| 1 | /* given a Now and an Obj with the object definition portion filled in,
 | 
|---|
| 2 |  * fill in the sky position (s_*) portions.
 | 
|---|
| 3 |  * calculation of positional coordinates reworked by
 | 
|---|
| 4 |  * Michael Sternberg <sternberg@physik.tu-chemnitz.de>
 | 
|---|
| 5 |  *  3/11/98: deflect was using op->s_hlong before being set in cir_pos().
 | 
|---|
| 6 |  *  4/19/98: just edit a comment
 | 
|---|
| 7 |  */
 | 
|---|
| 8 | 
 | 
|---|
| 9 | #include <stdio.h>
 | 
|---|
| 10 | #include <math.h>
 | 
|---|
| 11 | #include <stdlib.h>
 | 
|---|
| 12 | 
 | 
|---|
| 13 | #include "astro.h"
 | 
|---|
| 14 | #include "preferences.h"
 | 
|---|
| 15 | 
 | 
|---|
| 16 | 
 | 
|---|
| 17 | static int obj_planet (Now *np, Obj *op);
 | 
|---|
| 18 | static int obj_binary (Now *np, Obj *op);
 | 
|---|
| 19 | static int obj_2binary (Now *np, Obj *op);
 | 
|---|
| 20 | static int obj_fixed (Now *np, Obj *op);
 | 
|---|
| 21 | static int obj_elliptical (Now *np, Obj *op);
 | 
|---|
| 22 | static int obj_hyperbolic (Now *np, Obj *op);
 | 
|---|
| 23 | static int obj_parabolic (Now *np, Obj *op);
 | 
|---|
| 24 | static int sun_cir (Now *np, Obj *op);
 | 
|---|
| 25 | static int moon_cir (Now *np, Obj *op);
 | 
|---|
| 26 | static double solveKepler (double M, double e);
 | 
|---|
| 27 | static void binaryStarOrbit (double t, double T, double e, double o, double O,
 | 
|---|
| 28 |     double i, double a, double P, double *thetap, double *rhop);
 | 
|---|
| 29 | static void cir_sky (Now *np, double lpd, double psi, double rp, double *rho,
 | 
|---|
| 30 |     double lam, double bet, double lsn, double rsn, Obj *op);
 | 
|---|
| 31 | static void cir_pos (Now *np, double bet, double lam, double *rho, Obj *op);
 | 
|---|
| 32 | static void elongation (double lam, double bet, double lsn, double *el);
 | 
|---|
| 33 | static void deflect (double mjd1, double lpd, double psi, double rsn,
 | 
|---|
| 34 |     double lsn, double rho, double *ra, double *dec);
 | 
|---|
| 35 | static double h_albsize (double H);
 | 
|---|
| 36 | 
 | 
|---|
| 37 | /* given a Now and an Obj, fill in the approprirate s_* fields within Obj.
 | 
|---|
| 38 |  * return 0 if all ok, else -1.
 | 
|---|
| 39 |  */
 | 
|---|
| 40 | int
 | 
|---|
| 41 | obj_cir (Now *np, Obj *op)
 | 
|---|
| 42 | {
 | 
|---|
| 43 |         op->o_flags &= ~NOCIRCUM;
 | 
|---|
| 44 |         switch (op->o_type) {
 | 
|---|
| 45 |         case BINARYSTAR: return (obj_binary (np, op));
 | 
|---|
| 46 |         case FIXED:      return (obj_fixed (np, op));
 | 
|---|
| 47 |         case ELLIPTICAL: return (obj_elliptical (np, op));
 | 
|---|
| 48 |         case HYPERBOLIC: return (obj_hyperbolic (np, op));
 | 
|---|
| 49 |         case PARABOLIC:  return (obj_parabolic (np, op));
 | 
|---|
| 50 |         case EARTHSAT:   return (obj_earthsat (np, op));
 | 
|---|
| 51 |         case PLANET:     return (obj_planet (np, op));
 | 
|---|
| 52 |         default:
 | 
|---|
| 53 |             printf ("obj_cir() called with type %d %s\n", op->o_type, op->o_name);
 | 
|---|
| 54 |             abort();
 | 
|---|
| 55 |             return (-1);        /* just for lint */
 | 
|---|
| 56 |         }
 | 
|---|
| 57 | }
 | 
|---|
| 58 | 
 | 
|---|
| 59 | static int
 | 
|---|
| 60 | obj_planet (Now *np, Obj *op)
 | 
|---|
| 61 | {
 | 
|---|
| 62 |         double lsn, rsn;        /* true geoc lng of sun; dist from sn to earth*/
 | 
|---|
| 63 |         double lpd, psi;        /* heliocentric ecliptic long and lat */
 | 
|---|
| 64 |         double rp;              /* dist from sun */
 | 
|---|
| 65 |         double rho;             /* dist from earth */
 | 
|---|
| 66 |         double lam, bet;        /* geocentric ecliptic long and lat */
 | 
|---|
| 67 |         double dia, mag;        /* angular diameter at 1 AU and magnitude */
 | 
|---|
| 68 |         PLCode p;
 | 
|---|
| 69 | 
 | 
|---|
| 70 |         /* validate code and check for a few special cases */
 | 
|---|
| 71 |         p = op->pl_code;
 | 
|---|
| 72 |         if (p == SUN)
 | 
|---|
| 73 |             return (sun_cir (np, op));
 | 
|---|
| 74 |         if (p == MOON)
 | 
|---|
| 75 |             return (moon_cir (np, op));
 | 
|---|
| 76 |         if (op->pl_moon != X_PLANET)
 | 
|---|
| 77 |             return (plmoon_cir (np, op));
 | 
|---|
| 78 |         if (p < 0 || p > MOON) {
 | 
|---|
| 79 |             printf ("unknown planet code: %d\n", p);
 | 
|---|
| 80 |             abort();
 | 
|---|
| 81 |         }
 | 
|---|
| 82 | 
 | 
|---|
| 83 |         /* planet itself */
 | 
|---|
| 84 | 
 | 
|---|
| 85 |         /* find solar ecliptical longitude and distance to sun from earth */
 | 
|---|
| 86 |         sunpos (mjed, &lsn, &rsn, 0);
 | 
|---|
| 87 | 
 | 
|---|
| 88 |         /* find helio long/lat; sun/planet and earth/planet dist; ecliptic
 | 
|---|
| 89 |          * long/lat; diameter and mag.
