO: correction for annual parallax would go here */
|
---|
141 |
|
---|
142 | /* correct EOD equatoreal for nutation/aberation to form apparent
|
---|
143 | * geocentric
|
---|
144 | */
|
---|
145 | nut_eq(mjed, &ra, &dec);
|
---|
146 | ab_eq(mjed, lsn, &ra, &dec);
|
---|
147 | op->s_gaera = (float)ra;
|
---|
148 | op->s_gaedec = (float)dec;
|
---|
149 |
|
---|
150 | /* set s_ra/dec -- apparent if EOD else astrometric */
|
---|
151 | if (epoch == EOD) {
|
---|
152 | op->s_ra = (float)ra;
|
---|
153 | op->s_dec = (float)dec;
|
---|
154 | } else {
|
---|
155 | /* annual parallax at time mjd is to be added here, too, but
|
---|
156 | * technically in the frame of epoch (usually different from mjd)
|
---|
157 | */
|
---|
158 | op->s_ra = op->f_RA; /* already precessed */
|
---|
159 | op->s_dec = op->f_dec;
|
---|
160 | }
|
---|
161 |
|
---|
162 | /* compute elongation from ecliptic long/lat and sun geocentric long */
|
---|
163 | elongation (lam, bet, lsn, &el);
|
---|
164 | el = raddeg(el);
|
---|
165 | op->s_elong = (float)el;
|
---|
166 |
|
---|
167 | /* these are really the same fields ...
|
---|
168 | op->s_mag = op->f_mag;
|
---|
169 | op->s_size = op->f_size;
|
---|
170 | */
|
---|
171 |
|
---|
172 | /* alt, az: correct for refraction; use eod ra/dec. */
|
---|
173 | now_lst (np, &lst);
|
---|
174 | ha = hrrad(lst) - ra;
|
---|
175 | hadec_aa (lat, ha, dec, &alt, &az);
|
---|
176 | refract (pressure, temp, alt, &alt);
|
---|
177 | op->s_alt = alt;
|
---|
178 | op->s_az = az;
|
---|
179 |
|
---|
180 | return (0);
|
---|
181 | }
|
---|
182 |
|
---|
183 | /* compute sky circumstances of an object in heliocentric elliptic orbit at *np.
|
---|
184 | */
|
---|
185 | static int
|
---|
186 | obj_elliptical (np, op)
|
---|
187 | Now *np;
|
---|
188 | Obj *op;
|
---|
189 | {
|
---|
190 | double lsn, rsn; /* true geoc lng of sun; dist from sn to earth*/
|
---|
191 | double dt; /* light travel time to object */
|
---|
192 | double lg; /* helio long of earth */
|
---|
193 | double nu; /* true anomaly */
|
---|
194 | double rp=0; /* distance from the sun */
|
---|
195 | double lo, slo, clo; /* angle from ascending node */
|
---|
196 | double inc; /* inclination */
|
---|
197 | double psi=0; /* heliocentric latitude */
|
---|
198 | double spsi=0, cpsi=0; /* trig of heliocentric latitude */
|
---|
199 | double lpd; /* heliocentric longitude */
|
---|
200 | double rho=0; /* distance from the Earth */
|
---|
201 | double om; /* arg of perihelion */
|
---|
202 | double Om; /* long of ascending node. */
|
---|
203 | double lam; /* geocentric ecliptic longitude */
|
---|
204 | double bet; /* geocentric ecliptic latitude */
|
---|
205 | double ll=0, sll, cll; /* helio angle between object and earth */
|
---|
206 | double mag; /* magnitude */
|
---|
207 | double e_n; /* mean daily motion */
|
---|
208 | double tp; /* time from perihelion (days) */
|
---|
209 | double rpd=0;
|
---|
210 | double y;
|
---|
211 | int pass;
|
---|
212 |
|
---|
213 | /* find location of earth from sun now */
|
---|
214 | sunpos (mjed, &lsn, &rsn, 0);
|
---|
215 | lg = lsn + PI;
|
---|
216 |
|
---|
217 | /* mean daily motion is derived fro mean distance */
|
---|
218 | e_n = 0.9856076686/pow((double)op->e_a, 1.5);
|
---|
219 |
|
---|
220 | /* correct for light time by computing position at time mjd, then
|
---|
221 | * again at mjd-dt, where
|
---|
222 | * dt = time it takes light to travel earth-object distance.
