1 | /* functions to manipulate the modified-julian-date used throughout xephem. */
|
---|
2 |
|
---|
3 | #include <stdio.h>
|
---|
4 | #include <math.h>
|
---|
5 |
|
---|
6 | #include "astro.h"
|
---|
7 |
|
---|
8 | /* given a date in months, mn, days, dy, years, yr,
|
---|
9 | * return the modified Julian date (number of days elapsed since 1900 jan 0.5),
|
---|
10 | * *mjd.
|
---|
11 | */
|
---|
12 | void
|
---|
13 | cal_mjd (int mn, double dy, int yr, double *mjp)
|
---|
14 | {
|
---|
15 | static double last_mjd, last_dy;
|
---|
16 | static int last_mn, last_yr;
|
---|
17 | int b, d, m, y;
|
---|
18 | long c;
|
---|
19 |
|
---|
20 | if (mn == last_mn && yr == last_yr && dy == last_dy) {
|
---|
21 | *mjp = last_mjd;
|
---|
22 | return;
|
---|
23 | }
|
---|
24 |
|
---|
25 | m = mn;
|
---|
26 | y = (yr < 0) ? yr + 1 : yr;
|
---|
27 | if (mn < 3) {
|
---|
28 | m += 12;
|
---|
29 | y -= 1;
|
---|
30 | }
|
---|
31 |
|
---|
32 | if (yr < 1582 || (yr == 1582 && (mn < 10 || (mn == 10 && dy < 15))))
|
---|
33 | b = 0;
|
---|
34 | else {
|
---|
35 | int a;
|
---|
36 | a = y/100;
|
---|
37 | b = 2 - a + a/4;
|
---|
38 | }
|
---|
39 |
|
---|
40 | if (y < 0)
|
---|
41 | c = (long)((365.25*y) - 0.75) - 694025L;
|
---|
42 | else
|
---|
43 | c = (long)(365.25*y) - 694025L;
|
---|
44 |
|
---|
45 | d = (int)(30.6001*(m+1));
|
---|
46 |
|
---|
47 | *mjp = b + c + d + dy - 0.5;
|
---|
48 |
|
---|
49 | last_mn = mn;
|
---|
50 | last_dy = dy;
|
---|
51 | last_yr = yr;
|
---|
52 | last_mjd = *mjp;
|
---|
53 | }
|
---|
54 |
|
---|
55 | /* given the modified Julian date (number of days elapsed since 1900 jan 0.5,),
|
---|
56 | * mj, return the calendar date in months, *mn, days, *dy, and years, *yr.
|
---|
57 | */
|
---|
58 | void
|
---|
59 | mjd_cal (double mj, int *mn, double *dy, int *yr)
|
---|
60 | {
|
---|
61 | static double last_mj, last_dy;
|
---|
62 | static int last_mn, last_yr;
|
---|
63 | double d, f;
|
---|
64 | double i, a, b, ce, g;
|
---|
65 |
|
---|
66 | /* we get called with 0 quite a bit from unused epoch fields.
|
---|
67 | * 0 is noon the last day of 1899.