 | 
|---|
| 90 |          */
 | 
|---|
| 91 |         plans(mjed, p, &lpd, &psi, &rp, &rho, &lam, &bet, &dia, &mag);
 | 
|---|
| 92 | 
 | 
|---|
| 93 |         /* fill in all of op->s_* stuff except s_size and s_mag */
 | 
|---|
| 94 |         cir_sky (np, lpd, psi, rp, &rho, lam, bet, lsn, rsn, op);
 | 
|---|
| 95 | 
 | 
|---|
| 96 |         /* set magnitude and angular size */
 | 
|---|
| 97 |         set_smag (op, mag);
 | 
|---|
| 98 |         op->s_size = (float)(dia/rho);
 | 
|---|
| 99 | 
 | 
|---|
| 100 |         return (0);
 | 
|---|
| 101 | }
 | 
|---|
| 102 | 
 | 
|---|
| 103 | static int
 | 
|---|
| 104 | obj_binary (Now *np, Obj *op)
 | 
|---|
| 105 | {
 | 
|---|
| 106 |         /* always compute circumstances of primary */
 | 
|---|
| 107 |         if (obj_fixed (np, op) < 0)
 | 
|---|
| 108 |             return (0);
 | 
|---|
| 109 | 
 | 
|---|
| 110 |         /* compute secondary only if requested, and always reset request flag */
 | 
|---|
| 111 |         if (!op->b_2compute)
 | 
|---|
| 112 |             return (0);
 | 
|---|
| 113 |         op->b_2compute = 0;
 | 
|---|
| 114 |         return (obj_2binary (np, op));
 | 
|---|
| 115 | }
 | 
|---|
| 116 | 
 | 
|---|
| 117 | /* compute position of secondary component of a BINARYSTAR */
 | 
|---|
| 118 | static int
 | 
|---|
| 119 | obj_2binary (Now *np, Obj *op)
 | 
|---|
| 120 | {
 | 
|---|
| 121 |         if (op->b_nbp > 0) {
 | 
|---|
| 122 |             /* we just have discrete pa/sep, project each from primary */
 | 
|---|
| 123 |             int i;
 | 
|---|
| 124 |             for (i = 0; i < op->b_nbp; i++) {
 | 
|---|
| 125 |                 BinPos *bp = &op->b_bp[i];
 | 
|---|
| 126 |                 bp->bp_dec = op->s_dec + bp->bp_sep*cos(bp->bp_pa);
 | 
|---|
| 127 |                 bp->bp_ra = op->s_ra + bp->bp_sep*sin(bp->bp_pa)/cos(op->s_dec);
 | 
|---|
| 128 |             }
 | 
|---|
| 129 |         } else {
 | 
|---|
| 130 |             BinOrbit *bp = &op->b_bo;
 | 
|---|
| 131 |             double t, theta, rho;
 | 
|---|
| 132 | 
 | 
|---|
| 133 |             mjd_year (mjd, &t);
 | 
|---|
| 134 |             binaryStarOrbit (t, bp->bo_T, bp->bo_e, bp->bo_o, bp->bo_O,
 | 
|---|
| 135 |                                 bp->bo_i, bp->bo_a, bp->bo_P, &theta, &rho);
 | 
|---|
| 136 |             bp->bo_pa = (float)theta;
 | 
|---|
| 137 |             bp->bo_sep = (float)rho;
 | 
|---|
| 138 |             rho = degrad(rho/3600.);    /* arc secs to rads */
 | 
|---|
| 139 |             bp->bo_dec = op->s_dec + rho*cos(theta);
 | 
|---|
| 140 |             bp->bo_ra =  op->s_ra  + rho*sin(theta)/cos(op->s_dec);
 | 
|---|
| 141 |         }
 | 
|---|
| 142 | 
 | 
|---|
| 143 |         return (0);
 | 
|---|
| 144 | }
 | 
|---|
| 145 | 
 | 
|---|
| 146 | /* from W. M. Smart */
 | 
|---|
| 147 | static void
 | 
|---|
| 148 | binaryStarOrbit (
 | 
|---|
| 149 | double t,               /* desired ephemeris epoch, year */
 | 
|---|
| 150 | double T,               /* epoch of periastron, year */
 | 
|---|
| 151 | double e,               /* eccentricity */
 | 
|---|
| 152 | double o,               /* argument of periastron, degrees */
 | 
|---|
| 153 | double O,               /* ascending node, degrees */
 | 
|---|
| 154 | double i,               /* inclination, degrees */
 | 
|---|
| 155 | double a,               /* semi major axis, arcsecs */
 | 
|---|
| 156 | double P,               /* period, years */
 | 
|---|
| 157 | double *thetap,         /* position angle, rads E of N */
 | 
|---|
| 158 | double *rhop)           /* separation, arcsecs */
 | 
|---|
| 159 | {
 | 
|---|
| 160 |         double M, E, cosE, nu, cosnu, r, rho, theta;
 | 
|---|
| 161 | 
 | 
|---|
| 162 |         /* find mean anomaly, insure 0..2*PI */
 | 
|---|
| 163 |         M = 2*PI/P*(t-T);
 | 
|---|
| 164 |         range (&M, 2*PI);
 | 
|---|
| 165 | 
 | 
|---|
| 166 |         /* solve for eccentric anomaly */
 | 
|---|
| 167 |         E = solveKepler (M, e);
 | 
|---|
| 168 |         cosE = cos(E);
 | 
|---|
| 169 | 
 | 
|---|
| 170 |         /* find true anomaly and separation */
 | 
|---|
| 171 |         cosnu = (cosE - e)/(1.0 - e*cosE);
 | 
|---|
| 172 |         r = a*(1.0 - e*e)/(1.0 + e*cosnu);
 | 
|---|
| 173 |         nu = acos(cosnu);
 | 
|---|
| 174 |         if (E > PI)
 | 
|---|
| 175 |             nu = -nu;
 | 
|---|
| 176 | 
 | 
|---|
| 177 |         /* project onto sky */
 | 
|---|
| 178 |         theta = atan(tan(nu+degrad(o))*cos(degrad(i))) + degrad(O);
 | 
|---|
| 179 |         rho = r*cos(nu+degrad(o))/cos(theta-degrad(O));
 | 
|---|
| 180 |         if (rho < 0) {
 | 
|---|
| 181 |             theta += PI;
 | 
|---|
| 182 |             rho = -rho;
 | 
|---|
| 183 |         }
 | 
|---|
| 184 |         range (&theta, 2*PI);
 | 
|---|
| 185 | 
 | 
|---|
| 186 |         *thetap = theta;
 | 
|---|
| 187 |         *rhop = rho;
 | 
|---|
| 188 | }
 | 
|---|
| 189 | 
 | 
|---|
| 190 | /* solve kepler equation using Newton-Raphson search.
 | 
|---|
| 191 |  * Charles and Tatum have shown it always converges starting with PI.
 | 
|---|
| 192 |  */
 | 
|---|
| 193 | static double
 | 
|---|
| 194 | solveKepler (double M, double e)
 | 
|---|
| 195 | {
 | 
|---|
| 196 |         double E, Eprime = PI;
 | 
|---|
| 197 | 
 | 
|---|
| 198 |         do {
 | 
|---|
| 199 |             double cosE = cos(Eprime);
 | 
|---|
| 200 |             E = Eprime;
 | 
|---|
| 201 |             Eprime = (M - e*(E*cosE - sin(E)))/(1.0 - e*cosE);
 | 
|---|
| 202 |         } while (fabs(E-Eprime) > 1e-7);
 | 
|---|
| 203 | 
 | 
|---|
| 204 |         return (Eprime);
 | 
|---|
| 205 | }
 | 
|---|
| 206 | 
 | 
|---|
| 207 | static int
 | 
|---|
| 208 | obj_fixed (Now *np, Obj *op)
 | 
|---|
| 209 | {
 | 
|---|
| 210 |         double lsn, rsn;        /* true geoc lng of sun, dist from sn to earth*/
 | 
|---|
| 211 |         double lam, bet;        /* geocentric ecliptic long and lat */
 | 
|---|
| 212 |         double ha;              /* local hour angle */
 | 
|---|
| 213 |         double el;              /* elongation */
 | 
|---|
| 214 |         double alt, az;         /* current alt, az */
 | 
|---|
| 215 |         double ra, dec;         /* ra and dec at equinox of date */
 | 
|---|
| 216 |         double rpm, dpm;        /* astrometric ra and dec with PM to now */
 | 
|---|
| 217 |         double lst;
 | 
|---|
| 218 | 
 | 
|---|
| 219 |         /* on the assumption that the user will stick with their chosen display
 | 
|---|
| 220 |          * epoch for a while, we move the defining values to match and avoid
 | 
|---|
| 221 |          * precession for every call until it is changed again.
 | 
|---|
| 222 |          * N.B. only compare and store jd's to lowest precission (f_epoch).
