1 | /* find rise and set circumstances, ie, riset_cir() and related functions. */
|
---|
2 |
|
---|
3 | #include <stdio.h>
|
---|
4 | #include <math.h>
|
---|
5 | #if defined(__STDC__)
|
---|
6 | #include <stdlib.h>
|
---|
7 | #include <string.h>
|
---|
8 | #endif
|
---|
9 |
|
---|
10 | #include "P_.h"
|
---|
11 | #include "astro.h"
|
---|
12 | #include "circum.h"
|
---|
13 |
|
---|
14 | #define TMACC (10./3600./24.0) /* convergence accuracy, days */
|
---|
15 |
|
---|
16 | static void e_riset_cir P_((Now *np, Obj *op, double dis, RiseSet *rp));
|
---|
17 | static int find_0alt P_((double dt, double dis, Now *np, Obj *op));
|
---|
18 | static int find_transit P_((double dt, Now *np, Obj *op));
|
---|
19 | static int find_max P_((Now *np, Obj *op, double tr, double ts, double *tp,
|
---|
20 | double *alp));
|
---|
21 |
|
---|
22 | /* find where and when an object, op, will rise and set and
|
---|
23 | * it's transit circumstances. all times are utc mjd, angles rads e of n.
|
---|
24 | * dis is the angle down from an ideal horizon, in rads (see riset()).
|
---|
25 | * N.B. dis should NOT include refraction, we do that here.
|
---|
26 | */
|
---|
27 | void
|
---|
28 | riset_cir (np, op, dis, rp)
|
---|
29 | Now *np;
|
---|
30 | Obj *op;
|
---|
31 | double dis;
|
---|
32 | RiseSet *rp;
|
---|
33 | {
|
---|
34 | double mjdn; /* mjd of local noon */
|
---|
35 | double lstn; /* lst at local noon */
|
---|
36 | double lr, ls; /* lst rise/set times */
|
---|
37 | double ar, as; /* az of rise/set */
|
---|
38 | double ran; /* RA at noon */
|
---|
39 | Now n; /* copy to move time around */
|
---|
40 | Obj o; /* copy to get circumstances at n */
|
---|
41 | int rss; /* temp status */
|
---|
42 |
|
---|
43 | /* work with local copies so we can move the time around */
|
---|
44 | (void) memcpy ((void *)&n, (void *)np, sizeof(n));
|
---|
45 | (void) memcpy ((void *)&o, (void *)op, sizeof(o));
|
---|
46 |
|
---|
47 | /* fast Earth satellites need a different approach.
|
---|
48 | * "fast" here is pretty arbitrary -- just too fast to work with the
|
---|
49 | * iterative approach based on refining the times for a "fixed" object.
|
---|
50 | */
|
---|
51 | if (op->o_type == EARTHSAT && op->es_n > FAST_SAT_RPD) {
|
---|
52 | e_riset_cir (&n, &o, dis, rp);
|
---|
53 | return;
|
---|
54 | }
|
---|
55 |
|
---|
56 | /* assume no problems initially */
|
---|
57 | rp->rs_flags = 0;
|
---|
58 |
|
---|
59 | /* start the iteration at local noon */
|
---|
60 | mjdn = mjd_day(mjd - tz/24.0) + tz/24.0 + 0.5;
|
---|
61 | n.n_mjd = mjdn;
|
---|
62 | now_lst (&n, &lstn);
|
---|
63 |
|
---|
64 | /* first approximation is to find rise/set times of a fixed object
|
---|
65 | * at the current epoch in its position at local noon.
|
---|
66 | * N.B. add typical refraction for initial go/no-go test. if it
|
---|
67 | * passes, real code does refraction rigorously.
