[1457] | 1 | /* code to compute lunar sunrise position and local sun angle.
|
---|
| 2 | */
|
---|
| 3 |
|
---|
| 4 | #include <stdio.h>
|
---|
[2551] | 5 | #include <stdlib.h>
|
---|
[1457] | 6 | #include <math.h>
|
---|
| 7 |
|
---|
| 8 | #include "astro.h"
|
---|
| 9 |
|
---|
[2551] | 10 | static void Librations (double RAD, double LAMH, double BH, double OM,
|
---|
| 11 | double F, double L, double L1, double *L0, double *B0);
|
---|
| 12 | static void Moon (double RAD, double T, double T2, double LAM0, double R,
|
---|
[1457] | 13 | double M, double *F, double *L1, double *OM, double *LAM, double *B,
|
---|
[2551] | 14 | double *DR, double *LAMH, double *BH);
|
---|
| 15 | static void Sun (double RAD, double T, double T2, double *L, double *M,
|
---|
| 16 | double *R, double *LAM0);
|
---|
[1457] | 17 |
|
---|
| 18 | /* given a Julian date and a lunar location, find selenographic colongitude of
|
---|
| 19 | * rising sun, lunar latitude of subsolar point, illuminated fraction, and alt
|
---|
| 20 | * of sun at the given location. Any pointer may be 0 if not interested.
|
---|
| 21 | * From Bruning and Talcott, October 1995 _Astronomy_, page 76.
|
---|
| 22 | * N.B. lunar coordinates use +E, but selenograhic colongs are +W.
|
---|
| 23 | */
|
---|
| 24 | void
|
---|
[2551] | 25 | moon_colong (
|
---|
| 26 | double jd, /* jd */
|
---|
| 27 | double lt, /* lat of location on moon, rads +N +E */
|
---|
| 28 | double lg, /* long of location on moon, rads +N +E */
|
---|
| 29 | double *cp, /* selenographic colongitude (-lng of rising sun), rads */
|
---|
| 30 | double *kp, /* illuminated fraction of surface from Earth */
|
---|
| 31 | double *ap, /* sun altitude at location, rads */
|
---|
| 32 | double *sp) /* lunar latitude of subsolar point, rads */
|
---|
[1457] | 33 | {
|
---|
| 34 | double RAD = .0174533;
|
---|
| 35 | double T;
|
---|
| 36 | double T2;
|
---|
| 37 | double L, M, R, LAM0;
|
---|
| 38 | double F, L1, OM, LAM, B, DR, LAMH, BH;
|
---|
| 39 | double L0, B0;
|
---|
| 40 | double TEMP;
|
---|
| 41 | double C0;
|
---|
| 42 | double PSI;
|
---|
| 43 | double NUM, DEN;
|
---|
| 44 | double I, K;
|
---|
| 45 | double THETA, ETA;
|
---|
| 46 | double H;
|
---|
| 47 |
|
---|
| 48 | T = (jd - 2451545)/36525.0;
|
---|
| 49 | T2 = T * T;
|
---|
| 50 |
|
---|
| 51 | Sun(RAD, T, T2, &L, &M, &R, &LAM0);
|
---|
| 52 | Moon(RAD, T, T2, LAM0, R, M, &F, &L1, &OM, &LAM, &B, &DR, &LAMH, &BH);
|
---|
| 53 | Librations(RAD, LAMH, BH, OM, F, L, L1, &L0, &B0);
|
---|
| 54 | if (sp)
|
---|
| 55 | *sp = B0;
|
---|
| 56 |
|
---|
| 57 | TEMP = L0 / 360;
|
---|
| 58 | L0 = ((TEMP) - (int)(TEMP)) * 360;
|
---|
| 59 | if (L0 < 0) L0 = L0 + 360;
|
---|
| 60 | if (L0 <= 90) C0 = 90 - L0; else C0 = 450 - L0;
|
---|
| 61 | if (cp) {
|
---|
| 62 | *cp = degrad(C0);
|
---|
| 63 | range (cp, 2*PI); /* prefer 0..360 +W */
|
---|
| 64 | }
|
---|
| 65 |
|
---|
| 66 | if (kp) {
|
---|
| 67 | TEMP = cos(B * RAD) * cos(LAM - LAM0 * RAD);
|
---|
| 68 | PSI = acos(TEMP);
|
---|
| 69 | NUM = R * sin(PSI);
|
---|
| 70 | DEN = DR - R * TEMP;
|
---|
| 71 | I = atan(NUM / DEN);
|
---|
| 72 | if (NUM * DEN < 0) I = I + 3.14159;
|
---|
| 73 | if (NUM < 0) I = I + 3.14159;
