/* DeltaT = Ephemeris Time - Universal Time * * Adapted 2011/4/14 from Stephen Moshier , * cosmetic changes only. * * Compile as follows to create stand-alone test program: * cc -DTEST_MAIN deltat.c libastro.a * * Tabulated values of deltaT, in hundredths of a second, are * from The Astronomical Almanac and current IERS reports. * A table of values for the pre-telescopic period was taken from * Morrison and Stephenson (2004). The overall tabulated range is * -1000.0 through 2011.0. Values at intermediate times are interpolated * from the tables. * * For dates earlier and later than the tabulated range, the program * calculates a polynomial extrapolation formula. * * Updated deltaT predictions can be obtained from this network archive, * http://maia.usno.navy.mil * then appended to the dt[] table and update TABEND. * * Input is XEphem's MJD, output is ET-UT in seconds. * * * References: * * Morrison, L. V., and F. R. Stephenson, Historical values of the Earth's * clock error deltat T and the calculation of eclipses. Journal for the * History of Astronomy 35, 327-336 (2004) * * Stephenson, F. R., and L. V. Morrison, "Long-term changes * in the rotation of the Earth: 700 B.C. to A.D. 1980," * Philosophical Transactions of the Royal Society of London * Series A 313, 47-70 (1984) * * Chapront-Touze, Michelle, and Jean Chapront, _Lunar Tables * and Programs from 4000 B.C. to A.D. 8000_, Willmann-Bell 1991 * * Stephenson, F. R., and M. A. Houlden, _Atlas of Historical * Eclipse Maps_, Cambridge U. Press (1986) * */ #include #include "astro.h" #define TABSTART 1620 #define TABEND 2011 #define TABSIZ (TABEND - TABSTART + 1) /* Morrison and Stephenson (2004) * This table covers -1000 through 1700 in 100-year steps. * Values are in whole seconds. * Estimated standard error at -1000 is 640 seconds; at 1600, 20 seconds. * The first value in the table has been adjusted 28 sec for * continuity with their long-term quadratic extrapolation formula. * The last value in this table agrees with the AA table at 1700, * so there is no discontinuity at either endpoint. */ #define MS_SIZ 28 short m_s[MS_SIZ] = { /* -1000 to -100 */ 25428, 23700, 22000, 21000, 19040, 17190, 15530, 14080, 12790, 11640, /* 0 to 900 */ 10580, 9600, 8640, 7680, 6700, 5710, 4740, 3810, 2960, 2200, /* 1000 to 1700 */ 1570, 1090, 740, 490, 320, 200, 120, 9, }; /* Entries prior to 1955 in the following table are from * the 1984 Astronomical Almanac and assume ndot = -26.0. * For dates prior to 1700, the above table is used instead of this one. */ short dt[TABSIZ] = { /* 1620.0 thru 1659.0 */ 12400, 11900, 11500, 11000, 10600, 10200, 9800, 9500, 9100, 8800, 8500, 8200, 7900, 7700, 7400, 7200, 7000, 6700, 6500, 6300, 6200, 6000, 5800, 5700, 5500, 5400, 5300, 5100, 5000, 4900, 4800, 4700, 4600, 4500, 4400, 4300, 4200, 4100, 4000, 3800, /* 1660.0 thru 1699.0 */ 3700, 3600, 3500, 3400, 3300, 3200, 3100, 3000, 2800, 2700, 2600, 2500, 2400, 2300, 2200, 2100, 2000, 1900, 1800, 1700, 1600, 1500, 