[1457] | 1 | /* rewritten for Bureau des Longitude theories by Bretagnon and Chapront
|
---|
| 2 | * Michael Sternberg <sternberg@physik.tu-chemnitz.de>
|
---|
| 3 | */
|
---|
| 4 | #include <stdio.h>
|
---|
| 5 | #include <math.h>
|
---|
| 6 |
|
---|
| 7 | #include "P_.h"
|
---|
| 8 | #include "astro.h"
|
---|
| 9 | #include "vsop87.h"
|
---|
| 10 | #include "chap95.h"
|
---|
| 11 |
|
---|
| 12 | static void pluto_ell P_((double mjd, double *ret));
|
---|
| 13 | static void chap_trans P_((double mjd, double *ret));
|
---|
| 14 | static void planpos P_((double mjd, int obj, double prec, double *ret));
|
---|
| 15 |
|
---|
| 16 | /* coordinate transformation
|
---|
| 17 | * from:
|
---|
| 18 | * J2000.0 rectangular equatoreal ret[{0,1,2}] = {x,y,z}
|
---|
| 19 | * to:
|
---|
| 20 | * mean equinox of date spherical ecliptical ret[{0,1,2}] = {l,b,r}
|
---|
| 21 | */
|
---|
| 22 | static void
|
---|
| 23 | chap_trans (mjd, ret)
|
---|
| 24 | double mjd; /* destination epoch */
|
---|
| 25 | double *ret; /* vector to be transformed _IN PLACE_ */
|
---|
| 26 | {
|
---|
| 27 | double ra, dec, r, eps;
|
---|
| 28 | double sr, cr, sd, cd, se, ce;
|
---|
| 29 |
|
---|
| 30 | cartsph(ret[0], ret[1], ret[2], &ra, &dec, &r);
|
---|
| 31 | precess(J2000, mjd, &ra, &dec);
|
---|
| 32 | obliquity(mjd, &eps);
|
---|
| 33 | sr = sin(ra); cr = cos(ra);
|
---|
| 34 | sd = sin(dec); cd = cos(dec);
|
---|
| 35 | se = sin(eps); ce = cos(eps);
|
---|
| 36 | ret[0] = atan2( sr * ce + sd/cd * se, cr); /* long */
|
---|
| 37 | ret[1] = asin( sd * ce - cd * se * sr); /* lat */
|
---|
| 38 | ret[2] = r; /* radius */
|
---|
| 39 | }
|
---|
| 40 |
|
---|
| 41 | /* low precision ecliptic coordinates of Pluto from mean orbit.
|
---|
| 42 | * Only for sake of completeness outside available perturbation theories.
|
---|
| 43 | */
|
---|
| 44 | static void
|
---|
| 45 | pluto_ell (mjd, ret)
|
---|
| 46 | double mjd; /* epoch */
|
---|
| 47 | double *ret; /* ecliptic coordinates {l,b,r} at equinox of date */
|
---|
| 48 | {
|
---|
| 49 | /* mean orbital elements of Pluto.
|
---|
| 50 | * The origin of these is somewhat obscure.