|
---|
68 | */
|
---|
69 | n.n_mjd = mjdn;
|
---|
70 | if (obj_cir (&n, &o) < 0) {
|
---|
71 | rp->rs_flags = RS_ERROR;
|
---|
72 | return;
|
---|
73 | }
|
---|
74 | ran = o.s_gaera;
|
---|
75 | riset (o.s_gaera, o.s_gaedec, lat, dis+.01, &lr, &ls, &ar, &as, &rss);
|
---|
76 | switch (rss) {
|
---|
77 | case 0: break;
|
---|
78 | case 1: rp->rs_flags = RS_NEVERUP; return;
|
---|
79 | case -1: rp->rs_flags = RS_CIRCUMPOLAR; goto dotransit;
|
---|
80 | default: rp->rs_flags = RS_ERROR; return;
|
---|
81 | }
|
---|
82 |
|
---|
83 | /* iterate to find better rise time */
|
---|
84 | n.n_mjd = mjdn;
|
---|
85 | switch (find_0alt ((lr - lstn)/SIDRATE, dis, &n, &o)) {
|
---|
86 | case 0: /* ok */
|
---|
87 | rp->rs_risetm = n.n_mjd;
|
---|
88 | rp->rs_riseaz = o.s_az;
|
---|
89 | break;
|
---|
90 | case -1: /* obj_cir error */
|
---|
91 | rp->rs_flags |= RS_RISERR;
|
---|
92 | break;
|
---|
93 | case -2: /* converged but not today */ /* FALLTHRU */
|
---|
94 | case -3: /* probably never up */
|
---|
95 | rp->rs_flags |= RS_NORISE;
|
---|
96 | break;
|
---|
97 | }
|
---|
98 |
|
---|
99 | /* iterate to find better set time */
|
---|
100 | n.n_mjd = mjdn;
|
---|
101 | switch (find_0alt ((ls - lstn)/SIDRATE, dis, &n, &o)) {
|
---|
102 | case 0: /* ok */
|
---|
103 | rp->rs_settm = n.n_mjd;
|
---|
104 | rp->rs_setaz = o.s_az;
|
---|
105 | break;
|
---|
106 | case -1: /* obj_cir error */
|
---|
107 | rp->rs_flags |= RS_SETERR;
|
---|
108 | break;
|
---|
109 | case -2: /* converged but not today */ /* FALLTHRU */
|
---|
110 | case -3: /* probably circumpolar */
|
---|
111 | rp->rs_flags |= RS_NOSET;
|
---|
112 | break;
|
---|
113 | }
|
---|
114 |
|
---|
115 | /* can try transit even if rise or set failed */
|
---|
116 | dotransit:
|
---|
117 | n.n_mjd = mjdn;
|
---|
118 | switch (find_transit ((radhr(ran) - lstn)/SIDRATE, &n, &o)) {
|
---|
119 | case 0: /* ok */
|
---|
120 | rp->rs_trantm = n.n_mjd;
|
---|
121 | rp->rs_tranalt = o.s_alt;
|
---|
122 | break;
|
---|
123 | case -1: /* did not converge */
|
---|
124 | rp->rs_flags |= RS_TRANSERR;
|
---|
125 | break;
|
---|
126 | case -2: /* converged but not today */
|
---|
127 | rp->rs_flags |= RS_NOTRANS;
|
---|
128 | break;
|
---|
129 | }
|
---|
130 | }
|
---|
131 |
|
---|
132 | /* find local times when sun is dis rads below horizon.
|
---|
133 | */
|
---|
134 | void
|
---|
135 | twilight_cir (np, dis, dawn, dusk, status)
|
---|
136 | Now *np;
|
---|
137 | double dis;
|
---|
138 | double *dawn, *dusk;
|
---|
139 | int *status;
|
---|
140 | {
|
---|
141 | RiseSet rs;
|
---|
142 | Obj o;
|
---|
143 |
|
---|
144 | o.o_type = PLANET;
|
---|
145 | o.pl.pl_code = SUN;
|
---|
146 | (void) strcpy (o.o_name, "Sun");
|
---|
147 | riset_cir (np, &o, dis, &rs);
|
---|
148 | *dawn = rs.rs_risetm;
|
---|
149 | *dusk = rs.rs_settm;
|
---|
150 | *status = rs.rs_flags;
|
---|
151 | }
|
---|
152 |
|
---|
153 | /* find where and when a fast-moving Earth satellite, op, will rise and set and
|
---|
154 | * it's transit circumstances. all times are mjd, angles rads e of n.