 | 
|---|
| 223 |          * N.B. maintaining J2k ref (which is arbitrary) helps avoid accum err
 | 
|---|
| 224 |          */
 | 
|---|
| 225 |         if (epoch != EOD && (float)epoch != (float)op->f_epoch) {
 | 
|---|
| 226 |             double pr = op->f_RA, pd = op->f_dec, fe = (float)epoch;
 | 
|---|
| 227 |             /* first bring back to 2k */
 | 
|---|
| 228 |             precess (op->f_epoch, J2000, &pr, &pd);
 | 
|---|
| 229 |             pr += op->f_pmRA*(J2000-op->f_epoch);
 | 
|---|
| 230 |             pd += op->f_pmdec*(J2000-op->f_epoch);
 | 
|---|
| 231 |             /* then to epoch */
 | 
|---|
| 232 |             pr += op->f_pmRA*(fe-J2000);
 | 
|---|
| 233 |             pd += op->f_pmdec*(fe-J2000);
 | 
|---|
| 234 |             precess (J2000, fe, &pr, &pd);
 | 
|---|
| 235 |             op->f_RA = (float)pr;
 | 
|---|
| 236 |             op->f_dec = (float)pd;
 | 
|---|
| 237 |             op->f_epoch = (float)fe;
 | 
|---|
| 238 |         }
 | 
|---|
| 239 | 
 | 
|---|
| 240 |         /* apply proper motion .. assume pm epoch reference equals equinox */
 | 
|---|
| 241 |         rpm = op->f_RA + op->f_pmRA*(mjd-op->f_epoch);
 | 
|---|
| 242 |         dpm = op->f_dec + op->f_pmdec*(mjd-op->f_epoch);
 | 
|---|
| 243 | 
 | 
|---|
| 244 |         /* set ra/dec to astrometric @ equinox of date */
 | 
|---|
| 245 |         ra = rpm;
 | 
|---|
| 246 |         dec = dpm;
 | 
|---|
| 247 |         precess (op->f_epoch, mjed, &ra, &dec);
 | 
|---|
| 248 | 
 | 
|---|
| 249 |         /* convert equatoreal ra/dec to mean geocentric ecliptic lat/long */
 | 
|---|
| 250 |         eq_ecl (mjed, ra, dec, &bet, &lam);
 | 
|---|
| 251 | 
 | 
|---|
| 252 |         /* find solar ecliptical long.(mean equinox) and distance from earth */
 | 
|---|
| 253 |         sunpos (mjed, &lsn, &rsn, NULL);
 | 
|---|
| 254 | 
 | 
|---|
| 255 |         /* allow for relativistic light bending near the sun */
 | 
|---|
| 256 |         deflect (mjed, lam, bet, lsn, rsn, 1e10, &ra, &dec);
 | 
|---|
| 257 | 
 | 
|---|
| 258 |         /* TODO: correction for annual parallax would go here */
 | 
|---|
| 259 | 
 | 
|---|
| 260 |         /* correct EOD equatoreal for nutation/aberation to form apparent 
 | 
|---|
| 261 |          * geocentric
 | 
|---|
| 262 |          */
 | 
|---|
| 263 |         nut_eq(mjed, &ra, &dec);
 | 
|---|
| 264 |         ab_eq(mjed, lsn, &ra, &dec);
 | 
|---|
| 265 |         op->s_gaera = (float)ra;
 | 
|---|
| 266 |         op->s_gaedec = (float)dec;
 | 
|---|
| 267 | 
 | 
|---|
| 268 |         /* set s_ra/dec -- apparent if EOD else astrometric */
 | 
|---|
| 269 |         if (epoch == EOD) {
 | 
|---|
| 270 |             op->s_ra = (float)ra;
 | 
|---|
| 271 |             op->s_dec = (float)dec;
 | 
|---|
| 272 |         } else {
 | 
|---|
| 273 |             /* annual parallax at time mjd is to be added here, too, but
 | 
|---|
| 274 |              * technically in the frame of equinox (usually different from mjd)
 | 
|---|
| 275 |              */
 | 
|---|
| 276 |             op->s_ra = rpm;
 | 
|---|
| 277 |             op->s_dec = dpm;
 | 
|---|
| 278 |         }
 | 
|---|
| 279 | 
 | 
|---|
| 280 |         /* compute elongation from ecliptic long/lat and sun geocentric long */
 | 
|---|
| 281 |         elongation (lam, bet, lsn, &el);
 | 
|---|
| 282 |         el = raddeg(el);
 | 
|---|
| 283 |         op->s_elong = (float)el;
 | 
|---|
| 284 | 
 | 
|---|
| 285 |         /* these are really the same fields ...
 | 
|---|
| 286 |         op->s_mag = op->f_mag;
 | 
|---|
| 287 |         op->s_size = op->f_size;
 | 
|---|
| 288 |         */
 | 
|---|
| 289 | 
 | 
|---|
| 290 |         /* alt, az: correct for refraction; use eod ra/dec. */
 | 
|---|
| 291 |         now_lst (np, &lst);
 | 
|---|
| 292 |         ha = hrrad(lst) - ra;
 | 
|---|
| 293 |         hadec_aa (lat, ha, dec, &alt, &az);
 | 
|---|
| 294 |         refract (pressure, temp, alt, &alt);
 | 
|---|
| 295 |         op->s_alt = alt;
 | 
|---|
| 296 |         op->s_az = az;
 | 
|---|
| 297 | 
 | 
|---|
| 298 |         return (0);
 | 
|---|
| 299 | }
 | 
|---|
| 300 | 
 | 
|---|
| 301 | /* compute sky circumstances of an object in heliocentric elliptic orbit at *np.
 | 
|---|
| 302 |  */
 | 
|---|
| 303 | static int
 | 
|---|
| 304 | obj_elliptical (Now *np, Obj *op)
 | 
|---|
| 305 | {
 | 
|---|
| 306 |         double lsn, rsn;        /* true geoc lng of sun; dist from sn to earth*/
 | 
|---|
| 307 |         double dt;              /* light travel time to object */
 | 
|---|
| 308 |         double lg;              /* helio long of earth */
 | 
|---|
| 309 |         double nu;              /* true anomaly */
 | 
|---|
| 310 |         double rp=0;            /* distance from the sun */
 | 
|---|
| 311 |         double lo, slo, clo;    /* angle from ascending node */
 | 
|---|
| 312 |         double inc;             /* inclination */
 | 
|---|
| 313 |         double psi=0;           /* heliocentric latitude */
 | 
|---|
| 314 |         double spsi=0, cpsi=0;  /* trig of heliocentric latitude */
 | 
|---|
| 315 |         double lpd;             /* heliocentric longitude */
 | 
|---|
| 316 |         double rho=0;           /* distance from the Earth */
 | 
|---|
| 317 |         double om;              /* arg of perihelion */
 | 
|---|
| 318 |         double Om;              /* long of ascending node. */
 | 
|---|
| 319 |         double lam;             /* geocentric ecliptic longitude */
 | 
|---|
| 320 |         double bet;             /* geocentric ecliptic latitude */
 | 
|---|
| 321 |         double ll=0, sll, cll;  /* helio angle between object and earth */
 | 
|---|
| 322 |         double mag;             /* magnitude */
 | 
|---|
| 323 |         double e_n;             /* mean daily motion */
 | 
|---|
| 324 |         double tp;              /* time from perihelion (days) */
 | 
|---|
| 325 |         double rpd=0;
 | 
|---|
| 326 |         double y;
 | 
|---|
| 327 |         int pass;
 | 
|---|
| 328 | 
 | 
|---|
| 329 |         /* find location of earth from sun now */
 | 
|---|
| 330 |         sunpos (mjed, &lsn, &rsn, 0);
 | 
|---|
| 331 |         lg = lsn + PI;
 | 
|---|
| 332 | 
 | 
|---|
| 333 |         /* mean daily motion is derived fro mean distance */
 | 
|---|
| 334 |         e_n = 0.9856076686/pow((double)op->e_a, 1.5);
 | 
|---|
| 335 | 
 | 
|---|
| 336 |         /* correct for light time by computing position at time mjd, then
 | 
|---|
| 337 |          *   again at mjd-dt, where
 | 
|---|
| 338 |          *   dt = time it takes light to travel earth-object distance.