|
---|
223 | */
|
---|
224 | dt = 0;
|
---|
225 | for (pass = 0; pass < 2; pass++) {
|
---|
226 |
|
---|
227 | reduce_elements (op->e_epoch, mjd-dt, degrad(op->e_inc),
|
---|
228 | degrad (op->e_om), degrad (op->e_Om),
|
---|
229 | &inc, &om, &Om);
|
---|
230 |
|
---|
231 | tp = mjed - dt - (op->e_cepoch - op->e_M/e_n);
|
---|
232 | vrc (&nu, &rp, tp, op->e_e, op->e_a*(1-op->e_e));
|
---|
233 | nu = degrad(nu);
|
---|
234 | lo = nu + om;
|
---|
235 | slo = sin(lo);
|
---|
236 | clo = cos(lo);
|
---|
237 | spsi = slo*sin(inc);
|
---|
238 | y = slo*cos(inc);
|
---|
239 | psi = asin(spsi);
|
---|
240 | lpd = atan(y/clo)+Om;
|
---|
241 | if (clo<0) lpd += PI;
|
---|
242 | range (&lpd, 2*PI);
|
---|
243 | cpsi = cos(psi);
|
---|
244 | rpd = rp*cpsi;
|
---|
245 | ll = lpd-lg;
|
---|
246 | rho = sqrt(rsn*rsn+rp*rp-2*rsn*rp*cpsi*cos(ll));
|
---|
247 |
|
---|
248 | dt = rho*LTAU/3600.0/24.0; /* light travel time, in days / AU */
|
---|
249 | }
|
---|
250 |
|
---|
251 | /* compute sin and cos of ll */
|
---|
252 | sll = sin(ll);
|
---|
253 | cll = cos(ll);
|
---|
254 |
|
---|
255 | /* find geocentric ecliptic longitude and latitude */
|
---|
256 | if (rpd < rsn)
|
---|
257 | lam = atan(-1*rpd*sll/(rsn-rpd*cll))+lg+PI;
|
---|
258 | else
|
---|
259 | lam = atan(rsn*sll/(rpd-rsn*cll))+lpd;
|
---|
260 | range (&lam, 2*PI);
|
---|
261 | bet = atan(rpd*spsi*sin(lam-lpd)/(cpsi*rsn*sll));
|
---|
262 |
|
---|
263 | /* fill in all of op->s_* stuff except s_size and s_mag */
|
---|
264 | cir_sky (np, lpd, psi, rp, &rho, lam, bet, lsn, rsn, op);
|
---|
265 |
|
---|
266 | /* compute magnitude and size */
|
---|
267 | if (op->e_mag.whichm == MAG_HG) {
|
---|
268 | /* the H and G parameters from the Astro. Almanac.
|
---|
269 | */
|
---|
270 | if (op->e_size)
|
---|
271 | op->s_size = (float)(op->e_size / rho);
|
---|
272 | else {
|
---|
273 | hg_mag (op->e_mag.m1, op->e_mag.m2, rp, rho, rsn, &mag);
|
---|
274 | op->s_size = (float)(h_albsize (op->e_mag.m1)/rho);
|
---|
275 |
|
---|
276 | }
|
---|
277 | } else {
|
---|
278 | /* the g/k model of comets */
|
---|
279 | gk_mag (op->e_mag.m1, op->e_mag.m2, rp, rho, &mag);
|
---|
280 | op->s_size = (float)(op->e_size / rho);
|
---|
281 | }
|
---|
282 | set_smag (op, mag);
|
---|
283 |
|
---|
284 | return (0);
|
---|
285 | }
|
---|
286 |
|
---|
287 | /* compute sky circumstances of an object in heliocentric hyperbolic orbit.