|
---|
155 | * dis is the angle down from the local topo horizon, in rads (see riset()).
|
---|
156 | * idea is to walk forward in time looking for alt+dis==0 crossings.
|
---|
157 | * initial time step is a few degrees (based on average daily motion).
|
---|
158 | * we stop as soon as we see both a rise and set.
|
---|
159 | * N.B. we assume *np and *op are working copies we can mess up.
|
---|
160 | */
|
---|
161 | static void
|
---|
162 | e_riset_cir (np, op, dis, rp)
|
---|
163 | Now *np;
|
---|
164 | Obj *op;
|
---|
165 | double dis;
|
---|
166 | RiseSet *rp;
|
---|
167 | {
|
---|
168 | #define DEGSTEP 5 /* time step is about this many degrees */
|
---|
169 | int steps; /* max number of time steps */
|
---|
170 | double dt; /* time change per step, days */
|
---|
171 | double t0, t1; /* current and next mjd values */
|
---|
172 | double a0, a1; /* altitude at t0 and t1 */
|
---|
173 | int rise, set; /* flags to check when we find these events */
|
---|
174 | int i;
|
---|
175 |
|
---|
176 | dt = DEGSTEP * (1.0/360.0/op->es_n);
|
---|
177 | steps = (int)(1.0/dt);
|
---|
178 | rise = set = 0;
|
---|
179 | rp->rs_flags = 0;
|
---|
180 |
|
---|
181 | if (obj_cir (np, op) < 0) {
|
---|
182 | rp->rs_flags |= RS_ERROR;
|
---|
183 | return;
|
---|
184 | }
|
---|
185 |
|
---|
186 | t0 = mjd;
|
---|
187 | a0 = op->s_alt + dis;
|
---|
188 |
|
---|
189 | for (i = 0; i < steps && (!rise || !set); i++) {
|
---|
190 | mjd = t1 = t0 + dt;
|
---|
191 | if (obj_cir (np, op) < 0) {
|
---|
192 | rp->rs_flags |= RS_ERROR;
|
---|
193 | return;
|
---|
194 | }
|
---|
195 | a1 = op->s_alt + dis;
|
---|
196 |
|
---|
197 | if (a0 < 0 && a1 > 0 && !rise) {
|
---|
198 | /* found a rise event -- interate to refine */
|
---|
199 | switch (find_0alt (0.0, dis, np, op)) {
|
---|
200 | case 0: /* ok */
|
---|
201 | rp->rs_risetm = np->n_mjd;
|
---|
202 | rp->rs_riseaz = op->s_az;
|
---|
203 | rise = 1;
|
---|
204 | break;
|
---|
205 | case -1: /* obj_cir error */
|
---|
206 | rp->rs_flags |= RS_RISERR;
|
---|
207 | return;
|
---|
208 | case -2: /* converged but not today */ /* FALLTHRU */
|
---|
209 | case -3: /* probably never up */
|
---|
210 | rp->rs_flags |= RS_NORISE;
|
---|
211 | return;
|
---|
212 | }
|
---|
213 | } else if (a0 > 0 && a1 < 0 && !set) {
|
---|
214 | /* found a setting event -- interate to refine */
|
---|
215 | switch (find_0alt (0.0, dis, np, op)) {
|
---|
216 | case 0: /* ok */
|
---|
217 | rp->rs_settm = np->n_mjd;
|
---|
218 | rp->rs_setaz = op->s_az;
|
---|
219 | set = 1;
|
---|
220 | break;
|
---|
221 | case -1: /* obj_cir error */
|
---|
222 | rp->rs_flags |= RS_SETERR;
|
---|
223 | return;
|
---|
224 | case -2: /* converged but not today */ /* FALLTHRU */
|
---|
225 | case -3: /* probably circumpolar */
|
---|
226 | rp->rs_flags |= RS_NOSET;
|
---|
227 | return;
|
---|
228 | }
|
---|
229 | }
|
---|
230 |
|
---|
231 | t0 = t1;
|
---|
232 | a0 = a1;
|
---|
233 | }
|
---|
234 |
|
---|
235 | /* instead of transit, for satellites we find time of maximum
|
---|
236 | * altitude, if we know both the rise and set times and the former
|
---|
237 | * occurs before the latter.