 | 
|---|
| 339 |          */
 | 
|---|
| 340 |         dt = 0;
 | 
|---|
| 341 |         for (pass = 0; pass < 2; pass++) {
 | 
|---|
| 342 | 
 | 
|---|
| 343 |             reduce_elements (op->e_epoch, mjd-dt, degrad(op->e_inc),
 | 
|---|
| 344 |                                         degrad (op->e_om), degrad (op->e_Om),
 | 
|---|
| 345 |                                         &inc, &om, &Om);
 | 
|---|
| 346 | 
 | 
|---|
| 347 |             tp = mjed - dt - (op->e_cepoch - op->e_M/e_n);
 | 
|---|
| 348 |             if (vrc (&nu, &rp, tp, op->e_e, op->e_a*(1-op->e_e)) < 0)
 | 
|---|
| 349 |                 op->o_flags |= NOCIRCUM;
 | 
|---|
| 350 |             nu = degrad(nu);
 | 
|---|
| 351 |             lo = nu + om;
 | 
|---|
| 352 |             slo = sin(lo);
 | 
|---|
| 353 |             clo = cos(lo);
 | 
|---|
| 354 |             spsi = slo*sin(inc);
 | 
|---|
| 355 |             y = slo*cos(inc);
 | 
|---|
| 356 |             psi = asin(spsi);
 | 
|---|
| 357 |             lpd = atan(y/clo)+Om;
 | 
|---|
| 358 |             if (clo<0) lpd += PI;
 | 
|---|
| 359 |             range (&lpd, 2*PI);
 | 
|---|
| 360 |             cpsi = cos(psi);
 | 
|---|
| 361 |             rpd = rp*cpsi;
 | 
|---|
| 362 |             ll = lpd-lg;
 | 
|---|
| 363 |             rho = sqrt(rsn*rsn+rp*rp-2*rsn*rp*cpsi*cos(ll));
 | 
|---|
| 364 | 
 | 
|---|
| 365 |             dt = rho*LTAU/3600.0/24.0;  /* light travel time, in days / AU */
 | 
|---|
| 366 |         }
 | 
|---|
| 367 | 
 | 
|---|
| 368 |         /* compute sin and cos of ll */
 | 
|---|
| 369 |         sll = sin(ll);
 | 
|---|
| 370 |         cll = cos(ll);
 | 
|---|
| 371 | 
 | 
|---|
| 372 |         /* find geocentric ecliptic longitude and latitude */
 | 
|---|
| 373 |         if (rpd < rsn)
 | 
|---|
| 374 |             lam = atan(-1*rpd*sll/(rsn-rpd*cll))+lg+PI;
 | 
|---|
| 375 |         else
 | 
|---|
| 376 |             lam = atan(rsn*sll/(rpd-rsn*cll))+lpd;
 | 
|---|
| 377 |         range (&lam, 2*PI);
 | 
|---|
| 378 |         bet = atan(rpd*spsi*sin(lam-lpd)/(cpsi*rsn*sll));
 | 
|---|
| 379 | 
 | 
|---|
| 380 |         /* fill in all of op->s_* stuff except s_size and s_mag */
 | 
|---|
| 381 |         cir_sky (np, lpd, psi, rp, &rho, lam, bet, lsn, rsn, op);
 | 
|---|
| 382 | 
 | 
|---|
| 383 |         /* compute magnitude and size */
 | 
|---|
| 384 |         if (op->e_mag.whichm == MAG_HG) {
 | 
|---|
| 385 |             /* the H and G parameters from the Astro. Almanac.
 | 
|---|
| 386 |              */
 | 
|---|
| 387 |             if (op->e_size)
 | 
|---|
| 388 |                 op->s_size = (float)(op->e_size / rho);
 | 
|---|
| 389 |             else {
 | 
|---|
| 390 |                 hg_mag (op->e_mag.m1, op->e_mag.m2, rp, rho, rsn, &mag);
 | 
|---|
| 391 |                 op->s_size = (float)(h_albsize (op->e_mag.m1)/rho);
 | 
|---|
| 392 | 
 | 
|---|
| 393 |             }
 | 
|---|
| 394 |         } else {
 | 
|---|
| 395 |             /* the g/k model of comets */
 | 
|---|
| 396 |             gk_mag (op->e_mag.m1, op->e_mag.m2, rp, rho, &mag);
 | 
|---|
| 397 |             op->s_size = (float)(op->e_size / rho);
 | 
|---|
| 398 |         }
 | 
|---|
| 399 |         set_smag (op, mag);
 | 
|---|
| 400 | 
 | 
|---|
| 401 |         return (0);
 | 
|---|
| 402 | }
 | 
|---|
| 403 | 
 | 
|---|
| 404 | /* compute sky circumstances of an object in heliocentric hyperbolic orbit.
 | 
|---|
| 405 |  */
 | 
|---|
| 406 | static int
 | 
|---|
| 407 | obj_hyperbolic (Now *np, Obj *op)
 | 
|---|
| 408 | {
 | 
|---|
| 409 |         double lsn, rsn;        /* true geoc lng of sun; dist from sn to earth*/
 | 
|---|
| 410 |         double dt;              /* light travel time to object */
 | 
|---|
| 411 |         double lg;              /* helio long of earth */
 | 
|---|
| 412 |         double nu;              /* true anomaly and eccentric anomaly */
 | 
|---|
| 413 |         double rp=0;            /* distance from the sun */
 | 
|---|
| 414 |         double lo, slo, clo;    /* angle from ascending node */
 | 
|---|
| 415 |         double inc;             /* inclination */
 | 
|---|
| 416 |         double psi=0;           /* heliocentric latitude */
 | 
|---|
| 417 |         double spsi=0, cpsi=0;  /* trig of heliocentric latitude */
 | 
|---|
| 418 |         double lpd;             /* heliocentric longitude */
 | 
|---|
| 419 |         double rho=0;           /* distance from the Earth */
 | 
|---|
| 420 |         double om;              /* arg of perihelion */
 | 
|---|
| 421 |         double Om;              /* long of ascending node. */
 | 
|---|
| 422 |         double lam;             /* geocentric ecliptic longitude */
 | 
|---|
| 423 |         double bet;             /* geocentric ecliptic latitude */
 | 
|---|
| 424 |         double e;               /* fast eccentricity */
 | 
|---|
| 425 |         double ll=0, sll, cll;  /* helio angle between object and earth */
 | 
|---|
| 426 |         double mag;             /* magnitude */
 | 
|---|
| 427 |         double a;               /* mean distance */
 | 
|---|
| 428 |         double tp;              /* time from perihelion (days) */
 | 
|---|
| 429 |         double rpd=0;
 | 
|---|
| 430 |         double y;
 | 
|---|
| 431 |         int pass;
 | 
|---|
| 432 | 
 | 
|---|
| 433 |         /* find solar ecliptical longitude and distance to sun from earth */
 | 
|---|
| 434 |         sunpos (mjed, &lsn, &rsn, 0);
 | 
|---|
| 435 | 
 | 
|---|
| 436 |         lg = lsn + PI;
 | 
|---|
| 437 |         e = op->h_e;
 | 
|---|
| 438 |         a = op->h_qp/(e - 1.0);
 | 
|---|
| 439 | 
 | 
|---|
| 440 |         /* correct for light time by computing position at time mjd, then
 | 
|---|
| 441 |          *   again at mjd-dt, where
 | 
|---|
| 442 |          *   dt = time it takes light to travel earth-object distance.
