[1457] | 1 | /* code to compute lunar sunrise position and local sun angle.
|
---|
| 2 | */
|
---|
| 3 |
|
---|
| 4 | #include <stdio.h>
|
---|
| 5 | #include <math.h>
|
---|
| 6 | #if defined(__STDC__)
|
---|
| 7 | #include <stdlib.h>
|
---|
| 8 | #endif
|
---|
| 9 |
|
---|
| 10 | #include "P_.h"
|
---|
| 11 | #include "astro.h"
|
---|
| 12 |
|
---|
| 13 | static void Librations P_((double RAD, double LAMH, double BH, double OM,
|
---|
| 14 | double F, double L, double L1, double *L0, double *B0));
|
---|
| 15 | static void Moon P_((double RAD, double T, double T2, double LAM0, double R,
|
---|
| 16 | double M, double *F, double *L1, double *OM, double *LAM, double *B,
|
---|
| 17 | double *DR, double *LAMH, double *BH));
|
---|
| 18 | static void Sun P_((double RAD, double T, double T2, double *L, double *M,
|
---|
| 19 | double *R, double *LAM0));
|
---|
| 20 |
|
---|
| 21 | /* given a Julian date and a lunar location, find selenographic colongitude of
|
---|
| 22 | * rising sun, lunar latitude of subsolar point, illuminated fraction, and alt
|
---|
| 23 | * of sun at the given location. Any pointer may be 0 if not interested.
|
---|
| 24 | * From Bruning and Talcott, October 1995 _Astronomy_, page 76.
|
---|
| 25 | * N.B. lunar coordinates use +E, but selenograhic colongs are +W.
|
---|
| 26 | */
|
---|
| 27 | void
|
---|
| 28 | moon_colong (jd, lt, lg, cp, kp, ap, sp)
|
---|
| 29 | double jd; /* jd */
|
---|
| 30 | double lt, lg; /* lat/long of location on moon, rads +N +E */
|
---|
| 31 | double *cp; /* selenographic colongitude (-lng of rising sun), rads */
|
---|
| 32 | double *kp; /* illuminated fraction of surface from Earth */
|
---|
| 33 | double *ap; /* sun altitude at location, rads */
|
---|
| 34 | double *sp; /* lunar latitude of subsolar point, rads */
|
---|
| 35 | {
|
---|
| 36 | double RAD = .0174533;
|
---|
| 37 | double T;
|
---|
| 38 | double T2;
|
---|
| 39 | double L, M, R, LAM0;
|
---|
| 40 | double F, L1, OM, LAM, B, DR, LAMH, BH;
|
---|
| 41 | double L0, B0;
|
---|
| 42 | double TEMP;
|
---|
| 43 | double C0;
|
---|
| 44 | double PSI;
|
---|
| 45 | double NUM, DEN;
|
---|
| 46 | double I, K;
|
---|
| 47 | double THETA, ETA;
|
---|
| 48 | double H;
|
---|
| 49 |
|
---|
| 50 | T = (jd - 2451545)/36525.0;
|
---|
| 51 | T2 = T * T;
|
---|
| 52 |
|
---|
| 53 | Sun(RAD, T, T2, &L, &M, &R, &LAM0);
|
---|
| 54 | Moon(RAD, T, T2, LAM0, R, M, &F, &L1, &OM, &LAM, &B, &DR, &LAMH, &BH);
|
---|
| 55 | Librations(RAD, LAMH, BH, OM, F, L, L1, &L0, &B0);
|
---|
| 56 | if (sp)
|
---|
| 57 | *sp = B0;
|
---|
| 58 |
|
---|
| 59 | TEMP = L0 / 360;
|
---|
| 60 | L0 = ((TEMP) - (int)(TEMP)) * 360;
|
---|
| 61 | if (L0 < 0) L0 = L0 + 360;
|
---|
| 62 | if (L0 <= 90) C0 = 90 - L0; else C0 = 450 - L0;
|
---|
| 63 | if (cp) {
|
---|
| 64 | *cp = degrad(C0);
|
---|
| 65 | range (cp, 2*PI); /* prefer 0..360 +W */
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | if (kp) {
|
---|
| 69 | TEMP = cos(B * RAD) * cos(LAM - LAM0 * RAD);
|
---|
| 70 | PSI = acos(TEMP);
|
---|
| 71 | NUM = R * sin(PSI);
|
---|
| 72 | DEN = DR - R * TEMP;
|
---|
| 73 | I = atan(NUM / DEN);
|
---|
| 74 | if (NUM * DEN < 0) I = I + 3.14159;
|
---|
| 75 | if (NUM < 0) I = I + 3.14159;
|
---|
| 76 | K = (1 + cos(I)) / 2;
|
---|
| 77 | *kp = K;
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | if (ap) {
|
---|