1400, 1400, 1300, 1200, 1200, 1100, 1100, 1000, 1000, 1000, 900, 900, 900, 900, 900, 900, 900, 900, /* 1700.0 thru 1739.0 */ 900, 900, 900, 900, 900, 900, 900, 900, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1200, 1200, 1200, 1200, 1200, 1200, /* 1740.0 thru 1779.0 */ 1200, 1200, 1200, 1200, 1300, 1300, 1300, 1300, 1300, 1300, 1300, 1400, 1400, 1400, 1400, 1400, 1400, 1400, 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1600, 1600, 1600, 1600, 1600, 1600, 1600, 1600, 1600, 1600, 1700, 1700, 1700, 1700, 1700, /* 1780.0 thru 1799.0 */ 1700, 1700, 1700, 1700, 1700, 1700, 1700, 1700, 1700, 1700, 1700, 1700, 1600, 1600, 1600, 1600, 1500, 1500, 1400, 1400, /* 1800.0 thru 1819.0 */ 1370, 1340, 1310, 1290, 1270, 1260, 1250, 1250, 1250, 1250, 1250, 1250, 1250, 1250, 1250, 1250, 1250, 1240, 1230, 1220, /* 1820.0 thru 1859.0 */ 1200, 1170, 1140, 1110, 1060, 1020, 960, 910, 860, 800, 750, 700, 660, 630, 600, 580, 570, 560, 560, 560, 570, 580, 590, 610, 620, 630, 650, 660, 680, 690, 710, 720, 730, 740, 750, 760, 770, 770, 780, 780, /* 1860.0 thru 1899.0 */ 788, 782, 754, 697, 640, 602, 541, 410, 292, 182, 161, 10, -102, -128, -269, -324, -364, -454, -471, -511, -540, -542, -520, -546, -546, -579, -563, -564, -580, -566, -587, -601, -619, -664, -644, -647, -609, -576, -466, -374, /* 1900.0 thru 1939.0 */ -272, -154, -2, 124, 264, 386, 537, 614, 775, 913, 1046, 1153, 1336, 1465, 1601, 1720, 1824, 1906, 2025, 2095, 2116, 2225, 2241, 2303, 2349, 2362, 2386, 2449, 2434, 2408, 2402, 2400, 2387, 2395, 2386, 2393, 2373, 2392, 2396, 2402, /* 1940.0 thru 1979.0 */ 2433, 2483, 2530, 2570, 2624, 2677, 2728, 2778, 2825, 2871, 2915, 2957, 2997, 3036, 3072, 3107, 3135, 3168, 3218, 3268, 3315, 3359, 3400, 3447, 3503, 3573, 3654, 3743, 3829, 3920, 4018, 4117, 4223, 4337, 4449, 4548, 4646, 4752, 4853, 4959, /* 1980.0 thru 2011.0 */ 5054, 5138, 5217, 5296, 5379, 5434, 5487, 5532, 5582, 5630, 5686, 5757, 5831, 5912, 5998, 6078, 6163, 6230, 6297, 6347, 6383, 6409, 6430, 6447, 6457, 6469, 6485, 6515, 6546, 6578, 6607, 6632, }; /* Given MJD return DeltaT = ET - UT1 in seconds. Describes the irregularities * of the Earth rotation rate in the ET time scale. */ double deltat(double mj) { static double ans, lastmj; double Y, p, B; int d[6]; int i, iy, k; if (mj == lastmj) return (ans); lastmj = mj; mjd_year (mj, &Y); if( Y > TABEND ) { /* Extrapolate future values beyond the lookup table. */ if (Y > (TABEND + 100.0)) { /* Morrison & Stephenson (2004) long-term curve fit. */ B = 0.01 * (Y - 1820.0); ans = 32.0 * B * B - 20.0; } else { double a, b, c, d, m0, m1; /* Cubic interpolation between last tabulated value * and long-term curve evaluated at 100 years later. */ /* Last tabulated delta T value. */ a = 0.01 * dt[TABSIZ-1]; /* Approximate slope in past 10 years. */ b = 0.001 * (dt[TABSIZ-1] - dt[TABSIZ - 11]); /* Long-term curve 100 years hence. */ B = 0.01 * (TABEND + 100.0 - 1820.0); m0 = 32.0 * B*B - 20.0; /* Its slope. */ m1 = 0.64 * B; /* Solve for remaining