|
---|
| 74 | K = (1 + cos(I)) / 2;
|
---|
| 75 | *kp = K;
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | if (ap) {
|
---|
| 79 | THETA = lt;
|
---|
| 80 | ETA = lg;
|
---|
| 81 | C0 = C0 * RAD;
|
---|
| 82 | TEMP = sin(B0) * sin(THETA) + cos(B0) * cos(THETA) * sin(C0+ETA);
|
---|
| 83 | H = asin(TEMP);
|
---|
| 84 | *ap = H;
|
---|
| 85 | }
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | static void
|
---|
[2551] | 89 | Librations (double RAD, double LAMH, double BH, double OM, double F,
|
---|
| 90 | double L, double L1, double *L0, double *B0)
|
---|
[1457] | 91 | {
|
---|
| 92 | double I, PSI, W, NUM, DEN, A, TEMP;
|
---|
| 93 |
|
---|
| 94 | /* inclination of lunar equator */
|
---|
| 95 | I = 1.54242 * RAD;
|
---|
| 96 |
|
---|
| 97 | /* nutation in longitude, in arcseconds */
|
---|
| 98 | PSI = -17.2 * sin(OM) - 1.32 * sin(2 * L) - .23 * sin(2 * L1) +
|
---|
| 99 | .21 * sin(2 * OM);
|
---|
| 100 | PSI = PSI * RAD / 3600;
|
---|
| 101 |
|
---|
| 102 | /* optical librations */
|
---|
| 103 | W = (LAMH - PSI) - OM;
|
---|
| 104 | NUM = sin(W) * cos(BH) * cos(I) - sin(BH) * sin(I);
|
---|
| 105 | DEN = cos(W) * cos(BH);
|
---|
| 106 | A = atan(NUM / DEN);
|
---|
| 107 | if (NUM * DEN < 0) A = A + 3.14159;
|
---|
| 108 | if (NUM < 0) A = A + 3.14159;
|
---|
| 109 | *L0 = (A - F) / RAD;
|
---|
| 110 | TEMP = -sin(W) * cos(BH) * sin(I) - sin(BH) * cos(I);
|
---|
| 111 | *B0 = asin(TEMP);
|
---|
| 112 | }
|
---|
| 113 |
|
---|
| 114 | static void
|
---|
[2551] | 115 | Moon (double RAD, double T, double T2, double LAM0, double R, double M,
|
---|
| 116 | double *F, double *L1, double *OM, double *LAM, double *B, double *DR,
|
---|
| 117 | double *LAMH, double *BH)
|
---|
[1457] | 118 | {
|
---|
| 119 | double T3, M1, D2, SUMR, SUML, DIST;
|
---|
| 120 |
|
---|
| 121 | T3 = T * T2;
|
---|
| 122 |
|
---|
| 123 | /* argument of the latitude of the Moon */
|
---|
| 124 | *F = (93.2721 + 483202 * T - .003403 * T2 - T3 / 3526000) * RAD;
|
---|
| 125 |
|
---|
| 126 | /* mean longitude of the Moon */
|
---|
| 127 | *L1 = (218.316 + 481268. * T) * RAD;
|
---|
| 128 |
|
---|
| 129 | /* longitude of the ascending node of Moon's mean orbit */
|
---|
| 130 | *OM = (125.045 - 1934.14 * T + .002071 * T2 + T3 / 450000) * RAD;
|
---|
| 131 |
|
---|
| 132 | /* Moon's mean anomaly */
|
---|
| 133 | M1 = (134.963 + 477199 * T + .008997 * T2 + T3 / 69700) * RAD;
|
---|
| 134 |
|
---|
| 135 | /* mean elongation of the Moon */
|
---|
| 136 | D2 = (297.85 + 445267 * T - .00163 * T2 + T3 / 545900) * 2 * RAD;
|
---|
| 137 |
|
---|
| 138 | /* Lunar distance */
|
---|
| 139 | SUMR = -20954 * cos(M1) - 3699 * cos(D2 - M1) - 2956 * cos(D2);
|
---|
| 140 | *DR = 385000 + SUMR;
|
---|
| 141 |
|
---|
| 142 | /* geocentric latitude */
|
---|
| 143 | *B = 5.128 * sin(*F) + .2806 * sin(M1 + *F) + .2777 * sin(M1 - *F) +
|
---|
| 144 | .1732 * sin(D2 - *F);
|
---|
| 145 | SUML = 6.289 * sin(M1) + 1.274 * sin(D2 - M1) + .6583 * sin(D2) +
|
---|
| 146 | .2136 * sin(2 * M1) - .1851 * sin(M) - .1143 * sin(2 * *F);
|
---|
| 147 | *LAM = *L1 + SUML * RAD;
|
---|
| 148 | DIST = *DR / R;
|
---|
| 149 | *LAMH = (LAM0 + 180 + DIST * cos(*B) * sin(LAM0 * RAD - *LAM) / RAD)