|
---|
| 51 | */
|
---|
| 52 | double a = 39.543, /* semimajor axis, au */
|
---|
| 53 | e = 0.2490, /* excentricity */
|
---|
| 54 | inc0 = 17.140, /* inclination, deg */
|
---|
| 55 | Om0 = 110.307, /* long asc node, deg */
|
---|
| 56 | omeg0 = 113.768, /* arg of perihel, deg */
|
---|
| 57 | mjdp = 2448045.539 - MJD0, /* epoch of perihel */
|
---|
| 58 | mjdeq = J2000, /* equinox of elements */
|
---|
| 59 | n = 144.9600/36525.; /* daily motion, deg */
|
---|
| 60 |
|
---|
| 61 | double inc, Om, omeg; /* orbital elements at epoch of date */
|
---|
| 62 | double ma, ea, nu; /* mean, excentric and true anomaly */
|
---|
| 63 | double lo, slo, clo; /* longitude in orbit from asc node */
|
---|
| 64 |
|
---|
| 65 | reduce_elements(mjdeq, mjd, degrad(inc0), degrad(omeg0), degrad(Om0),
|
---|
| 66 | &inc, &omeg, &Om);
|
---|
| 67 | ma = degrad((mjd - mjdp) * n);
|
---|
| 68 | anomaly(ma, e, &nu, &ea);
|
---|
| 69 | ret[2] = a * (1.0 - e*cos(ea)); /* r */
|
---|
| 70 | lo = omeg + nu;
|
---|
| 71 | slo = sin(lo);
|
---|
| 72 | clo = cos(lo);
|
---|
| 73 | ret[1] = asin(slo * sin(inc)); /* b */
|
---|
| 74 | ret[0] = atan2(slo * cos(inc), clo) + Om; /* l */
|
---|
| 75 | }
|
---|
| 76 |
|
---|
| 77 | /*************************************************************/
|
---|
| 78 |
|
---|
| 79 | /* geometric heliocentric position of planet, mean ecliptic of date
|
---|
| 80 | * (not corrected for light-time)
|
---|
| 81 | */
|
---|
| 82 | static void
|
---|
| 83 | planpos (mjd, obj, prec, ret)
|
---|
| 84 | double mjd;
|
---|
| 85 | int obj;
|
---|
| 86 | double prec;
|
---|
| 87 | double *ret;
|
---|
| 88 | {
|
---|
| 89 | if (mjd >= CHAP_BEGIN && mjd <= CHAP_END) {
|
---|
| 90 | if (obj >= JUPITER) { /* prefer Chapront */
|
---|
| 91 | chap95(mjd, obj, prec, ret);
|
---|
| 92 | chap_trans (mjd, ret);
|
---|
| 93 | } else { /* VSOP for inner planets */
|
---|
| 94 | vsop87(mjd, obj, prec, ret);
|
---|
| 95 | }
|
---|
| 96 | } else { /* outside Chapront time: */
|
---|
| 97 | if (obj != PLUTO) { /* VSOP for all but Pluto */
|
---|
| 98 | vsop87(mjd, obj, prec, ret);
|
---|
| 99 | } else { /* Pluto mean elliptic orbit */
|
---|
| 100 | pluto_ell(mjd, ret);
|
---|
| 101 | }
|
---|
| 102 | }
|
---|
| 103 | }
|
---|
| 104 |
|
---|
| 105 | /*************************************************************/
|
---|
| 106 |
|
---|
| 107 | /* visual elements of planets
|
---|
| 108 | * [planet][0] = angular size at 1 AU
|
---|
| 109 | * [planet][1] = magnitude at 1 AU from sun and earth and 0 deg phase angle
|
---|
| 110 | */
|
---|
| 111 | static double vis_elements[8][2] = {
|
---|
| 112 | /* Mercury */ { 6.74, -0.42, },
|
---|
| 113 | /* Venus */ { 16.92, -4.34, },
|
---|
| 114 | /* Mars */ { 9.36, -1.20, },
|
---|
| 115 | /* Jupiter */ { 196.74, -9.4, },
|
---|
| 116 | /* Saturn */ { 165.6, -8.88, },
|
---|
| 117 | /* Uranus */ { 65.8, -7.19, },
|
---|
| 118 | /* Neptune */ { 62.2, -6.87, },
|
---|
| 119 | /* Pluto */ { 8.2, -1.0, }
|
---|
| 120 | };
|
---|
| 121 |
|
---|
| 122 | /* given a modified Julian date, mjd, and a planet, p, find:
|
---|
| 123 | * lpd0: heliocentric longitude,
|
---|
| 124 | * psi0: heliocentric latitude,
|
---|
| 125 | * rp0: distance from the sun to the planet,
|
---|
| 126 | * rho0: distance from the Earth to the planet,
|
---|
| 127 | * none corrected for light time, ie, they are the true values for the
|
---|
| 128 | * given instant.
|
---|
| 129 | * lam: geocentric ecliptic longitude,
|
---|
| 130 | * bet: geocentric ecliptic latitude,
|
---|
| 131 | * each corrected for light time, ie, they are the apparent values as
|
---|
| 132 | * seen from the center of the Earth for the given instant.
|
---|
| 133 | * dia: angular diameter in arcsec at 1 AU,
|
---|
| 134 | * mag: visual magnitude when 1 AU from sun and earth at 0 phase angle.
|
---|
| 135 | *
|
---|
| 136 | * all angles are in radians, all distances in AU.