|
---|
238 | */
|
---|
239 | if (rise && set && rp->rs_risetm < rp->rs_settm) {
|
---|
240 | double tt, al;
|
---|
241 | if (find_max (np, op, rp->rs_risetm, rp->rs_settm, &tt, &al) < 0) {
|
---|
242 | rp->rs_flags |= RS_TRANSERR;
|
---|
243 | return;
|
---|
244 | }
|
---|
245 | rp->rs_trantm = tt;
|
---|
246 | rp->rs_tranalt = al;
|
---|
247 | } else
|
---|
248 | rp->rs_flags |= RS_NOTRANS;
|
---|
249 |
|
---|
250 | /* check for some bad conditions */
|
---|
251 | if (!rise) {
|
---|
252 | if (a0 > 0)
|
---|
253 | rp->rs_flags |= RS_CIRCUMPOLAR;
|
---|
254 | else
|
---|
255 | rp->rs_flags |= RS_NORISE;
|
---|
256 | }
|
---|
257 | if (!set) {
|
---|
258 | if (a0 < 0)
|
---|
259 | rp->rs_flags |= RS_NEVERUP;
|
---|
260 | else
|
---|
261 | rp->rs_flags |= RS_NOSET;
|
---|
262 | }
|
---|
263 | }
|
---|
264 |
|
---|
265 | /* given a Now at noon and a dt from noon, in hours, for a first approximation
|
---|
266 | * to a rise or set event, refine the event by searching for when alt+dis = 0.
|
---|
267 | * return 0: if find one within 12 hours of noon with np and op set to the
|
---|
268 | * better time and circumstances;
|
---|
269 | * return -1: if error from obj_cir;
|
---|
270 | * return -2: if converges but not today;
|
---|
271 | * return -3: if does not converge at all (probably circumpolar or never up);
|
---|
272 | */
|
---|
273 | static int
|
---|
274 | find_0alt (dt, dis, np, op)
|
---|
275 | double dt; /* hours from noon to first guess at event */
|
---|
276 | double dis; /* horizon displacement, rads */
|
---|
277 | Now *np; /* working Now -- starts with mjd is noon, returns as answer */
|
---|
278 | Obj *op; /* working object -- returns as answer */
|
---|
279 | {
|
---|
280 | #define MAXPASSES 20 /* max iterations to try */
|
---|
281 | #define FIRSTSTEP (1.0/60.0/24.0) /* first time step, days */
|
---|
282 |
|
---|
283 | double a0 = 0;
|
---|
284 | double mjdn = mjd;
|
---|
285 | int npasses;
|
---|
286 |
|
---|
287 | /* insure initial guess is today -- if not, move by 24 hours */
|
---|
288 | if (dt < -12.0)
|
---|
289 | dt += 24.0;
|
---|
290 | if (dt > 12.0)
|
---|
291 | dt -= 24.0;
|
---|
292 |
|
---|
293 | /* convert dt to days for remainder of algorithm */
|
---|
294 | dt /= 24.0;
|
---|
295 |
|
---|
296 | /* use secant method to look for s_alt + dis == 0 */
|
---|
297 | npasses = 0;
|
---|
298 | do {
|
---|
299 | double a1;
|
---|
300 |
|
---|
301 | mjd += dt;
|
---|
302 | if (obj_cir (np, op) < 0)
|
---|
303 | return (-1);
|
---|
304 | a1 = op->s_alt;
|
---|
305 |
|
---|
306 | dt = (npasses == 0) ? FIRSTSTEP : (dis+a1)*dt/(a0-a1);
|
---|
307 | a0 = a1;
|
---|
308 |
|
---|
309 | } while (++npasses < MAXPASSES && fabs(dt) > TMACC);
|
---|
310 |
|
---|
311 | /* return codes */
|
---|
312 | if (npasses == MAXPASSES)
|
---|
313 | return (-3);
|
---|
314 | return (fabs(mjdn-mjd) < .5 ? 0 : -2);
|
---|
315 |
|
---|
316 | #undef MAXPASSES
|
---|
317 | #undef FIRSTSTEP
|
---|
318 | }
|
---|
319 |
|
---|
320 | /* find when the given object transits. start the search when LST matches the
|
---|
321 | * object's RA at noon.