|
---|
| 150 | * RAD;
|
---|
| 151 | *BH = DIST * *B * RAD;
|
---|
| 152 | }
|
---|
| 153 |
|
---|
| 154 | static void
|
---|
[2551] | 155 | Sun (double RAD, double T, double T2, double *L, double *M, double *R,
|
---|
| 156 | double *LAM0)
|
---|
[1457] | 157 | {
|
---|
| 158 | double T3, C, V, E, THETA, OM;
|
---|
| 159 |
|
---|
| 160 | T3 = T2 * T;
|
---|
| 161 |
|
---|
| 162 | /* mean longitude of the Sun */
|
---|
| 163 | *L = 280.466 + 36000.8 * T;
|
---|
| 164 |
|
---|
| 165 | /* mean anomaly of the Sun */
|
---|
| 166 | *M = 357.529 + 35999 * T - .0001536 * T2 + T3 / 24490000;
|
---|
| 167 | *M = *M * RAD;
|
---|
| 168 |
|
---|
| 169 | /* correction for Sun's elliptical orbit */
|
---|
| 170 | C = (1.915 - .004817 * T - .000014 * T2) * sin(*M) +
|
---|
| 171 | (.01999 - .000101 * T) * sin(2 * *M) + .00029 * sin(3 * *M);
|
---|
| 172 |
|
---|
| 173 | /* true anomaly of the Sun */
|
---|
| 174 | V = *M + C * RAD;
|
---|
| 175 |
|
---|
| 176 | /* eccentricity of Earth's orbit */
|
---|
| 177 | E = .01671 - .00004204 * T - .0000001236 * T2;
|
---|
| 178 |
|
---|
| 179 | /* Sun-Earth distance */
|
---|
| 180 | *R = .99972 / (1 + E * cos(V)) * 145980000;
|
---|
| 181 |
|
---|
| 182 | /* true geometric longitude of the Sun */
|
---|
| 183 | THETA = *L + C;
|
---|
| 184 |
|
---|
| 185 | /* apparent longitude of the Sun */
|
---|
| 186 | OM = 125.04 - 1934.1 * T;
|
---|
| 187 | *LAM0 = THETA - .00569 - .00478 * sin(OM * RAD);
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 | #ifdef TESTCOLONG
|
---|
| 191 |
|
---|
| 192 | /* insure 0 <= *v < r.
|
---|
| 193 | */
|
---|
| 194 | void
|
---|
| 195 | range (v, r)
|
---|
| 196 | double *v, r;
|
---|
| 197 | {
|
---|
| 198 | *v -= r*floor(*v/r);
|
---|
| 199 | }
|
---|
| 200 |
|
---|
| 201 | /* To be sure the program is functioning properly, try the test case
|
---|
| 202 | * 2449992.5 (1 Oct 1995): the colongitude should be 3.69 degrees.
|
---|
| 203 | */
|
---|
| 204 | int
|
---|
| 205 | main (int ac, char *av[])
|
---|
| 206 | {
|
---|
| 207 | double jd, lt, lg;
|
---|
| 208 | double c, k, a;
|
---|
| 209 |
|
---|
| 210 | if (ac != 2) {
|
---|
| 211 | fprintf (stderr, "%s: JD\n", av[0]);
|
---|
[2551] | 212 | abort();
|
---|
[1457] | 213 | }
|
---|
| 214 |
|
---|
| 215 | jd = atof(av[1]);
|
---|
| 216 |
|
---|
| 217 | printf ("Latitude of lunar feature: ");
|
---|
| 218 | fscanf (stdin, "%lf", <);
|
---|
| 219 | lt = degrad(lt);
|
---|
| 220 | printf ("Longitude: ");
|
---|
| 221 | fscanf (stdin, "%lf", &lg);
|
---|
| 222 | lg = degrad(lg);
|
---|
| 223 |
|
---|
| 224 | moon_colong (jd, lt, lg, &c, &k, &a);
|
---|
| 225 |
|
---|
| 226 | printf ("Selenographic colongitude is %g\n", raddeg(c));
|
---|
| 227 | printf ("The illuminated fraction of the Moon is %g\n", k);
|
---|
| 228 | printf ("Altitude of Sun above feature is %g\n", raddeg(a));
|
---|
| 229 |
|
---|
| 230 | return (0);
|
---|
| 231 | }
|
---|
| 232 |
|
---|
| 233 | #endif
|
---|
| 234 |
|
---|
| 235 | /* For RCS Only -- Do Not Edit */
|
---|
[3111] | 236 | static char *rcsid[2] = {(char *)rcsid, "@(#) $RCSfile: mooncolong.c,v $ $Date: 2006-11-22 13:53:30 $ $Revision: 1.6 $ $Name: not supported by cvs2svn $"};
|
---|