|
---|
288 | */
|
---|
289 | static int
|
---|
290 | obj_hyperbolic (np, op)
|
---|
291 | Now *np;
|
---|
292 | Obj *op;
|
---|
293 | {
|
---|
294 | double lsn, rsn; /* true geoc lng of sun; dist from sn to earth*/
|
---|
295 | double dt; /* light travel time to object */
|
---|
296 | double lg; /* helio long of earth */
|
---|
297 | double nu; /* true anomaly and eccentric anomaly */
|
---|
298 | double rp=0; /* distance from the sun */
|
---|
299 | double lo, slo, clo; /* angle from ascending node */
|
---|
300 | double inc; /* inclination */
|
---|
301 | double psi=0; /* heliocentric latitude */
|
---|
302 | double spsi=0, cpsi=0; /* trig of heliocentric latitude */
|
---|
303 | double lpd; /* heliocentric longitude */
|
---|
304 | double rho=0; /* distance from the Earth */
|
---|
305 | double om; /* arg of perihelion */
|
---|
306 | double Om; /* long of ascending node. */
|
---|
307 | double lam; /* geocentric ecliptic longitude */
|
---|
308 | double bet; /* geocentric ecliptic latitude */
|
---|
309 | double e; /* fast eccentricity */
|
---|
310 | double ll=0, sll, cll; /* helio angle between object and earth */
|
---|
311 | double n; /* mean daily motion */
|
---|
312 | double mag; /* magnitude */
|
---|
313 | double a; /* mean distance */
|
---|
314 | double tp; /* time from perihelion (days) */
|
---|
315 | double rpd=0;
|
---|
316 | double y;
|
---|
317 | int pass;
|
---|
318 |
|
---|
319 | /* find solar ecliptical longitude and distance to sun from earth */
|
---|
320 | sunpos (mjed, &lsn, &rsn, 0);
|
---|
321 |
|
---|
322 | lg = lsn + PI;
|
---|
323 | e = op->h_e;
|
---|
324 | a = op->h_qp/(e - 1.0);
|
---|
325 | n = .98563/sqrt(a*a*a);
|
---|
326 |
|
---|
327 | /* correct for light time by computing position at time mjd, then
|
---|
328 | * again at mjd-dt, where
|
---|
329 | * dt = time it takes light to travel earth-object distance.
|
---|
330 | */
|
---|
331 | dt = 0;
|
---|
332 | for (pass = 0; pass < 2; pass++) {
|
---|
333 |
|
---|
334 | reduce_elements (op->h_epoch, mjd-dt, degrad(op->h_inc),
|
---|
335 | degrad (op->h_om), degrad (op->h_Om),
|
---|
336 | &inc, &om, &Om);
|
---|
337 |
|
---|
338 | tp = mjed - dt - op->h_ep;
|
---|
339 | vrc (&nu, &rp, tp, op->h_e, op->h_qp);
|
---|
340 | nu = degrad(nu);
|
---|
341 | lo = nu + om;
|
---|
342 | slo = sin(lo);
|
---|
343 | clo = cos(lo);
|
---|
344 | spsi = slo*sin(inc);
|
---|
345 | y = slo*cos(inc);
|
---|
346 | psi = asin(spsi);
|
---|
347 | lpd = atan(y/clo)+Om;
|
---|
348 | if (clo<0) lpd += PI;
|
---|
349 | range (&lpd, 2*PI);
|
---|
350 | cpsi = cos(psi);
|
---|
351 | rpd = rp*cpsi;
|
---|
352 | ll = lpd-lg;
|
---|
353 | rho = sqrt(rsn*rsn+rp*rp-2*rsn*rp*cpsi*cos(ll));
|
---|
354 |
|
---|
355 | dt = rho*5.775518e-3; /* light travel time, in days */
|
---|
356 | }
|
---|
357 |
|
---|
358 | /* compute sin and cos of ll */
|
---|
359 | sll = sin(ll);
|
---|
360 | cll = cos(ll);
|
---|
361 |
|
---|
362 | /* find geocentric ecliptic longitude and latitude */
|
---|
363 | if (rpd < rsn)
|
---|
364 | lam = atan(-1*rpd*sll/(rsn-rpd*cll))+lg+PI;
|
---|
365 | else
|
---|
366 | lam = atan(rsn*sll/(rpd-rsn*cll))+lpd;
|
---|
367 | range (&lam, 2*PI);
|
---|
368 | bet = atan(rpd*spsi*sin(lam-lpd)/(cpsi*rsn*sll));
|
---|
369 |
|
---|
370 | /* fill in all of op->s_* stuff except s_size and s_mag */
|
---|
371 | cir_sky (np, lpd, psi, rp, &rho, lam, bet, lsn, rsn, op);
|
---|
372 |
|
---|
373 | /* compute magnitude and size */
|
---|
374 | gk_mag (op->h_g, op->h_k, rp, rho, &mag);
|
---|
375 | set_smag (op, mag);
|
---|
376 | op->s_size = (float)(op->h_size / rho);
|
---|
377 |
|
---|
378 | return (0);
|
---|
379 | }
|
---|
380 |
|
---|
381 | /* compute sky circumstances of an object in heliocentric hyperbolic orbit.