 | 
|---|
| 443 |          */
 | 
|---|
| 444 |         dt = 0;
 | 
|---|
| 445 |         for (pass = 0; pass < 2; pass++) {
 | 
|---|
| 446 | 
 | 
|---|
| 447 |             reduce_elements (op->h_epoch, mjd-dt, degrad(op->h_inc),
 | 
|---|
| 448 |                             degrad (op->h_om), degrad (op->h_Om),
 | 
|---|
| 449 |                             &inc, &om, &Om);
 | 
|---|
| 450 | 
 | 
|---|
| 451 |             tp = mjed - dt - op->h_ep;
 | 
|---|
| 452 |             if (vrc (&nu, &rp, tp, op->h_e, op->h_qp) < 0)
 | 
|---|
| 453 |                 op->o_flags |= NOCIRCUM;
 | 
|---|
| 454 |             nu = degrad(nu);
 | 
|---|
| 455 |             lo = nu + om;
 | 
|---|
| 456 |             slo = sin(lo);
 | 
|---|
| 457 |             clo = cos(lo);
 | 
|---|
| 458 |             spsi = slo*sin(inc);
 | 
|---|
| 459 |             y = slo*cos(inc);
 | 
|---|
| 460 |             psi = asin(spsi);
 | 
|---|
| 461 |             lpd = atan(y/clo)+Om;
 | 
|---|
| 462 |             if (clo<0) lpd += PI;
 | 
|---|
| 463 |             range (&lpd, 2*PI);
 | 
|---|
| 464 |             cpsi = cos(psi);
 | 
|---|
| 465 |             rpd = rp*cpsi;
 | 
|---|
| 466 |             ll = lpd-lg;
 | 
|---|
| 467 |             rho = sqrt(rsn*rsn+rp*rp-2*rsn*rp*cpsi*cos(ll));
 | 
|---|
| 468 | 
 | 
|---|
| 469 |             dt = rho*5.775518e-3;       /* light travel time, in days */
 | 
|---|
| 470 |         }
 | 
|---|
| 471 | 
 | 
|---|
| 472 |         /* compute sin and cos of ll */
 | 
|---|
| 473 |         sll = sin(ll);
 | 
|---|
| 474 |         cll = cos(ll);
 | 
|---|
| 475 | 
 | 
|---|
| 476 |         /* find geocentric ecliptic longitude and latitude */
 | 
|---|
| 477 |         if (rpd < rsn)
 | 
|---|
| 478 |             lam = atan(-1*rpd*sll/(rsn-rpd*cll))+lg+PI;
 | 
|---|
| 479 |         else
 | 
|---|
| 480 |             lam = atan(rsn*sll/(rpd-rsn*cll))+lpd;
 | 
|---|
| 481 |         range (&lam, 2*PI);
 | 
|---|
| 482 |         bet = atan(rpd*spsi*sin(lam-lpd)/(cpsi*rsn*sll));
 | 
|---|
| 483 | 
 | 
|---|
| 484 |         /* fill in all of op->s_* stuff except s_size and s_mag */
 | 
|---|
| 485 |         cir_sky (np, lpd, psi, rp, &rho, lam, bet, lsn, rsn, op);
 | 
|---|
| 486 | 
 | 
|---|
| 487 |         /* compute magnitude and size */
 | 
|---|
| 488 |         gk_mag (op->h_g, op->h_k, rp, rho, &mag);
 | 
|---|
| 489 |         set_smag (op, mag);
 | 
|---|
| 490 |         op->s_size = (float)(op->h_size / rho);
 | 
|---|
| 491 | 
 | 
|---|
| 492 |         return (0);
 | 
|---|
| 493 | }
 | 
|---|
| 494 | 
 | 
|---|
| 495 | /* compute sky circumstances of an object in heliocentric hyperbolic orbit.
 | 
|---|
| 496 |  */
 | 
|---|
| 497 | static int
 | 
|---|
| 498 | obj_parabolic (Now *np, Obj *op)
 | 
|---|
| 499 | {
 | 
|---|
| 500 |         double lsn, rsn;        /* true geoc lng of sun; dist from sn to earth*/
 | 
|---|
| 501 |         double lam;             /* geocentric ecliptic longitude */
 | 
|---|
| 502 |         double bet;             /* geocentric ecliptic latitude */
 | 
|---|
| 503 |         double mag;             /* magnitude */
 | 
|---|
| 504 |         double inc, om, Om;
 | 
|---|
| 505 |         double lpd, psi, rp, rho;
 | 
|---|
| 506 |         double dt;
 | 
|---|
| 507 |         int pass;
 | 
|---|
| 508 | 
 | 
|---|
| 509 |         /* find solar ecliptical longitude and distance to sun from earth */
 | 
|---|
| 510 |         sunpos (mjed, &lsn, &rsn, 0);
 | 
|---|
| 511 | 
 | 
|---|
| 512 |         /* two passes to correct lam and bet for light travel time. */
 | 
|---|
| 513 |         dt = 0.0;
 | 
|---|
| 514 |         for (pass = 0; pass < 2; pass++) {
 | 
|---|
| 515 |             reduce_elements (op->p_epoch, mjd-dt, degrad(op->p_inc),
 | 
|---|
| 516 |                 degrad(op->p_om), degrad(op->p_Om), &inc, &om, &Om);
 | 
|---|
| 517 |             comet (mjed-dt, op->p_ep, inc, om, op->p_qp, Om,
 | 
|---|
| 518 |                                     &lpd, &psi, &rp, &rho, &lam, &bet);
 | 
|---|
| 519 |             dt = rho*LTAU/3600.0/24.0;  /* light travel time, in days / AU */
 | 
|---|
| 520 |         }
 | 
|---|
| 521 | 
 | 
|---|
| 522 |         /* fill in all of op->s_* stuff except s_size and s_mag */
 | 
|---|
| 523 |         cir_sky (np, lpd, psi, rp, &rho, lam, bet, lsn, rsn, op);
 | 
|---|
| 524 | 
 | 
|---|
| 525 |         /* compute magnitude and size */
 | 
|---|
| 526 |         gk_mag (op->p_g, op->p_k, rp, rho, &mag);
 | 
|---|
| 527 |         set_smag (op, mag);
 | 
|---|
| 528 |         op->s_size = (float)(op->p_size / rho);
 | 
|---|
| 529 | 
 | 
|---|
| 530 |         return (0);
 | 
|---|
| 531 | }
 | 
|---|
| 532 | 
 | 
|---|
| 533 | /* find sun's circumstances now.
 | 
|---|
| 534 |  */
 | 
|---|
| 535 | static int
 | 
|---|
| 536 | sun_cir (Now *np, Obj *op)
 | 
|---|
| 537 | {
 | 
|---|
| 538 |         double lsn, rsn;        /* true geoc lng of sun; dist from sn to earth*/
 | 
|---|
| 539 |         double bsn;             /* true latitude beta of sun */
 | 
|---|
| 540 |         double dhlong;
 | 
|---|
| 541 | 
 | 
|---|
| 542 |         sunpos (mjed, &lsn, &rsn, &bsn);/* sun's true coordinates; mean ecl. */
 | 
|---|
| 543 | 
 | 
|---|
| 544 |         op->s_sdist = 0.0;
 | 
|---|
| 545 |         op->s_elong = 0.0;
 | 
|---|
| 546 |         op->s_phase = 100.0;
 | 
|---|
| 547 |         set_smag (op, -26.8);   /* TODO */
 | 
|---|
| 548 |         dhlong = lsn-PI;        /* geo- to helio- centric */
 | 
|---|
| 549 |         range (&dhlong, 2*PI);
 | 
|---|
| 550 |         op->s_hlong = (float)dhlong;
 | 
|---|
| 551 |         op->s_hlat = (float)(-bsn);
 | 
|---|
| 552 | 
 | 
|---|
| 553 |         /* fill sun's ra/dec, alt/az in op */
 | 
|---|
| 554 |         cir_pos (np, bsn, lsn, &rsn, op);
 | 
|---|
| 555 |         op->s_edist = (float)rsn;
 | 
|---|
| 556 |         op->s_size = (float)(raddeg(4.65242e-3/rsn)*3600*2);
 | 
|---|
| 557 | 
 | 
|---|
| 558 |         return (0);
 | 
|---|
| 559 | }
 | 
|---|
| 560 | 
 | 
|---|
| 561 | /* find moon's circumstances now.