| 81 | THETA = lt;
|
---|
| 82 | ETA = lg;
|
---|
| 83 | C0 = C0 * RAD;
|
---|
| 84 | TEMP = sin(B0) * sin(THETA) + cos(B0) * cos(THETA) * sin(C0+ETA);
|
---|
| 85 | H = asin(TEMP);
|
---|
| 86 | *ap = H;
|
---|
| 87 | }
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | static void
|
---|
| 91 | Librations (RAD, LAMH, BH, OM, F, L, L1, L0, B0)
|
---|
| 92 | double RAD;
|
---|
| 93 | double LAMH;
|
---|
| 94 | double BH;
|
---|
| 95 | double OM;
|
---|
| 96 | double F;
|
---|
| 97 | double L;
|
---|
| 98 | double L1;
|
---|
| 99 | double *L0;
|
---|
| 100 | double *B0;
|
---|
| 101 | {
|
---|
| 102 | double I, PSI, W, NUM, DEN, A, TEMP;
|
---|
| 103 |
|
---|
| 104 | /* inclination of lunar equator */
|
---|
| 105 | I = 1.54242 * RAD;
|
---|
| 106 |
|
---|
| 107 | /* nutation in longitude, in arcseconds */
|
---|
| 108 | PSI = -17.2 * sin(OM) - 1.32 * sin(2 * L) - .23 * sin(2 * L1) +
|
---|
| 109 | .21 * sin(2 * OM);
|
---|
| 110 | PSI = PSI * RAD / 3600;
|
---|
| 111 |
|
---|
| 112 | /* optical librations */
|
---|
| 113 | W = (LAMH - PSI) - OM;
|
---|
| 114 | NUM = sin(W) * cos(BH) * cos(I) - sin(BH) * sin(I);
|
---|
| 115 | DEN = cos(W) * cos(BH);
|
---|
| 116 | A = atan(NUM / DEN);
|
---|
| 117 | if (NUM * DEN < 0) A = A + 3.14159;
|
---|
| 118 | if (NUM < 0) A = A + 3.14159;
|
---|
| 119 | *L0 = (A - F) / RAD;
|
---|
| 120 | TEMP = -sin(W) * cos(BH) * sin(I) - sin(BH) * cos(I);
|
---|
| 121 | *B0 = asin(TEMP);
|
---|
| 122 | }
|
---|
| 123 |
|
---|
| 124 | static void
|
---|
| 125 | Moon (RAD, T, T2, LAM0, R, M, F, L1, OM, LAM, B, DR, LAMH, BH)
|
---|
| 126 | double RAD;
|
---|
| 127 | double T;
|
---|
| 128 | double T2;
|
---|
| 129 | double LAM0;
|
---|
| 130 | double R;
|
---|
| 131 | double M;
|
---|
| 132 | double *F;
|
---|
| 133 | double *L1;
|
---|
| 134 | double *OM;
|
---|
| 135 | double *LAM;
|
---|
| 136 | double *B;
|
---|
| 137 | double *DR;
|
---|
| 138 | double *LAMH;
|
---|
| 139 | double *BH;
|
---|
| 140 | {
|
---|
| 141 | double T3, M1, D2, SUMR, SUML, DIST;
|
---|
| 142 |
|
---|
| 143 | T3 = T * T2;
|
---|
| 144 |
|
---|
| 145 | /* argument of the latitude of the Moon */
|
---|
| 146 | *F = (93.2721 + 483202 * T - .003403 * T2 - T3 / 3526000) * RAD;
|
---|
| 147 |
|
---|
| 148 | /* mean longitude of the Moon */
|
---|
| 149 | *L1 = (218.316 + 481268. * T) * RAD;
|
---|
| 150 |
|
---|
| 151 | /* longitude of the ascending node of Moon's mean orbit */
|
---|
| 152 | *OM = (125.045 - 1934.14 * T + .002071 * T2 + T3 / 450000) * RAD;
|
---|
| 153 |
|
---|
| 154 | /* Moon's mean anomaly */
|
---|
| 155 | M1 = (134.963 + 477199 * T + .008997 * T2 + T3 / 69700) * RAD;
|
---|
| 156 |
|
---|
| 157 | /* mean elongation of the Moon */
|
---|
| 158 | D2 = (297.85 + 445267 * T - .00163 * T2 + T3 / 545900) * 2 * RAD;
|
---|
| 159 |
|
---|
| 160 | /* Lunar distance */
|
---|
| 161 | SUMR = -20954 * cos(M1) - 3699 * cos(D2 - M1) - 2956 * cos(D2);
|
---|
| 162 | *DR = 385000 + SUMR;
|
---|
| 163 |
|
---|
| 164 | /* geocentric latitude */
|
---|
| 165 | *B = 5.128 * sin(*F) + .2806 * sin(M1 + *F) + .2777 * sin(M1 - *F) +
|
---|
| 166 | .1732 * sin(D2 - *F);
|
---|
| 167 | SUML = 6.289 * sin(M1) + 1.274 * sin(D2 - M1) + .6583 * sin(D2) +
|
---|
| 168 | .2136 * sin(2 * M1) - .1851 * sin(M) - .1143 * sin(2 * *F);
|
---|
| 169 | *LAM = *L1 + SUML * RAD;
|
---|
| 170 | DIST = *DR / R;
|