|
---|
382 | */
|
---|
383 | static int
|
---|
384 | obj_parabolic (np, op)
|
---|
385 | Now *np;
|
---|
386 | Obj *op;
|
---|
387 | {
|
---|
388 | double lsn, rsn; /* true geoc lng of sun; dist from sn to earth*/
|
---|
389 | double lam; /* geocentric ecliptic longitude */
|
---|
390 | double bet; /* geocentric ecliptic latitude */
|
---|
391 | double mag; /* magnitude */
|
---|
392 | double inc, om, Om;
|
---|
393 | double lpd, psi, rp, rho;
|
---|
394 | double dt;
|
---|
395 | int pass;
|
---|
396 |
|
---|
397 | /* find solar ecliptical longitude and distance to sun from earth */
|
---|
398 | sunpos (mjed, &lsn, &rsn, 0);
|
---|
399 |
|
---|
400 | /* two passes to correct lam and bet for light travel time. */
|
---|
401 | dt = 0.0;
|
---|
402 | for (pass = 0; pass < 2; pass++) {
|
---|
403 | reduce_elements (op->p_epoch, mjd-dt, degrad(op->p_inc),
|
---|
404 | degrad(op->p_om), degrad(op->p_Om), &inc, &om, &Om);
|
---|
405 | comet (mjed-dt, op->p_ep, inc, om, op->p_qp, Om,
|
---|
406 | &lpd, &psi, &rp, &rho, &lam, &bet);
|
---|
407 | dt = rho*LTAU/3600.0/24.0; /* light travel time, in days / AU */
|
---|
408 | }
|
---|
409 |
|
---|
410 | /* fill in all of op->s_* stuff except s_size and s_mag */
|
---|
411 | cir_sky (np, lpd, psi, rp, &rho, lam, bet, lsn, rsn, op);
|
---|
412 |
|
---|
413 | /* compute magnitude and size */
|
---|
414 | gk_mag (op->p_g, op->p_k, rp, rho, &mag);
|
---|
415 | set_smag (op, mag);
|
---|
416 | op->s_size = (float)(op->p_size / rho);
|
---|
417 |
|
---|
418 | return (0);
|
---|
419 | }
|
---|
420 |
|
---|
421 | /* find sun's circumstances now.
|
---|
422 | */
|
---|
423 | static int
|
---|
424 | sun_cir (np, op)
|
---|
425 | Now *np;
|
---|
426 | Obj *op;
|
---|
427 | {
|
---|
428 | double lsn, rsn; /* true geoc lng of sun; dist from sn to earth*/
|
---|
429 | double bsn; /* true latitude beta of sun */
|
---|
430 | double dhlong;
|
---|
431 |
|
---|
432 | sunpos (mjed, &lsn, &rsn, &bsn);/* sun's true coordinates; mean ecl. */
|
---|
433 |
|
---|
434 | op->s_sdist = 0.0;
|
---|
435 | op->s_elong = 0.0;
|
---|
436 | op->s_phase = 100.0;
|
---|
437 | set_smag (op, -26.8); /* TODO */
|
---|
438 | dhlong = lsn-PI; /* geo- to helio- centric */
|
---|
439 | range (&dhlong, 2*PI);
|
---|
440 | op->s_hlong = (float)dhlong;
|
---|
441 | op->s_hlat = (float)(-bsn);
|
---|
442 |
|
---|
443 | /* fill sun's ra/dec, alt/az in op */
|
---|
444 | cir_pos (np, bsn, lsn, &rsn, op);
|
---|
445 | op->s_edist = (float)rsn;
|
---|
446 | op->s_size = (float)(raddeg(4.65242e-3/rsn)*3600*2);
|
---|
447 |
|
---|
448 | return (0);
|
---|
449 | }
|
---|
450 |
|
---|
451 | /* find moon's circumstances now.