coefficients of an interpolation polynomial * that agrees in value and slope at both ends of the 100-year * interval. */ d = 2.0e-6 * (50.0 * (m1 + b) - m0 + a); c = 1.0e-4 * (m0 - a - 100.0 * b - 1.0e6 * d); /* Note, the polynomial coefficients do not depend on Y. * A given tabulation and long-term formula * determine the polynomial. * Thus, for the IERS table ending at 2011.0, the coefficients are * a = 66.32 * b = 0.223 * c = 0.03231376 * d = -0.0001607784 */ /* Compute polynomial value at desired time. */ p = Y - TABEND; ans = a + p * (b + p * (c + p * d)); } return (ans); } /* Use Morrison and Stephenson (2004) prior to the year 1700. */ if( Y < 1700.0 ) { if (Y <= -1000.0) { /* Morrison and Stephenson long-term fit. */ B = 0.01 * (Y - 1820.0); ans = 32.0 * B * B - 20.0; } else { /* Morrison and Stephenson recommend linear interpolation * between tabulations. */ iy = Y; iy = (iy + 1000) / 100; /* Integer index into the table. */ B = -1000 + 100 * iy; /* Starting year of tabulated interval. */ p = m_s[iy]; ans = p + 0.01 * (Y - B) * (m_s[iy + 1] - p); } return (ans); } /* Besselian interpolation between tabulated values * in the telescopic era. * See AA page K11. */ /* Index into the table. */ p = floor(Y); iy = (int) (p - TABSTART); /* Zeroth order estimate is value at start of year */ ans = dt[iy]; k = iy + 1; if( k >= TABSIZ ) goto done; /* No data, can't go on. */ /* The fraction of tabulation interval */ p = Y - p; /* First order interpolated value */ ans += p*(dt[k] - dt[iy]); if( (iy-1 < 0) || (iy+2 >= TABSIZ) ) goto done; /* can't do second differences */ /* Make table of first differences */ k = iy - 2; for (i=0; i<5; i++) { if( (k < 0) || (k+1 >= TABSIZ) ) d[i] = 0; else d[i] = dt[k+1] - dt[k]; k += 1; } /* Compute second differences */ for( i=0; i<4; i++ ) d[i] = d[i+1] - d[i]; B = 0.25*p*(p-1.0); ans += B*(d[1] + d[2]); if (iy+2 >= TABSIZ) goto done; /* Compute third differences */ for( i=0; i<3; i++ ) d[i] = d[i+1] - d[i]; B = 2.0*B/3.0; ans += (p-0.5)*B*d[1]; if ((iy-2 < 0) || (iy+3 > TABSIZ) ) goto done; /* Compute fourth differences */ for( i=0; i<2; i++ ) d[i] = d[i+1] - d[i]; B = 0.125*B*(p+1.0)*(p-2.0); ans += B*(d[0] + d[1]); done: ans *= 0.01; #if 0 /* ndot = -26.0 assumed; no correction. */ /* Astronomical Almanac table is corrected by adding the expression * -0.000091 (ndot + 26)(year-1955)^2 seconds * to entries prior to 1955 (AA page K8), where ndot is the secular * tidal term in the mean motion of the Moon. * * Entries after 1955 are referred to atomic time standards and * are not affected by errors in Lunar or planetary theory. */ if( Y < 1955.0 ) { B = (Y - 1955.0); #if 1 ans += -0.000091 * (-25.8 + 26.0) * B * B; #else ans += -0.000091 * (-23.8946 + 26.0) * B * B; #endif } #endif /* 0 */ return( ans ); } #ifdef TEST_MAIN /* Exercise program. */ #include #include int main(int ac, char *av[]) { double ans, mj, y = atof(av[1]); year_mjd (y, &mj); ans = deltat(mj); printf( "%.4lf\n", ans ); return (0); } #endif