 | 
|---|
| 562 |  */
 | 
|---|
| 563 | static int
 | 
|---|
| 564 | moon_cir (Now *np, Obj *op)
 | 
|---|
| 565 | {
 | 
|---|
| 566 |         double lsn, rsn;        /* true geoc lng of sun; dist from sn to earth*/
 | 
|---|
| 567 |         double lam;             /* geocentric ecliptic longitude */
 | 
|---|
| 568 |         double bet;             /* geocentric ecliptic latitude */
 | 
|---|
| 569 |         double edistau;         /* earth-moon dist, in au */
 | 
|---|
| 570 |         double el;              /* elongation, rads east */
 | 
|---|
| 571 |         double ms;              /* sun's mean anomaly */
 | 
|---|
| 572 |         double md;              /* moon's mean anomaly */
 | 
|---|
| 573 |         double i;
 | 
|---|
| 574 | 
 | 
|---|
| 575 |         moon (mjed, &lam, &bet, &edistau, &ms, &md);    /* mean ecliptic & EOD*/
 | 
|---|
| 576 |         sunpos (mjed, &lsn, &rsn, NULL);                /* mean ecliptic & EOD*/
 | 
|---|
| 577 | 
 | 
|---|
| 578 |         op->s_hlong = (float)lam;               /* save geo in helio fields */
 | 
|---|
| 579 |         op->s_hlat = (float)bet;
 | 
|---|
| 580 | 
 | 
|---|
| 581 |         /* find angular separation from sun */
 | 
|---|
| 582 |         elongation (lam, bet, lsn, &el);
 | 
|---|
| 583 |         op->s_elong = (float)raddeg(el);                /* want degrees */
 | 
|---|
| 584 | 
 | 
|---|
| 585 |         /* solve triangle of earth, sun, and elongation for moon-sun dist */
 | 
|---|
| 586 |         op->s_sdist = (float) sqrt (edistau*edistau + rsn*rsn
 | 
|---|
| 587 |                                                     - 2.0*edistau*rsn*cos(el));
 | 
|---|
| 588 | 
 | 
|---|
| 589 |         /* TODO: improve mag; this is based on a flat moon model. */
 | 
|---|
| 590 |         i = -12.7 + 2.5*(log10(PI) - log10(PI/2*(1+1.e-6-cos(el)))) 
 | 
|---|
| 591 |                                         + 5*log10(edistau/.0025) /* dist */;
 | 
|---|
| 592 |         set_smag (op, i);
 | 
|---|
| 593 | 
 | 
|---|
| 594 |         /* find phase -- allow for projection effects */
 | 
|---|
| 595 |         i = 0.1468*sin(el)*(1 - 0.0549*sin(md))/(1 - 0.0167*sin(ms));
 | 
|---|
| 596 |         op->s_phase = (float)((1+cos(PI-el-degrad(i)))/2*100);
 | 
|---|
| 597 | 
 | 
|---|
| 598 |         /* fill moon's ra/dec, alt/az in op and update for topo dist */
 | 
|---|
| 599 |         cir_pos (np, bet, lam, &edistau, op);
 | 
|---|
| 600 | 
 | 
|---|
| 601 |         op->s_edist = (float)edistau;
 | 
|---|
| 602 |         op->s_size = (float)(3600*2.0*raddeg(asin(MRAD/MAU/edistau)));
 | 
|---|
| 603 |                                                 /* moon angular dia, seconds */
 | 
|---|
| 604 | 
 | 
|---|
| 605 |         return (0);
 | 
|---|
| 606 | }
 | 
|---|
| 607 | 
 | 
|---|
| 608 | /* fill in all of op->s_* stuff except s_size and s_mag.
 | 
|---|
| 609 |  * this is used for sol system objects (except sun and moon); never FIXED.
 | 
|---|
| 610 |  */
 | 
|---|
| 611 | static void
 | 
|---|
| 612 | cir_sky (
 | 
|---|
| 613 | Now *np,
 | 
|---|
| 614 | double lpd,             /* heliocentric ecliptic longitude */
 | 
|---|
| 615 | double psi,             /* heliocentric ecliptic lat */
 | 
|---|
| 616 | double rp,              /* dist from sun */
 | 
|---|
| 617 | double *rho,            /* dist from earth: in as geo, back as geo or topo */
 | 
|---|
| 618 | double lam,             /* true geocentric ecliptic long */
 | 
|---|
| 619 | double bet,             /* true geocentric ecliptic lat */
 | 
|---|
| 620 | double lsn,             /* true geoc lng of sun */
 | 
|---|
| 621 | double rsn,             /* dist from sn to earth*/
 | 
|---|
| 622 | Obj *op)
 | 
|---|
| 623 | {
 | 
|---|
| 624 |         double el;              /* elongation */
 | 
|---|
| 625 |         double f;               /* fractional phase from earth */
 | 
|---|
| 626 | 
 | 
|---|
| 627 |         /* compute elongation and phase */
 | 
|---|
| 628 |         elongation (lam, bet, lsn, &el);
 | 
|---|
| 629 |         el = raddeg(el);
 | 
|---|
| 630 |         op->s_elong = (float)el;
 | 
|---|
| 631 |         f = 0.25 * ((rp+ *rho)*(rp+ *rho) - rsn*rsn)/(rp* *rho);
 | 
|---|
| 632 |         op->s_phase = (float)(f*100.0); /* percent */
 | 
|---|
| 633 | 
 | 
|---|
| 634 |         /* set heliocentric long/lat; mean ecliptic and EOD */
 | 
|---|
| 635 |         op->s_hlong = (float)lpd;
 | 
|---|
| 636 |         op->s_hlat = (float)psi;
 | 
|---|
| 637 | 
 | 
|---|
| 638 |         /* fill solar sys body's ra/dec, alt/az in op */
 | 
|---|
| 639 |         cir_pos (np, bet, lam, rho, op);        /* updates rho */
 | 
|---|
| 640 | 
 | 
|---|
| 641 |         /* set earth/planet and sun/planet distance */
 | 
|---|
| 642 |         op->s_edist = (float)(*rho);
 | 
|---|
| 643 |         op->s_sdist = (float)rp;
 | 
|---|
| 644 | }
 | 
|---|
| 645 | 
 | 
|---|
| 646 | /* fill equatoreal and horizontal op-> fields; stern
 | 
|---|
| 647 |  *
 | 
|---|
| 648 |  *    input:          lam/bet/rho geocentric mean ecliptic and equinox of day
 | 
|---|
| 649 |  * 
 | 
|---|
| 650 |  * algorithm at EOD:
 | 
|---|
| 651 |  *   ecl_eq     --> ra/dec      geocentric mean equatoreal EOD (via mean obliq)
 | 
|---|
| 652 |  *   deflect    --> ra/dec        relativistic deflection
 | 
|---|
| 653 |  *   nut_eq     --> ra/dec      geocentric true equatoreal EOD
 | 
|---|
| 654 |  *   ab_eq      --> ra/dec      geocentric apparent equatoreal EOD
 | 
|---|
| 655 |  *                                      if (PREF_GEO)  --> output
 | 
|---|
| 656 |  *   ta_par     --> ra/dec      topocentric apparent equatoreal EOD
 | 
|---|
| 657 |  *                                      if (!PREF_GEO)  --> output
 | 
|---|
| 658 |  *   hadec_aa   --> alt/az      topocentric horizontal
 | 
|---|
| 659 |  *   refract    --> alt/az      observed --> output
 | 
|---|
| 660 |  *
 | 
|---|
| 661 |  * algorithm at fixed equinox:
 | 
|---|
| 662 |  *   ecl_eq     --> ra/dec      geocentric mean equatoreal EOD (via mean obliq)
 | 
|---|
| 663 |  *   deflect    --> ra/dec        relativistic deflection [for alt/az only]
 | 
|---|
| 664 |  *   nut_eq     --> ra/dec      geocentric true equatoreal EOD [for aa only]