|
---|
452 | */
|
---|
453 | static int
|
---|
454 | moon_cir (np, op)
|
---|
455 | Now *np;
|
---|
456 | Obj *op;
|
---|
457 | {
|
---|
458 | double lsn, rsn; /* true geoc lng of sun; dist from sn to earth*/
|
---|
459 | double lam; /* geocentric ecliptic longitude */
|
---|
460 | double bet; /* geocentric ecliptic latitude */
|
---|
461 | double edistau; /* earth-moon dist, in au */
|
---|
462 | double el; /* elongation, rads east */
|
---|
463 | double ms; /* sun's mean anomaly */
|
---|
464 | double md; /* moon's mean anomaly */
|
---|
465 | double i;
|
---|
466 |
|
---|
467 | moon (mjed, &lam, &bet, &edistau, &ms, &md); /* mean ecliptic & EOD*/
|
---|
468 | sunpos (mjed, &lsn, &rsn, NULL); /* mean ecliptic & EOD*/
|
---|
469 |
|
---|
470 | op->s_hlong = (float)lam; /* save geo in helio fields */
|
---|
471 | op->s_hlat = (float)bet;
|
---|
472 |
|
---|
473 | /* find angular separation from sun */
|
---|
474 | elongation (lam, bet, lsn, &el);
|
---|
475 | op->s_elong = (float)raddeg(el); /* want degrees */
|
---|
476 |
|
---|
477 | /* solve triangle of earth, sun, and elongation for moon-sun dist */
|
---|
478 | op->s_sdist = (float) sqrt (edistau*edistau + rsn*rsn
|
---|
479 | - 2.0*edistau*rsn*cos(el));
|
---|
480 |
|
---|
481 | /* TODO: improve mag; this is based on a flat moon model. */
|
---|
482 | set_smag (op, -12.7 + 2.5*(log10(PI) - log10(PI/2*(1+1.e-6-cos(el)))));
|
---|
483 |
|
---|
484 | /* find phase -- allow for projection effects */
|
---|
485 | i = 0.1468*sin(el)*(1 - 0.0549*sin(md))/(1 - 0.0167*sin(ms));
|
---|
486 | op->s_phase = (float)((1+cos(PI-el-degrad(i)))/2*100);
|
---|
487 |
|
---|
488 | /* fill moon's ra/dec, alt/az in op and update for topo dist */
|
---|
489 | cir_pos (np, bet, lam, &edistau, op);
|
---|
490 |
|
---|
491 | op->s_edist = (float)edistau;
|
---|
492 | op->s_size = (float)(3600*2.0*raddeg(asin(MRAD/MAU/edistau)));
|
---|
493 | /* moon angular dia, seconds */
|
---|
494 |
|
---|
495 | return (0);
|
---|
496 | }
|
---|
497 |
|
---|
498 | /* fill in all of op->s_* stuff except s_size and s_mag.
|
---|
499 | * this is used for sol system objects (except sun and moon); never FIXED.
|
---|
500 | */
|
---|
501 | static void
|
---|
502 | cir_sky (np, lpd, psi, rp, rho, lam, bet, lsn, rsn, op)
|
---|
503 | Now *np;
|
---|
504 | double lpd, psi; /* heliocentric ecliptic long and lat */
|
---|
505 | double rp; /* dist from sun */
|
---|
506 | double *rho; /* dist from earth: in as geo, back as geo or topo */
|
---|
507 | double lam, bet; /* true geocentric ecliptic long and lat */
|
---|
508 | double lsn, rsn; /* true geoc lng of sun; dist from sn to earth*/
|
---|
509 | Obj *op;
|
---|
510 | {
|
---|
511 | double el; /* elongation */
|
---|
512 | double f; /* fractional phase from earth */
|
---|
513 |
|
---|
514 | /* compute elongation and phase */
|
---|
515 | elongation (lam, bet, lsn, &el);
|
---|
516 | el = raddeg(el);
|
---|
517 | op->s_elong = (float)el;
|
---|
518 | f = 0.25 * ((rp+ *rho)*(rp+ *rho) - rsn*rsn)/(rp* *rho);
|
---|
519 | op->s_phase = (float)(f*100.0); /* percent */
|
---|
520 |
|
---|
521 | /* set heliocentric long/lat; mean ecliptic and EOD */
|
---|
522 | op->s_hlong = (float)lpd;
|
---|
523 | op->s_hlat = (float)psi;
|
---|
524 |
|
---|
525 | /* fill solar sys body's ra/dec, alt/az in op */
|
---|
526 | cir_pos (np, bet, lam, rho, op); /* updates rho */
|
---|
527 |
|
---|
528 | /* set earth/planet and sun/planet distance */
|
---|
529 | op->s_edist = (float)(*rho);
|
---|
530 | op->s_sdist = (float)rp;
|
---|
531 | }
|
---|
532 |
|
---|
533 | /* fill equatoreal and horizontal op-> fields; stern
|
---|
534 | *
|
---|
535 | * input: lam/bet/rho geocentric mean ecliptic and equinox of day
|
---|
536 | *
|
---|
537 | * algorithm at EOD:
|
---|
538 | * ecl_eq --> ra/dec geocentric mean equatoreal EOD (via mean obliq)