|
---|
| 137 | *
|
---|
| 138 | * corrections for nutation and abberation must be made by the caller. The RA
|
---|
| 139 | * and DEC calculated from the fully-corrected ecliptic coordinates are then
|
---|
| 140 | * the apparent geocentric coordinates. Further corrections can be made, if
|
---|
| 141 | * required, for atmospheric refraction and geocentric parallax.
|
---|
| 142 | */
|
---|
| 143 | void
|
---|
| 144 | plans (mjd, p, lpd0, psi0, rp0, rho0, lam, bet, dia, mag)
|
---|
| 145 | double mjd;
|
---|
| 146 | int p;
|
---|
| 147 | double *lpd0, *psi0, *rp0, *rho0, *lam, *bet, *dia, *mag;
|
---|
| 148 | {
|
---|
| 149 | static double lastmjd = -10000;
|
---|
| 150 | static double lsn, bsn, rsn; /* geometric geocentric coords of sun */
|
---|
| 151 | static double xsn, ysn, zsn;
|
---|
| 152 | double lp, bp, rp; /* heliocentric coords of planet */
|
---|
| 153 | double xp, yp, zp, rho; /* rect. coords and geocentric dist. */
|
---|
| 154 | double dt; /* light time */
|
---|
| 155 | int pass;
|
---|
| 156 |
|
---|
| 157 | /* get sun cartesian; needed only once at mjd */
|
---|
| 158 | if (mjd != lastmjd) {
|
---|
| 159 | sunpos (mjd, &lsn, &rsn, &bsn);
|
---|
| 160 | sphcart (lsn, bsn, rsn, &xsn, &ysn, &zsn);
|
---|
| 161 | lastmjd = mjd;
|
---|
| 162 | }
|
---|
| 163 |
|
---|
| 164 | /* first find the true position of the planet at mjd.
|
---|
| 165 | * then repeat a second time for a slightly different time based
|
---|
| 166 | * on the position found in the first pass to account for light-travel
|
---|
| 167 | * time.
|
---|
| 168 | */
|
---|
| 169 | dt = 0.0;
|
---|
| 170 | for (pass = 0; pass < 2; pass++) {
|
---|
| 171 | double ret[6];
|
---|
| 172 |
|
---|
| 173 | /* get spherical coordinates of planet from precision routines,
|
---|
| 174 | * retarded for light time in second pass;
|
---|
| 175 | * alternative option: vsop allows calculating rates.
|
---|
| 176 | */
|
---|
| 177 | planpos(mjd - dt, p, 0.0, ret);
|
---|
| 178 |
|
---|
| 179 | lp = ret[0];
|
---|
| 180 | bp = ret[1];
|
---|
| 181 | rp = ret[2];
|
---|
| 182 |
|
---|
| 183 | sphcart (lp, bp, rp, &xp, &yp, &zp);
|
---|
| 184 | cartsph (xp + xsn, yp + ysn, zp + zsn, lam, bet, &rho);
|
---|
| 185 |
|
---|
| 186 | if (pass == 0) {
|
---|
| 187 | /* save heliocentric coordinates at first pass since, being
|
---|
| 188 | * true, they are NOT to be corrected for light-travel time.
|
---|
| 189 | */
|
---|
| 190 | *lpd0 = lp;
|
---|
| 191 | range (lpd0, 2.*PI);
|
---|
| 192 | *psi0 = bp;
|
---|
| 193 | *rp0 = rp;
|
---|
| 194 | *rho0 = rho;
|
---|
| 195 | }
|
---|
| 196 |
|
---|
| 197 | /* when we view a planet we see it in the position it occupied
|
---|
| 198 | * dt days ago, where rho is the distance between it and earth,
|
---|
| 199 | * in AU. use this as the new time for the next pass.
|
---|
| 200 | */
|
---|
| 201 | dt = rho * 5.7755183e-3;
|
---|
| 202 | }
|
---|
| 203 |
|
---|
| 204 | *dia = vis_elements[p][0];
|
---|
| 205 | *mag = vis_elements[p][1];
|
---|
| 206 | }
|
---|
| 207 |
|
---|
| 208 | /* For RCS Only -- Do Not Edit */
|
---|
| 209 | static char *rcsid[2] = {(char *)rcsid, "@(#) $RCSfile: plans.c,v $ $Date: 2001-04-10 14:40:47 $ $Revision: 1.1.1.1 $ $Name: not supported by cvs2svn $"};
|
---|