 | 
|---|
| 665 |  *   ab_eq      --> ra/dec      geocentric apparent equatoreal EOD [for aa only]
 | 
|---|
| 666 |  *   ta_par     --> ra/dec      topocentric apparent equatoreal EOD
 | 
|---|
| 667 |  *     precess  --> ra/dec      topocentric equatoreal fixed equinox [eq only]
 | 
|---|
| 668 |  *                                      --> output
 | 
|---|
| 669 |  *   hadec_aa   --> alt/az      topocentric horizontal
 | 
|---|
| 670 |  *   refract    --> alt/az      observed --> output
 | 
|---|
| 671 |  */
 | 
|---|
| 672 | static void
 | 
|---|
| 673 | cir_pos (
 | 
|---|
| 674 | Now *np,
 | 
|---|
| 675 | double bet,     /* geo lat (mean ecliptic of date) */
 | 
|---|
| 676 | double lam,     /* geo long (mean ecliptic of date) */
 | 
|---|
| 677 | double *rho,    /* in: geocentric dist in AU; out: geo- or topocentic dist */
 | 
|---|
| 678 | Obj *op)        /* object to set s_ra/dec as per equinox */
 | 
|---|
| 679 | {
 | 
|---|
| 680 |         double ra, dec;         /* apparent ra/dec, corrected for nut/ab */
 | 
|---|
| 681 |         double tra, tdec;       /* astrometric ra/dec, no nut/ab */
 | 
|---|
| 682 |         double lsn, rsn;        /* solar geocentric (mean ecliptic of date) */
 | 
|---|
| 683 |         double ha_in, ha_out;   /* local hour angle before/after parallax */
 | 
|---|
| 684 |         double dec_out;         /* declination after parallax */
 | 
|---|
| 685 |         double dra, ddec;       /* parallax correction */
 | 
|---|
| 686 |         double alt, az;         /* current alt, az */
 | 
|---|
| 687 |         double lst;             /* local sidereal time */
 | 
|---|
| 688 |         double rho_topo;        /* topocentric distance in earth radii */
 | 
|---|
| 689 | 
 | 
|---|
| 690 |         /* convert to equatoreal [mean equator, with mean obliquity] */
 | 
|---|
| 691 |         ecl_eq (mjed, bet, lam, &ra, &dec);
 | 
|---|
| 692 |         tra = ra;       /* keep mean coordinates */
 | 
|---|
| 693 |         tdec = dec;
 | 
|---|
| 694 | 
 | 
|---|
| 695 |         /* get sun position */
 | 
|---|
| 696 |         sunpos(mjed, &lsn, &rsn, NULL);
 | 
|---|
| 697 | 
 | 
|---|
| 698 |         /* allow for relativistic light bending near the sun.
 | 
|---|
| 699 |          * (avoid calling deflect() for the sun itself).
 | 
|---|
| 700 |          */
 | 
|---|
| 701 |         if (!is_planet(op,SUN) && !is_planet(op,MOON))
 | 
|---|
| 702 |             deflect (mjed, op->s_hlong, op->s_hlat, lsn, rsn, *rho, &ra, &dec);
 | 
|---|
| 703 | 
 | 
|---|
| 704 |         /* correct ra/dec to form geocentric apparent */
 | 
|---|
| 705 |         nut_eq (mjed, &ra, &dec);
 | 
|---|
| 706 |         if (!is_planet(op,MOON))
 | 
|---|
| 707 |             ab_eq (mjed, lsn, &ra, &dec);
 | 
|---|
| 708 |         op->s_gaera = (float)ra;
 | 
|---|
| 709 |         op->s_gaedec = (float)dec;
 | 
|---|
| 710 | 
 | 
|---|
| 711 |         /* find parallax correction for equatoreal coords */
 | 
|---|
| 712 |         now_lst (np, &lst);
 | 
|---|
| 713 |         ha_in = hrrad(lst) - ra;
 | 
|---|
| 714 |         rho_topo = *rho * MAU/ERAD;             /* convert to earth radii */
 | 
|---|
| 715 |         ta_par (ha_in, dec, lat, elev, &rho_topo, &ha_out, &dec_out);
 | 
|---|
| 716 | 
 | 
|---|
| 717 |         /* transform into alt/az and apply refraction */
 | 
|---|
| 718 |         hadec_aa (lat, ha_out, dec_out, &alt, &az);
 | 
|---|
| 719 |         refract (pressure, temp, alt, &alt);
 | 
|---|
| 720 |         op->s_alt = alt;
 | 
|---|
| 721 |         op->s_az = az;
 | 
|---|
| 722 | 
 | 
|---|
| 723 |         /* Get parallax differences and apply to apparent or astrometric place
 | 
|---|
| 724 |          * as needed.  For the astrometric place, rotating the CORRECTIONS
 | 
|---|
| 725 |          * back from the nutated equator to the mean equator will be
 | 
|---|
| 726 |          * neglected.  This is an effect of about 0.1" at moon distance.
 | 
|---|
| 727 |          * We currently don't have an inverse nutation rotation.
 | 
|---|
| 728 |          */
 | 
|---|
| 729 |         if (pref_get(PREF_EQUATORIAL) == PREF_GEO) {
 | 
|---|
| 730 |             /* no topo corrections to eq. coords */
 | 
|---|
| 731 |             dra = ddec = 0.0;
 | 
|---|
| 732 |         } else {
 | 
|---|
| 733 |             dra = ha_in - ha_out;       /* ra sign is opposite of ha */
 | 
|---|
| 734 |             ddec = dec_out - dec;
 | 
|---|
| 735 |             *rho = rho_topo * ERAD/MAU; /* return topocentric distance in AU */
 | 
|---|
| 736 |         }
 | 
|---|
| 737 | 
 | 
|---|
| 738 |         /* fill in ra/dec fields */
 | 
|---|
| 739 |         if (epoch == EOD) {             /* apparent geo/topocentric */
 | 
|---|
| 740 |             ra = ra + dra;
 | 
|---|
| 741 |             dec = dec + ddec;
 | 
|---|
| 742 |         } else {                        /* astrometric geo/topocent */
 | 
|---|
| 743 |             ra = tra + dra;
 | 
|---|
| 744 |             dec = tdec + ddec;
 | 
|---|
| 745 |             precess (mjed, epoch, &ra, &dec);
 | 
|---|
| 746 |         }
 | 
|---|
| 747 |         range(&ra, 2*PI);
 | 
|---|
| 748 |         op->s_ra = (float)ra;
 | 
|---|
| 749 |         op->s_dec = (float)dec;
 | 
|---|
| 750 | }
 | 
|---|
| 751 | 
 | 
|---|
| 752 | /* given geocentric ecliptic longitude and latitude, lam and bet, of some object
 | 
|---|
| 753 |  * and the longitude of the sun, lsn, find the elongation, el. this is the
 | 
|---|
| 754 |  * actual angular separation of the object from the sun, not just the difference
 | 
|---|
| 755 |  * in the longitude. the sign, however, IS set simply as a test on longitude
 | 
|---|
| 756 |  * such that el will be >0 for an evening object <0 for a morning object.
 | 
|---|
| 757 |  * to understand the test for el sign, draw a graph with lam going from 0-2*PI
 | 
|---|
| 758 |  *   down the vertical axis, lsn going from 0-2*PI across the hor axis. then
 | 
|---|
| 759 |  *   define the diagonal regions bounded by the lines lam=lsn+PI, lam=lsn and
 | 
|---|
| 760 |  *   lam=lsn-PI. the "morning" regions are any values to the lower left of the
 | 
|---|
| 761 |  *   first line and bounded within the second pair of lines.