|
---|
68 | */
|
---|
69 | if (mj == 0.0) {
|
---|
70 | *mn = 12;
|
---|
71 | *dy = 31.5;
|
---|
72 | *yr = 1899;
|
---|
73 | return;
|
---|
74 | }
|
---|
75 |
|
---|
76 | if (mj == last_mj) {
|
---|
77 | *mn = last_mn;
|
---|
78 | *yr = last_yr;
|
---|
79 | *dy = last_dy;
|
---|
80 | return;
|
---|
81 | }
|
---|
82 |
|
---|
83 | d = mj + 0.5;
|
---|
84 | i = floor(d);
|
---|
85 | f = d-i;
|
---|
86 | if (f == 1) {
|
---|
87 | f = 0;
|
---|
88 | i += 1;
|
---|
89 | }
|
---|
90 |
|
---|
91 | if (i > -115860.0) {
|
---|
92 | a = floor((i/36524.25)+.99835726)+14;
|
---|
93 | i += 1 + a - floor(a/4.0);
|
---|
94 | }
|
---|
95 |
|
---|
96 | b = floor((i/365.25)+.802601);
|
---|
97 | ce = i - floor((365.25*b)+.750001)+416;
|
---|
98 | g = floor(ce/30.6001);
|
---|
99 | *mn = (int)(g - 1);
|
---|
100 | *dy = ce - floor(30.6001*g)+f;
|
---|
101 | *yr = (int)(b + 1899);
|
---|
102 |
|
---|
103 | if (g > 13.5)
|
---|
104 | *mn = (int)(g - 13);
|
---|
105 | if (*mn < 2.5)
|
---|
106 | *yr = (int)(b + 1900);
|
---|
107 | if (*yr < 1)
|
---|
108 | *yr -= 1;
|
---|
109 |
|
---|
110 | last_mn = *mn;
|
---|
111 | last_dy = *dy;
|
---|
112 | last_yr = *yr;
|
---|
113 | last_mj = mj;
|
---|
114 | }
|
---|
115 |
|
---|
116 | /* given an mjd, set *dow to 0..6 according to which day of the week it falls
|
---|
117 | * on (0=sunday).
|
---|
118 | * return 0 if ok else -1 if can't figure it out.
|
---|
119 | */
|
---|
120 | int
|
---|
121 | mjd_dow (double mj, int *dow)
|
---|
122 | {
|
---|
123 | /* cal_mjd() uses Gregorian dates on or after Oct 15, 1582.
|
---|
124 | * (Pope Gregory XIII dropped 10 days, Oct 5..14, and improved the leap-
|
---|
125 | * year algorithm). however, Great Britian and the colonies did not
|
---|
126 | * adopt it until Sept 14, 1752 (they dropped 11 days, Sept 3-13,
|
---|
127 | * due to additional accumulated error). leap years before 1752 thus
|
---|
128 | * can not easily be accounted for from the cal_mjd() number...
|
---|
129 | */
|
---|
130 | if (mj < -53798.5) {
|
---|
131 | /* pre sept 14, 1752 too hard to correct |:-S */
|
---|
132 | return (-1);
|
---|
133 | }
|
---|
134 | *dow = ((long)floor(mj-.5) + 1) % 7;/* 1/1/1900 (mj 0.5) is a Monday*/
|
---|
135 | if (*dow < 0)
|
---|
136 | *dow += 7;
|
---|
137 | return (0);
|
---|
138 | }
|
---|
139 |
|
---|
140 | /* given a year, return whether it is a leap year */
|
---|
141 | int
|
---|
142 | isleapyear (int y)
|
---|
143 | {
|
---|
144 | return ((y%4==0 && y%100!=0) || y%400==0);
|
---|
145 | }
|
---|
146 |
|
---|
147 | /* given a mjd, return the the number of days in the month. */
|
---|
148 | void
|
---|
149 | mjd_dpm (double mj, int *ndays)
|
---|
150 | {
|
---|
151 | static short dpm[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
|
---|
152 | int m, y;
|
---|
153 | double d;
|
---|
154 |
|
---|
155 | mjd_cal (mj, &m, &d, &y);
|
---|
156 | *ndays = (m==2 && isleapyear(y)) ? 29 : dpm[m-1];
|
---|
157 | }
|
---|
158 |
|
---|
159 | /* given a mjd, return the year and number of days since 00:00 Jan 1 */
|
---|
160 | void
|