|
---|
539 | * deflect --> ra/dec relativistic deflection
|
---|
540 | * nut_eq --> ra/dec geocentric true equatoreal EOD
|
---|
541 | * ab_eq --> ra/dec geocentric apparent equatoreal EOD
|
---|
542 | * if (PREF_GEO) --> output
|
---|
543 | * ta_par --> ra/dec topocentric apparent equatoreal EOD
|
---|
544 | * if (!PREF_GEO) --> output
|
---|
545 | * hadec_aa --> alt/az topocentric horizontal
|
---|
546 | * refract --> alt/az observed --> output
|
---|
547 | *
|
---|
548 | * algorithm at fixed epoch:
|
---|
549 | * ecl_eq --> ra/dec geocentric mean equatoreal EOD (via mean obliq)
|
---|
550 | * deflect --> ra/dec relativistic deflection [for alt/az only]
|
---|
551 | * nut_eq --> ra/dec geocentric true equatoreal EOD [for aa only]
|
---|
552 | * ab_eq --> ra/dec geocentric apparent equatoreal EOD [for aa only]
|
---|
553 | * ta_par --> ra/dec topocentric apparent equatoreal EOD
|
---|
554 | * precess --> ra/dec topocentric equatoreal fixed equinox [eq only]
|
---|
555 | * --> output
|
---|
556 | * hadec_aa --> alt/az topocentric horizontal
|
---|
557 | * refract --> alt/az observed --> output
|
---|
558 | */
|
---|
559 | static void
|
---|
560 | cir_pos (np, bet, lam, rho, op)
|
---|
561 | Now *np;
|
---|
562 | double bet, lam;/* geo lat/long (mean ecliptic of date) */
|
---|
563 | double *rho; /* in: geocentric dist in AU; out: geo- or topocentic dist */
|
---|
564 | Obj *op; /* object to set s_ra/dec as per epoch */
|
---|
565 | {
|
---|
566 | double ra, dec; /* apparent ra/dec, corrected for nut/ab */
|
---|
567 | double tra, tdec; /* astrometric ra/dec, no nut/ab */
|
---|
568 | double lsn, rsn; /* solar geocentric (mean ecliptic of date) */
|
---|
569 | double ha_in, ha_out; /* local hour angle before/after parallax */
|
---|
570 | double dec_out; /* declination after parallax */
|
---|
571 | double dra, ddec; /* parallax correction */
|
---|
572 | double alt, az; /* current alt, az */
|
---|
573 | double lst; /* local sidereal time */
|
---|
574 | double rho_topo; /* topocentric distance in earth radii */
|
---|
575 |
|
---|
576 | /* convert to equatoreal [mean equator, with mean obliquity] */
|
---|
577 | ecl_eq (mjed, bet, lam, &ra, &dec);
|
---|
578 | tra = ra; /* keep mean coordinates */
|
---|
579 | tdec = dec;
|
---|
580 |
|
---|
581 | /* get sun position */
|
---|
582 | sunpos(mjed, &lsn, &rsn, NULL);
|
---|
583 |
|
---|
584 | /* allow for relativistic light bending near the sun.
|
---|
585 | * (avoid calling deflect() for the sun itself).
|
---|
586 | */
|
---|
587 | if (!is_planet(op,SUN) && !is_planet(op,MOON))
|
---|
588 | deflect (mjed, op->s_hlong, op->s_hlat, lsn, rsn, *rho, &ra, &dec);
|
---|
589 |
|
---|
590 | /* correct ra/dec to form geocentric apparent */
|
---|
591 | nut_eq (mjed, &ra, &dec);
|
---|
592 | if (!is_planet(op,MOON))
|
---|
593 | ab_eq (mjed, lsn, &ra, &dec);
|
---|
594 | op->s_gaera = (float)ra;
|
---|
595 | op->s_gaedec = (float)dec;
|
---|
596 |
|
---|
597 | /* find parallax correction for equatoreal coords */
|
---|
598 | now_lst (np, &lst);
|
---|
599 | ha_in = hrrad(lst) - ra;
|
---|
600 | rho_topo = *rho * MAU/ERAD; /* convert to earth radii */
|
---|
601 | ta_par (ha_in, dec, lat, elev, &rho_topo, &ha_out, &dec_out);
|
---|
602 |
|
---|
603 | /* transform into alt/az and apply refraction */
|
---|
604 | hadec_aa (lat, ha_out, dec_out, &alt, &az);
|
---|
605 | refract (pressure, temp, alt, &alt);
|
---|
606 | op->s_alt = alt;
|
---|
607 | op->s_az = az;
|
---|
608 |
|
---|
609 | /* Get parallax differences and apply to apparent or astrometric place
|
---|
610 | * as needed. For the astrometric place, rotating the CORRECTIONS
|
---|
611 | * back from the nutated equator to the mean equator will be
|
---|
612 | * neglected. This is an effect of about 0.1" at moon distance.