|
---|
322 | * if ok, return 0 with np and op set to the transit conditions; if can't
|
---|
323 | * converge return -1; if converges ok but not today return -2.
|
---|
324 | * N.B. we assume np is passed set to local noon.
|
---|
325 | */
|
---|
326 | static int
|
---|
327 | find_transit (dt, np, op)
|
---|
328 | double dt;
|
---|
329 | Now *np;
|
---|
330 | Obj *op;
|
---|
331 | {
|
---|
332 | #define MAXLOOPS 10
|
---|
333 | #define MAXERR (0.25/60.) /* hours */
|
---|
334 | double mjdn = mjd;
|
---|
335 | double lst;
|
---|
336 | int i;
|
---|
337 |
|
---|
338 | /* insure initial guess is today -- if not, move by 24 hours */
|
---|
339 | if (dt < -12.0)
|
---|
340 | dt += 24.0;
|
---|
341 | if (dt > 12.0)
|
---|
342 | dt -= 24.0;
|
---|
343 |
|
---|
344 | i = 0;
|
---|
345 | do {
|
---|
346 | mjd += dt/24.0;
|
---|
347 | if (obj_cir (np, op) < 0)
|
---|
348 | return (-1);
|
---|
349 | now_lst (np, &lst);
|
---|
350 | dt = (radhr(op->s_gaera) - lst);
|
---|
351 | if (dt < -12.0)
|
---|
352 | dt += 24.0;
|
---|
353 | if (dt > 12.0)
|
---|
354 | dt -= 24.0;
|
---|
355 | } while (++i < MAXLOOPS && fabs(dt) > MAXERR);
|
---|
356 |
|
---|
357 | /* return codes */
|
---|
358 | if (i == MAXLOOPS)
|
---|
359 | return (-1);
|
---|
360 | return (fabs(mjd - mjdn) < 0.5 ? 0 : -2);
|
---|
361 |
|
---|
362 | #undef MAXLOOPS
|
---|
363 | #undef MAXERR
|
---|
364 | }
|
---|
365 |
|
---|
366 | /* find the mjd time of max altitude between the given rise and set times.
|
---|
367 | * N.B. we assume *np and *op are working copies we can mess up.
|
---|
368 | * N.B. we just assume max occurs at the center time.
|
---|
369 | * return 0 if ok, else -1.
|
---|
370 | */
|
---|
371 | static int
|
---|
372 | find_max (np, op, tr, ts, tp, alp)
|
---|
373 | Now *np;
|
---|
374 | Obj *op;
|
---|
375 | double tr, ts; /* times of rise and set */
|
---|
376 | double *tp, *alp; /* time of max altitude, and that altitude */
|
---|
377 | {
|
---|
378 | mjd = (ts + tr)/2;
|
---|
379 | if (obj_cir (np, op) < 0)
|
---|
380 | return (-1);
|
---|
381 | *tp = mjd;
|
---|
382 | *alp = op->s_alt;
|
---|
383 | return (0);
|
---|
384 | }
|
---|
385 |
|
---|
386 | /* For RCS Only -- Do Not Edit */
|
---|
387 | static char *rcsid[2] = {(char *)rcsid, "@(#) $RCSfile: riset_cir.c,v $ $Date: 2001-10-22 12:08:28 $ $Revision: 1.2 $ $Name: not supported by cvs2svn $"};
|
---|