---|
161 | mjd_dayno (double mj, int *yr, double *dy)
|
---|
162 | {
|
---|
163 | double yrd;
|
---|
164 | int yri;
|
---|
165 | int dpy;
|
---|
166 |
|
---|
167 | mjd_year (mj, &yrd);
|
---|
168 | *yr = yri = (int)yrd;
|
---|
169 | dpy = isleapyear(yri) ? 366 : 365;
|
---|
170 | *dy = dpy*(yrd-yri);
|
---|
171 | }
|
---|
172 |
|
---|
173 | /* given a mjd, return the year as a double. */
|
---|
174 | void
|
---|
175 | mjd_year (double mj, double *yr)
|
---|
176 | {
|
---|
177 | static double last_mj, last_yr;
|
---|
178 | int m, y;
|
---|
179 | double d;
|
---|
180 | double e0, e1; /* mjd of start of this year, start of next year */
|
---|
181 |
|
---|
182 | if (mj == last_mj) {
|
---|
183 | *yr = last_yr;
|
---|
184 | return;
|
---|
185 | }
|
---|
186 |
|
---|
187 | mjd_cal (mj, &m, &d, &y);
|
---|
188 | if (y == -1) y = -2;
|
---|
189 | cal_mjd (1, 1.0, y, &e0);
|
---|
190 | cal_mjd (1, 1.0, y+1, &e1);
|
---|
191 | *yr = y + (mj - e0)/(e1 - e0);
|
---|
192 |
|
---|
193 | last_mj = mj;
|
---|
194 | last_yr = *yr;
|
---|
195 | }
|
---|
196 |
|
---|
197 | /* given a decimal year, return mjd */
|
---|
198 | void
|
---|
199 | year_mjd (double y, double *mjp)
|
---|
200 | {
|
---|
201 | double e0, e1; /* mjd of start of this year, start of next year */
|
---|
202 | int yf = (int)floor (y);
|
---|
203 | if (yf == -1) yf = -2;
|
---|
204 |
|
---|
205 | cal_mjd (1, 1.0, yf, &e0);
|
---|
206 | cal_mjd (1, 1.0, yf+1, &e1);
|
---|
207 | *mjp = e0 + (y - yf)*(e1-e0);
|
---|
208 | }
|
---|
209 |
|
---|
210 | /* round a time in days, *t, to the nearest second, IN PLACE. */
|
---|
211 | void
|
---|
212 | rnd_second (double *t)
|
---|
213 | {
|
---|
214 | *t = floor(*t*SPD+0.5)/SPD;
|
---|
215 | }
|
---|
216 |
|
---|
217 | /* given an mjd, truncate it to the beginning of the whole day */
|
---|
218 | double
|
---|
219 | mjd_day(double mj)
|
---|
220 | {
|
---|
221 | return (floor(mj-0.5)+0.5);
|
---|
222 | }
|
---|
223 |
|
---|
224 | /* given an mjd, return the number of hours past midnight of the whole day */
|
---|
225 | double
|
---|
226 | mjd_hr(double mj)
|
---|
227 | {
|
---|
228 | return ((mj-mjd_day(mj))*24.0);
|
---|
229 | }
|
---|
230 |
|
---|
231 | /* insure 0 <= *v < r.
|
---|
232 | */
|
---|
233 | void
|
---|
234 | range (double *v, double r)
|
---|
235 | {
|
---|
236 | *v -= r*floor(*v/r);
|
---|
237 | }
|
---|
238 |
|
---|
239 | /* insure 0 <= ra < 2PI and -PI/2 <= dec <= PI/2. if dec needs
|
---|
240 | * complimenting, reflect ra too
|
---|
241 | */
|
---|
242 | void
|
---|
243 | radecrange (double *ra, double *dec)
|
---|
244 | {
|
---|
245 | if (*dec < -PI/2) {
|
---|
246 | *dec = -PI - *dec;
|
---|
247 | *ra += PI;
|
---|
248 | } else if (*dec > PI/2) {
|
---|
249 | *dec = PI - *dec;
|
---|
250 | *ra += PI;
|
---|
251 | }
|
---|
252 | range (ra, 2*PI);
|
---|
253 | }
|
---|
254 |
|
---|
255 | /* For RCS Only -- Do Not Edit */
|
---|
256 | static char *rcsid[2] = {(char *)rcsid, "@(#) $RCSfile: mjd.c,v $ $Date: 2009-07-16 10:34:38 $ $Revision: 1.8 $ $Name: not supported by cvs2svn $"};
|
---|