|
---|
613 | * We currently don't have an inverse nutation rotation.
|
---|
614 | */
|
---|
615 | if (pref_get(PREF_EQUATORIAL) == PREF_GEO) {
|
---|
616 | /* no topo corrections to eq. coords */
|
---|
617 | dra = ddec = 0.0;
|
---|
618 | } else {
|
---|
619 | dra = ha_in - ha_out; /* ra sign is opposite of ha */
|
---|
620 | ddec = dec_out - dec;
|
---|
621 | *rho = rho_topo * ERAD/MAU; /* return topocentric distance in AU */
|
---|
622 | }
|
---|
623 |
|
---|
624 | /* fill in ra/dec fields */
|
---|
625 | if (epoch == EOD) { /* apparent geo/topocentric */
|
---|
626 | ra = ra + dra;
|
---|
627 | dec = dec + ddec;
|
---|
628 | } else { /* astrometric geo/topocent */
|
---|
629 | ra = tra + dra;
|
---|
630 | dec = tdec + ddec;
|
---|
631 | precess (mjed, epoch, &ra, &dec);
|
---|
632 | }
|
---|
633 | range(&ra, 2*PI);
|
---|
634 | op->s_ra = (float)ra;
|
---|
635 | op->s_dec = (float)dec;
|
---|
636 | }
|
---|
637 |
|
---|
638 | /* given geocentric ecliptic longitude and latitude, lam and bet, of some object
|
---|
639 | * and the longitude of the sun, lsn, find the elongation, el. this is the
|
---|
640 | * actual angular separation of the object from the sun, not just the difference
|
---|
641 | * in the longitude. the sign, however, IS set simply as a test on longitude
|
---|
642 | * such that el will be >0 for an evening object <0 for a morning object.
|
---|
643 | * to understand the test for el sign, draw a graph with lam going from 0-2*PI
|
---|
644 | * down the vertical axis, lsn going from 0-2*PI across the hor axis. then
|
---|
645 | * define the diagonal regions bounded by the lines lam=lsn+PI, lam=lsn and
|
---|
646 | * lam=lsn-PI. the "morning" regions are any values to the lower left of the
|
---|
647 | * first line and bounded within the second pair of lines.
|
---|
648 | * all angles in radians.
|
---|
649 | */
|
---|
650 | static void
|
---|
651 | elongation (lam, bet, lsn, el)
|
---|
652 | double lam, bet, lsn;
|
---|
653 | double *el;
|
---|
654 | {
|
---|
655 | *el = acos(cos(bet)*cos(lam-lsn));
|
---|
656 | if (lam>lsn+PI || (lam>lsn-PI && lam<lsn)) *el = - *el;
|
---|
657 | }
|
---|
658 |
|
---|
659 | /* apply relativistic light bending correction to ra/dec; stern
|
---|
660 | *
|
---|
661 | * The algorithm is from:
|
---|
662 | * Mean and apparent place computations in the new IAU
|
---|
663 | * system. III - Apparent, topocentric, and astrometric
|
---|
664 | * places of planets and stars
|
---|
665 | * KAPLAN, G. H.; HUGHES, J. A.; SEIDELMANN, P. K.;
|
---|
666 | * SMITH, C. A.; YALLOP, B. D.
|
---|
667 | * Astronomical Journal (ISSN 0004-6256), vol. 97, April 1989, p. 1197-1210.
|
---|
668 | *
|
---|
669 | * This article is a very good collection of formulea for geocentric and
|
---|
670 | * topocentric place calculation in general. The apparent and
|
---|
671 | * astrometric place calculation in this file currently does not follow
|
---|
672 | * the strict algorithm from this paper and hence is not fully correct.
|
---|
673 | * The entire calculation is currently based on the rotating EOD frame and
|
---|
674 | * not the "inertial" J2000 frame.