 | 
|---|
| 762 |  * all angles in radians.
 | 
|---|
| 763 |  */
 | 
|---|
| 764 | static void
 | 
|---|
| 765 | elongation (double lam, double bet, double lsn, double *el)
 | 
|---|
| 766 | {
 | 
|---|
| 767 |         *el = acos(cos(bet)*cos(lam-lsn));
 | 
|---|
| 768 |         if (lam>lsn+PI || (lam>lsn-PI && lam<lsn)) *el = - *el;
 | 
|---|
| 769 | }
 | 
|---|
| 770 | 
 | 
|---|
| 771 | /* apply relativistic light bending correction to ra/dec; stern
 | 
|---|
| 772 |  *
 | 
|---|
| 773 |  * The algorithm is from:
 | 
|---|
| 774 |  * Mean and apparent place computations in the new IAU 
 | 
|---|
| 775 |  * system. III - Apparent, topocentric, and astrometric 
 | 
|---|
| 776 |  * places of planets and stars
 | 
|---|
| 777 |  * KAPLAN, G. H.;  HUGHES, J. A.;  SEIDELMANN, P. K.;
 | 
|---|
| 778 |  * SMITH, C. A.;  YALLOP, B. D.
 | 
|---|
| 779 |  * Astronomical Journal (ISSN 0004-6256), vol. 97, April 1989, p. 1197-1210.
 | 
|---|
| 780 |  *
 | 
|---|
| 781 |  * This article is a very good collection of formulea for geocentric and
 | 
|---|
| 782 |  * topocentric place calculation in general.  The apparent and
 | 
|---|
| 783 |  * astrometric place calculation in this file currently does not follow
 | 
|---|
| 784 |  * the strict algorithm from this paper and hence is not fully correct.
 | 
|---|
| 785 |  * The entire calculation is currently based on the rotating EOD frame and
 | 
|---|
| 786 |  * not the "inertial" J2000 frame.
 | 
|---|
| 787 |  */
 | 
|---|
| 788 | static void
 | 
|---|
| 789 | deflect (
 | 
|---|
| 790 | double mjd1,            /* equinox */
 | 
|---|
| 791 | double lpd, double psi, /* heliocentric ecliptical long / lat */
 | 
|---|
| 792 | double rsn, double lsn, /* distance and longitude of sun */
 | 
|---|
| 793 | double rho,             /* geocentric distance */
 | 
|---|
| 794 | double *ra, double *dec)/* geocentric equatoreal */
 | 
|---|
| 795 | {
 | 
|---|
| 796 |         double hra, hdec;       /* object heliocentric equatoreal */
 | 
|---|
| 797 |         double el;              /* HELIOCENTRIC elongation object--earth */
 | 
|---|
| 798 |         double g1, g2;          /* relativistic weights */
 | 
|---|
| 799 |         double u[3];            /* object geocentric cartesian */
 | 
|---|
| 800 |         double q[3];            /* object heliocentric cartesian unit vect */
 | 
|---|
| 801 |         double e[3];            /* earth heliocentric cartesian unit vect */
 | 
|---|
| 802 |         double qe, uq, eu;      /* scalar products */
 | 
|---|
| 803 |         int i;                  /* counter */
 | 
|---|
| 804 | 
 | 
|---|
| 805 | #define G       1.32712438e20   /* heliocentric grav const; in m^3*s^-2 */
 | 
|---|
| 806 | #define c       299792458.0     /* speed of light in m/s */
 | 
|---|
| 807 | 
 | 
|---|
| 808 |         elongation(lpd, psi, lsn-PI, &el);
 | 
|---|
| 809 |         el = fabs(el);
 | 
|---|
| 810 |         /* only continue if object is within about 10 deg around the sun,
 | 
|---|
| 811 |          * not obscured by the sun's disc (radius 0.25 deg) and farther away
 | 
|---|
| 812 |          * than the sun.
 | 
|---|
| 813 |          *
 | 
|---|
| 814 |          * precise geocentric deflection is:  g1 * tan(el/2)
 | 
|---|
| 815 |          *      radially outwards from sun;  the vector munching below
 | 
|---|
| 816 |          *      just applys this component-wise
 | 
|---|
| 817 |          *      Note:   el = HELIOCENTRIC elongation.
 | 
|---|
| 818 |          *              g1 is always about 0.004 arc seconds
 | 
|---|
| 819 |          *              g2 varies from 0 (highest contribution) to 2
 | 
|---|
| 820 |          */
 | 
|---|
| 821 |         if (el<degrad(170) || el>degrad(179.75) || rho<rsn) return;
 | 
|---|
| 822 | 
 | 
|---|
| 823 |         /* get cartesian vectors */
 | 
|---|
| 824 |         sphcart(*ra, *dec, rho, u, u+1, u+2);
 | 
|---|
| 825 | 
 | 
|---|
| 826 |         ecl_eq(mjd1, psi, lpd, &hra, &hdec);
 | 
|---|
| 827 |         sphcart(hra, hdec, 1.0, q, q+1, q+2);
 | 
|---|
| 828 | 
 | 
|---|
| 829 |         ecl_eq(mjd1, 0.0, lsn-PI, &hra, &hdec);
 | 
|---|
| 830 |         sphcart(hra, hdec, 1.0, e, e+1, e+2);
 | 
|---|
| 831 | 
 | 
|---|
| 832 |         /* evaluate scalar products */
 | 
|---|
| 833 |         qe = uq = eu = 0.0;
 | 
|---|
| 834 |         for(i=0; i<=2; ++i) {
 | 
|---|
| 835 |             qe += q[i]*e[i];
 | 
|---|
| 836 |             uq += u[i]*q[i];
 | 
|---|
| 837 |             eu += e[i]*u[i];
 | 
|---|
| 838 |         }
 | 
|---|
| 839 | 
 | 
|---|
| 840 |         g1 = 2*G/(c*c*MAU)/rsn;
 | 
|---|
| 841 |         g2 = 1 + qe;
 | 
|---|
| 842 | 
 | 
|---|
| 843 |         /* now deflect geocentric vector */
 | 
|---|
| 844 |         g1 /= g2;
 | 
|---|
| 845 |         for(i=0; i<=2; ++i)
 | 
|---|
| 846 |             u[i] += g1*(uq*e[i] - eu*q[i]);
 | 
|---|
| 847 |         
 | 
|---|
| 848 |         /* back to spherical */
 | 
|---|
| 849 |         cartsph(u[0], u[1], u[2], ra, dec, &rho);       /* rho thrown away */
 | 
|---|
| 850 | }
 | 
|---|
| 851 | 
 | 
|---|
| 852 | /* estimate size in arc seconds @ 1AU from absolute magnitude, H, and assuming
 | 
|---|
| 853 |  * an albedo of 0.1. With this assumption an object with diameter of 1500m
 | 
|---|
| 854 |  * has an absolute mag of 18.
 | 
|---|
| 855 |  */
 | 
|---|
| 856 | static double
 | 
|---|
| 857 | h_albsize (double H)
 | 
|---|
| 858 | {
 | 
|---|
| 859 |         return (3600*raddeg(.707*1500*pow(2.51,(18-H)/2)/MAU));
 | 
|---|
| 860 | }
 | 
|---|
| 861 | 
 | 
|---|
| 862 | /* For RCS Only -- Do Not Edit */
 | 
|---|
| 863 | static char *rcsid[2] = {(char *)rcsid, "@(#) $RCSfile: circum.c,v $ $Date: 2008-03-25 17:45:12 $ $Revision: 1.8 $ $Name: not supported by cvs2svn $"};
 | 
|---|