---|
| 171 | *LAMH = (LAM0 + 180 + DIST * cos(*B) * sin(LAM0 * RAD - *LAM) / RAD)
|
---|
| 172 | * RAD;
|
---|
| 173 | *BH = DIST * *B * RAD;
|
---|
| 174 | }
|
---|
| 175 |
|
---|
| 176 | static void
|
---|
| 177 | Sun (RAD, T, T2, L, M, R, LAM0)
|
---|
| 178 | double RAD;
|
---|
| 179 | double T;
|
---|
| 180 | double T2;
|
---|
| 181 | double *L;
|
---|
| 182 | double *M;
|
---|
| 183 | double *R;
|
---|
| 184 | double *LAM0;
|
---|
| 185 | {
|
---|
| 186 | double T3, C, V, E, THETA, OM;
|
---|
| 187 |
|
---|
| 188 | T3 = T2 * T;
|
---|
| 189 |
|
---|
| 190 | /* mean longitude of the Sun */
|
---|
| 191 | *L = 280.466 + 36000.8 * T;
|
---|
| 192 |
|
---|
| 193 | /* mean anomaly of the Sun */
|
---|
| 194 | *M = 357.529 + 35999 * T - .0001536 * T2 + T3 / 24490000;
|
---|
| 195 | *M = *M * RAD;
|
---|
| 196 |
|
---|
| 197 | /* correction for Sun's elliptical orbit */
|
---|
| 198 | C = (1.915 - .004817 * T - .000014 * T2) * sin(*M) +
|
---|
| 199 | (.01999 - .000101 * T) * sin(2 * *M) + .00029 * sin(3 * *M);
|
---|
| 200 |
|
---|
| 201 | /* true anomaly of the Sun */
|
---|
| 202 | V = *M + C * RAD;
|
---|
| 203 |
|
---|
| 204 | /* eccentricity of Earth's orbit */
|
---|
| 205 | E = .01671 - .00004204 * T - .0000001236 * T2;
|
---|
| 206 |
|
---|
| 207 | /* Sun-Earth distance */
|
---|
| 208 | *R = .99972 / (1 + E * cos(V)) * 145980000;
|
---|
| 209 |
|
---|
| 210 | /* true geometric longitude of the Sun */
|
---|
| 211 | THETA = *L + C;
|
---|
| 212 |
|
---|
| 213 | /* apparent longitude of the Sun */
|
---|
| 214 | OM = 125.04 - 1934.1 * T;
|
---|
| 215 | *LAM0 = THETA - .00569 - .00478 * sin(OM * RAD);
|
---|
| 216 | }
|
---|
| 217 |
|
---|
| 218 | #ifdef TESTCOLONG
|
---|
| 219 |
|
---|
| 220 | /* insure 0 <= *v < r.
|
---|
| 221 | */
|
---|
| 222 | void
|
---|
| 223 | range (v, r)
|
---|
| 224 | double *v, r;
|
---|
| 225 | {
|
---|
| 226 | *v -= r*floor(*v/r);
|
---|
| 227 | }
|
---|
| 228 |
|
---|
| 229 | /* To be sure the program is functioning properly, try the test case
|
---|
| 230 | * 2449992.5 (1 Oct 1995): the colongitude should be 3.69 degrees.
|
---|
| 231 | */
|
---|
| 232 | int
|
---|
| 233 | main (int ac, char *av[])
|
---|
| 234 | {
|
---|
| 235 | double jd, lt, lg;
|
---|
| 236 | double c, k, a;
|
---|
| 237 |
|
---|
| 238 | if (ac != 2) {
|
---|
| 239 | fprintf (stderr, "%s: JD\n", av[0]);
|
---|
| 240 | exit (1);
|
---|
| 241 | }
|
---|
| 242 |
|
---|
| 243 | jd = atof(av[1]);
|
---|
| 244 |
|
---|
| 245 | printf ("Latitude of lunar feature: ");
|
---|
| 246 | fscanf (stdin, "%lf", <);
|
---|
| 247 | lt = degrad(lt);
|
---|
| 248 | printf ("Longitude: ");
|
---|
| 249 | fscanf (stdin, "%lf", &lg);
|
---|
| 250 | lg = degrad(lg);
|
---|
| 251 |
|
---|
| 252 | moon_colong (jd, lt, lg, &c, &k, &a);
|
---|
| 253 |
|
---|
| 254 | printf ("Selenographic colongitude is %g\n", raddeg(c));
|
---|
| 255 | printf ("The illuminated fraction of the Moon is %g\n", k);
|
---|
| 256 | printf ("Altitude of Sun above feature is %g\n", raddeg(a));
|
---|
| 257 |
|
---|
| 258 | return (0);
|
---|
| 259 | }
|
---|
| 260 |
|
---|
| 261 | #endif
|
---|
| 262 |
|
---|
| 263 | /* For RCS Only -- Do Not Edit */
|
---|
[1719] | 264 | static char *rcsid[2] = {(char *)rcsid, "@(#) $RCSfile: mooncolong.c,v $ $Date: 2001-10-22 12:08:27 $ $Revision: 1.2 $ $Name: not supported by cvs2svn $"};
|
---|