|
---|
675 | */
|
---|
676 | static void
|
---|
677 | deflect (mjd1, lpd, psi, lsn, rsn, rho, ra, dec)
|
---|
678 | double mjd1; /* epoch */
|
---|
679 | double lpd, psi; /* heliocentric ecliptical long / lat */
|
---|
680 | double rsn, lsn; /* distance and longitude of sun */
|
---|
681 | double rho; /* geocentric distance */
|
---|
682 | double *ra, *dec; /* geocentric equatoreal */
|
---|
683 | {
|
---|
684 | double hra, hdec; /* object heliocentric equatoreal */
|
---|
685 | double el; /* HELIOCENTRIC elongation object--earth */
|
---|
686 | double g1, g2; /* relativistic weights */
|
---|
687 | double u[3]; /* object geocentric cartesian */
|
---|
688 | double q[3]; /* object heliocentric cartesian unit vect */
|
---|
689 | double e[3]; /* earth heliocentric cartesian unit vect */
|
---|
690 | double qe, uq, eu; /* scalar products */
|
---|
691 | int i; /* counter */
|
---|
692 |
|
---|
693 | #define G 1.32712438e20 /* heliocentric grav const; in m^3*s^-2 */
|
---|
694 | #define c 299792458.0 /* speed of light in m/s */
|
---|
695 |
|
---|
696 | elongation(lpd, psi, lsn-PI, &el);
|
---|
697 | el = fabs(el);
|
---|
698 | /* only continue if object is within about 10 deg around the sun
|
---|
699 | * and not obscured by the sun's disc (radius 0.25 deg)
|
---|
700 | *
|
---|
701 | * precise geocentric deflection is: g1 * tan(el/2)
|
---|
702 | * radially outwards from sun; the vector munching below
|
---|
703 | * just applys this component-wise
|
---|
704 | * Note: el = HELIOCENTRIC elongation.
|
---|
705 | * g1 is always about 0.004 arc seconds
|
---|
706 | * g2 varies from 0 (highest contribution) to 2
|
---|
707 | */
|
---|
708 | if (el<degrad(170) || el>degrad(179.75)) return;
|
---|
709 |
|
---|
710 | /* get cartesian vectors */
|
---|
711 | sphcart(*ra, *dec, rho, u, u+1, u+2);
|
---|
712 |
|
---|
713 | ecl_eq(mjd1, psi, lpd, &hra, &hdec);
|
---|
714 | sphcart(hra, hdec, 1.0, q, q+1, q+2);
|
---|
715 |
|
---|
716 | ecl_eq(mjd1, 0.0, lsn-PI, &hra, &hdec);
|
---|
717 | sphcart(hra, hdec, 1.0, e, e+1, e+2);
|
---|
718 |
|
---|
719 | /* evaluate scalar products */
|
---|
720 | qe = uq = eu = 0.0;
|
---|
721 | for(i=0; i<=2; ++i) {
|
---|
722 | qe += q[i]*e[i];
|
---|
723 | uq += u[i]*q[i];
|
---|
724 | eu += e[i]*u[i];
|
---|
725 | }
|
---|
726 |
|
---|
727 | g1 = 2*G/(c*c*MAU)/rsn;
|
---|
728 | g2 = 1 + qe;
|
---|
729 |
|
---|
730 | /* now deflect geocentric vector */
|
---|
731 | g1 /= g2;
|
---|
732 | for(i=0; i<=2; ++i)
|
---|
733 | u[i] += g1*(uq*e[i] - eu*q[i]);
|
---|
734 |
|
---|
735 | /* back to spherical */
|
---|
736 | cartsph(u[0], u[1], u[2], ra, dec, &rho); /* rho thrown away */
|
---|
737 | }
|
---|
738 |
|
---|
739 | /* estimate size in arc seconds @ 1AU from absolute magnitude, H, and assuming
|
---|
740 | * an albedo of 0.1. With this assumption an object with diameter of 1500m
|
---|
741 | * has an absolute mag of 18.
|
---|
742 | */
|
---|
743 | static double
|
---|
744 | h_albsize (H)
|
---|
745 | double H;
|
---|
746 | {
|
---|
747 | return (3600*raddeg(.707*1500*pow(2.51,(18-H)/2)/MAU));
|
---|
748 | }
|
---|
749 |
|
---|
750 | /* For RCS Only -- Do Not Edit */
|
---|
751 | static char *rcsid[2] = {(char *)rcsid, "@(#) $RCSfile: circum.c,v $ $Date: 2001-10-22 12:08:26 $ $Revision: 1.2 $ $Name: not supported by cvs2svn $"};
|
---|