/* saturn moon info */ #include #include #include #include #include "astro.h" #include "bdl.h" static int use_bdl (double JD, char *dir, MoonData md[S_NMOONS]); static void bruton_saturn (Obj *sop, double JD, MoonData md[S_NMOONS]); static void moonradec (double satsize, MoonData md[S_NMOONS]); static void moonSVis (Obj *eop, Obj *sop, MoonData md[S_NMOONS]); static void moonEVis (MoonData md[S_NMOONS]); static void moonPShad (Obj *eop, Obj *sop, MoonData md[S_NMOONS]); static void moonTrans (MoonData md[S_NMOONS]); /* moon table and a few other goodies and when it was last computed */ static double mdmjd = -123456; static MoonData smd[S_NMOONS] = { {"Saturn", NULL}, {"Mimas", "I"}, {"Enceladus","II"}, {"Tethys", "III"}, {"Dione", "IV"}, {"Rhea", "V"}, {"Titan", "VI"}, {"Hyperion","VII"}, {"Iapetus", "VIII"}, }; static double sizemjd; static double etiltmjd; static double stiltmjd; /* file containing BDL coefficients */ static char sbdlfn[] = "saturne.9910"; /* These values are from the Explanatory Supplement. * Precession degrades them gradually over time. */ #define POLE_RA degrad(40.58) /* RA of Saturn's north pole */ #define POLE_DEC degrad(83.54) /* Dec of Saturn's north pole */ /* get saturn info in md[0], moon info in md[1..S_NMOONS-1]. * if !dir always use bruton model. * if !sop caller just wants md[] for names * N.B. we assume eop and sop are updated. */ void saturn_data ( double Mjd, /* mjd */ char dir[], /* dir in which to look for helper files */ Obj *eop, /* earth == Sun */ Obj *sop, /* saturn */ double *sizep, /* saturn's angular diam, rads */ double *etiltp, double *stiltp, /* earth and sun tilts -- +S */ double *polera, double *poledec,/* pole location */ MoonData md[S_NMOONS]) /* return info */ { double JD; /* always copy back at least for name */ memcpy (md, smd, sizeof(smd)); /* pole */ if (polera) *polera = POLE_RA; if (poledec) *poledec = POLE_DEC; /* nothing else if repeat call or just want names */ if (Mjd == mdmjd || !sop) { if (sop) { *sizep = sizemjd; *etiltp = etiltmjd; *stiltp = stiltmjd; } return; } JD = Mjd + MJD0; /* planet in [0] */ md[0].ra = sop->s_ra; md[0].dec = sop->s_dec; md[0].mag = get_mag(sop); md[0].x = 0; md[0].y = 0; md[0].z = 0; md[0].evis = 1; md[0].svis = 1; /* size is straight from sop */ *sizep = degrad(sop->s_size/3600.0); /* Visual Magnitude of the Satellites */ md[1].mag = 13; md[2].mag = 11.8; md[3].mag = 10.3; md[4].mag = 10.2; md[5].mag = 9.8; md[6].mag = 8.4; md[7].mag = 14.3; md[8].mag = 11.2; /* get tilts from sky and tel code */ satrings (sop->s_hlat, sop->s_hlong, sop->s_sdist, eop->s_hlong, eop->s_edist, JD, etiltp, stiltp); /* get moon x,y,z from BDL if possible, else Bruton's model */ if (dir && use_bdl (JD, dir, md) < 0) bruton_saturn (sop, JD, md); /* set visibilities */ moonSVis (eop, sop, md); moonPShad (eop, sop, md); moonEVis (md); moonTrans (md); /* fill in moon ra and dec */ moonradec (*sizep, md); /* save */ mdmjd = Mjd; etiltmjd = *etiltp; stiltmjd = *stiltp; sizemjd = *sizep; memcpy (smd, md, sizeof(smd)); } /* hunt for BDL file in dir[] and use if possible. * return 0 if ok, else -1 */ static int use_bdl ( double JD, /* julian date */ char dir[], /* directory */ MoonData md[S_NMOONS]) /* fill md[1..NM-1].x/y/z for each moon */ { #define SATRAU .0004014253 /* saturn radius, AU */ double x[S_NMOONS], y[S_NMOONS], z[S_NMOONS]; char buf[1024]; FILE *fp; int i; /* only valid 1999 through 2010 */ if (JD < 2451179.50000 || JD >= 2455562.5) return (-1); /* open */ (void) sprintf (buf, "%s/%s", dir, sbdlfn); fp = fopen (buf, "r"); if (!fp) return (-1); /* use it */ if ((i = read_bdl (fp, JD, x, y, z, buf)) < 0) { fprintf (stderr, "%s: %s\n", sbdlfn, buf); fclose (fp); return (-1); } if (i != S_NMOONS-1) { fprintf (stderr, "%s: BDL says %d moons, code expects %d", sbdlfn, i, S_NMOONS-1); fclose (fp); return (-1); } /* copy into md[1..NM-1] with our scale and sign conventions */ for (i = 1; i < S_NMOONS; i++) { md[i].x = x[i-1]/SATRAU; /* we want sat radii +E */ md[i].y = -y[i-1]/SATRAU; /* we want sat radii +S */ md[i].z = -z[i-1]/SATRAU; /* we want sat radii +front */ } /* ok */ fclose (fp); return (0); } /* */ /* SS2TXT.BAS Dan Bruton, astro@tamu.edu */ /* */ /* This is a text version of SATSAT2.BAS. It is smaller, */ /* making it easier to convert other languages (250 lines */ /* compared to 850 lines). */ /* */ /* This BASIC program computes and displays the locations */ /* of Saturn's Satellites for a given date and time. See */ /* "Practical Astronomy with your Calculator" by Peter */ /* Duffett-Smith and the Astronomical Almanac for explanations */ /* of some of the calculations here. The code is included so */ /* that users can make changes or convert to other languages. */ /* This code was made using QBASIC (comes with DOS 5.0). */ /* */ /* ECD: merged with Sky and Tel, below, for better earth and sun ring tilt */ /* */ /* ECD: BASICeze */ #define FOR for #define IF if #define ELSE else #define COS cos #define SIN sin #define TAN tan #define ATN atan #define ABS fabs #define SQR sqrt /* find saturn moon data from Bruton's model */ /* this originally computed +X:East +Y:North +Z:behind in [1..8] indeces. * and +tilt:front south, rads * then we adjust things in md[].x/y/z/mag to fit into our MoonData format. */ static void bruton_saturn ( Obj *sop, /* saturn */ double JD, /* julian date */ MoonData md[S_NMOONS]) /* fill md[1..NM-1].x/y/z for each moon */ { /* ECD: code does not use [0]. * ECD and why 11 here? seems like 9 would do */ double SMA[11], U[11], U0[11], PD[11]; double X[S_NMOONS], Y[S_NMOONS], Z[S_NMOONS]; double P,TP,TE,EP,EE,RE0,RP0,RS; double JDE,LPE,LPP,LEE,LEP; double NN,ME,MP,VE,VP; double LE,LP,RE,RP,DT,II,F,F1; double RA,DECL; double TVA,PVA,TVC,PVC,DOT1,INC,TVB,PVB,DOT2,INCI; double TRIP,GAM,TEMPX,TEMPY,TEMPZ; int I; /* saturn */ RA = sop->s_ra; DECL = sop->s_dec; /* ******************************************************************** */ /* * * */ /* * Constants * */ /* * * */ /* ******************************************************************** */ P = PI / 180; /* Orbital Rate of Saturn in Radians per Days */ TP = 2 * PI / (29.45771 * 365.2422); /* Orbital Rate of Earth in Radians per Day */ TE = 2 * PI / (1.00004 * 365.2422); /* Eccentricity of Saturn's Orbit */ EP = .0556155; /* Eccentricity of Earth's Orbit */ EE = .016718; /* Semimajor axis of Earth's and Saturn's orbit in Astronomical Units */ RE0 = 1; RP0 = 9.554747; /* Semimajor Axis of the Satellites' Orbit in Kilometers */ SMA[1] = 185600; SMA[2] = 238100; SMA[3] = 294700; SMA[4] = 377500; SMA[5] = 527200; SMA[6] = 1221600; SMA[7] = 1483000; SMA[8] = 3560100; /* Eccentricity of Satellites' Orbit [Program uses 0] */ /* Synodic Orbital Period of Moons in Days */ PD[1] = .9425049; PD[2] = 1.3703731; PD[3] = 1.8880926; PD[4] = 2.7375218; PD[5] = 4.5191631; PD[6] = 15.9669028; PD[7] = 21.3174647; PD[8] = 79.9190206; /* personal mail 1/14/95 */ RS = 60330; /* Radius of planet in kilometers */ /* ******************************************************************** */ /* * * */ /* * Epoch Information * */ /* * * */ /* ******************************************************************** */ JDE = 2444238.5; /* Epoch Jan 0.0 1980 = December 31,1979 0:0:0 UT */ LPE = 165.322242 * P; /* Longitude of Saturn at Epoch */ LPP = 92.6653974 * P; /* Longitude of Saturn`s Perihelion */ LEE = 98.83354 * P; /* Longitude of Earth at Epoch */ LEP = 102.596403 * P; /* Longitude of Earth's Perihelion */ /* U0[I] = Angle from inferior geocentric conjuction */ /* measured westward along the orbit at epoch */ U0[1] = 18.2919 * P; U0[2] = 174.2135 * P; U0[3] = 172.8546 * P; U0[4] = 76.8438 * P; U0[5] = 37.2555 * P; U0[6] = 57.7005 * P; U0[7] = 266.6977 * P; U0[8] = 195.3513 * P; /* from personal mail 1/14/1995 */ /* ******************************************************************** */ /* * * */ /* * Orbit Calculations * */ /* * * */ /* ******************************************************************** */ /* ****************** FIND MOON ORBITAL ANGLES ************************ */ NN = JD - JDE; /* NN = Number of days since epoch */ ME = ((TE * NN) + LEE - LEP); /* Mean Anomoly of Earth */ MP = ((TP * NN) + LPE - LPP); /* Mean Anomoly of Saturn */ VE = ME; VP = MP; /* True Anomolies - Solve Kepler's Equation */ FOR (I = 1; I <= 3; I++) { VE = VE - (VE - (EE * SIN(VE)) - ME) / (1 - (EE * COS(VE))); VP = VP - (VP - (EP * SIN(VP)) - MP) / (1 - (EP * COS(VP))); } VE = 2 * ATN(SQR((1 + EE) / (1 - EE)) * TAN(VE / 2)); IF (VE < 0) VE = (2 * PI) + VE; VP = 2 * ATN(SQR((1 + EP) / (1 - EP)) * TAN(VP / 2)); IF (VP < 0) VP = (2 * PI) + VP; /* Heliocentric Longitudes of Earth and Saturn */ LE = VE + LEP; IF (LE > (2 * PI)) LE = LE - (2 * PI); LP = VP + LPP; IF (LP > (2 * PI)) LP = LP - (2 * PI); /* Distances of Earth and Saturn from the Sun in AU's */ RE = RE0 * (1 - EE * EE) / (1 + EE * COS(VE)); RP = RP0 * (1 - EP * EP) / (1 + EP * COS(VP)); /* DT = Distance from Saturn to Earth in AU's - Law of Cosines */ DT = SQR((RE * RE) + (RP * RP) - (2 * RE * RP * COS(LE - LP))); /* II = Angle between Earth and Sun as seen from Saturn */ II = RE * SIN(LE - LP) / DT; II = ATN(II / SQR(1 - II * II)); /* ArcSIN and Law of Sines */ /* F = NN - (Light Time to Earth in days) */ F = NN - (DT / 173.83); F1 = II + MP - VP; /* U(I) = Angle from inferior geocentric conjuction measured westward */ FOR (I = 1; I < S_NMOONS; I++) { U[I] = U0[I] + (F * 2 * PI / PD[I]) + F1; U[I] = ((U[I] / (2 * PI)) - (int)(U[I] / (2 * PI))) * 2 * PI; } /* **************** FIND INCLINATION OF RINGS ************************* */ /* Use dot product of Earth-Saturn vector and Saturn's rotation axis */ TVA = (90 - 83.51) * P; /* Theta coordinate of Saturn's axis */ PVA = 40.27 * P; /* Phi coordinate of Saturn's axis */ TVC = (PI / 2) - DECL; PVC = RA; DOT1 = SIN(TVA) * COS(PVA) * SIN(TVC) * COS(PVC); DOT1 = DOT1 + SIN(TVA) * SIN(PVA) * SIN(TVC) * SIN(PVC); DOT1 = DOT1 + COS(TVA) * COS(TVC); INC = ATN(SQR(1 - DOT1 * DOT1) / DOT1); /* ArcCOS */ IF (INC > 0) INC = (PI / 2) - INC; ELSE INC = -(PI / 2) - INC; /* ************* FIND INCLINATION OF IAPETUS' ORBIT ******************* */ /* Use dot product of Earth-Saturn vector and Iapetus' orbit axis */ /* Vector B */ TVB = (90 - 75.6) * P; /* Theta coordinate of Iapetus' orbit axis (estimate) */ PVB = 21.34 * 2 * PI / 24; /* Phi coordinate of Iapetus' orbit axis (estimate) */ DOT2 = SIN(TVB) * COS(PVB) * SIN(TVC) * COS(PVC); DOT2 = DOT2 + SIN(TVB) * SIN(PVB) * SIN(TVC) * SIN(PVC); DOT2 = DOT2 + COS(TVB) * COS(TVC); INCI = ATN(SQR(1 - DOT2 * DOT2) / DOT2); /* ArcCOS */ IF (INCI > 0) INCI = (PI / 2) - INCI; ELSE INCI = -(PI / 2) - INCI; /* ************* FIND ROTATION ANGLE OF IAPETUS' ORBIT **************** */ /* Use inclination of Iapetus' orbit with respect to ring plane */ /* Triple Product */ TRIP = SIN(TVC) * COS(PVC) * SIN(TVA) * SIN(PVA) * COS(TVB); TRIP = TRIP - SIN(TVC) * COS(PVC) * SIN(TVB) * SIN(PVB) * COS(TVA); TRIP = TRIP + SIN(TVC) * SIN(PVC) * SIN(TVB) * COS(PVB) * COS(TVA); TRIP = TRIP - SIN(TVC) * SIN(PVC) * SIN(TVA) * COS(PVA) * COS(TVB); TRIP = TRIP + COS(TVC) * SIN(TVA) * COS(PVA) * SIN(TVB) * SIN(PVB); TRIP = TRIP - COS(TVC) * SIN(TVB) * COS(PVB) * SIN(TVA) * SIN(PVA); GAM = -1 * ATN(TRIP / SQR(1 - TRIP * TRIP)); /* ArcSIN */ /* ******************************************************************** */ /* * * */ /* * Compute Moon Positions * */ /* * * */ /* ******************************************************************** */ FOR (I = 1; I < S_NMOONS - 1; I++) { X[I] = -1 * SMA[I] * SIN(U[I]) / RS; Z[I] = -1 * SMA[I] * COS(U[I]) / RS; /* ECD */ Y[I] = SMA[I] * COS(U[I]) * SIN(INC) / RS; } /* ************************* Iapetus' Orbit *************************** */ TEMPX = -1 * SMA[8] * SIN(U[8]) / RS; TEMPZ = -1 * SMA[8] * COS(U[8]) / RS; TEMPY = SMA[8] * COS(U[8]) * SIN(INCI) / RS; X[8] = TEMPX * COS(GAM) + TEMPY * SIN(GAM); /* Rotation */ Z[8] = TEMPZ * COS(GAM) + TEMPY * SIN(GAM); Y[8] = -1 * TEMPX * SIN(GAM) + TEMPY * COS(GAM); #ifdef SHOWALL /* ******************************************************************** */ /* * * */ /* * Show Results * */ /* * * */ /* ******************************************************************** */ printf (" Julian Date : %g\n", JD); printf (" Right Ascension of Saturn : %g Hours\n", RA * 24 / (2 * PI)); printf (" Declination of Saturn : %g\n", DECL / P); printf (" Ring Inclination as seen from Earth : %g\n", -1 * INC / P); printf (" Heliocentric Longitude of Saturn : %g\n", LP / P); printf (" Heliocentric Longitude of Earth : %g\n", LE / P); printf (" Sun-Saturn-Earth Angle : %g\n", II / P); printf (" Distance between Saturn and Earth : %g AU = %g million miles\n", DT, (DT * 93)); printf (" Light time from Saturn to Earth : %g minutes\n", DT * 8.28); TEMP = 2 * ATN(TAN(165.6 * P / (2 * 3600)) / DT) * 3600 / P; printf (" Angular Size of Saturn : %g arcsec\n", TEMP); printf (" Major Angular Size of Saturn's Rings : %g arcsec\n", RS4 * TEMP / RS); printf (" Minor Angular Size of Saturn's Rings : %g arcsec\n", ABS(RS4 * TEMP * SIN(INC) / RS)); #endif /* copy into md[1..S_NMOONS-1] with our sign conventions */ for (I = 1; I < S_NMOONS; I++) { md[I].x = X[I]; /* we want +E */ md[I].y = -Y[I]; /* we want +S */ md[I].z = -Z[I]; /* we want +front */ } } /* given saturn loc in md[0].ra/dec and size, and location of each moon in * md[1..NM-1].x/y in sat radii, find ra/dec of each moon in md[1..NM-1].ra/dec. */ static void moonradec ( double satsize, /* sat diameter, rads */ MoonData md[S_NMOONS]) /* fill in RA and Dec */ { double satrad = satsize/2; double satra = md[0].ra; double satdec = md[0].dec; int i; for (i = 1; i < S_NMOONS; i++) { double dra = satrad * md[i].x; double ddec = satrad * md[i].y; md[i].ra = satra + dra; md[i].dec = satdec - ddec; } } /* set svis according to whether moon is in sun light */ static void moonSVis( Obj *eop, /* earth == SUN */ Obj *sop, /* saturn */ MoonData md[S_NMOONS]) { double esd = eop->s_edist; double eod = sop->s_edist; double sod = sop->s_sdist; double soa = degrad(sop->s_elong); double esa = asin(esd*sin(soa)/sod); double h = sod*sop->s_hlat; double nod = h*(1./eod - 1./sod); double sca = cos(esa), ssa = sin(esa); int i; for (i = 1; i < S_NMOONS; i++) { MoonData *mdp = &md[i]; double xp = sca*mdp->x + ssa*mdp->z; double yp = mdp->y; double zp = -ssa*mdp->x + sca*mdp->z; double ca = cos(nod), sa = sin(nod); double xpp = xp; double ypp = ca*yp - sa*zp; double zpp = sa*yp + ca*zp; int outside = xpp*xpp + ypp*ypp > 1.0; int infront = zpp > 0.0; mdp->svis = outside || infront; } } /* set evis according to whether moon is geometrically visible from earth */ static void moonEVis (MoonData md[S_NMOONS]) { int i; for (i = 1; i < S_NMOONS; i++) { MoonData *mdp = &md[i]; int outside = mdp->x*mdp->x + mdp->y*mdp->y > 1.0; int infront = mdp->z > 0.0; mdp->evis = outside || infront; } } /* set pshad and sx,sy shadow info */ static void moonPShad( Obj *eop, /* earth == SUN */ Obj *sop, /* saturn */ MoonData md[S_NMOONS]) { int i; for (i = 1; i < S_NMOONS; i++) { MoonData *mdp = &md[i]; mdp->pshad = !plshadow (sop, eop, POLE_RA, POLE_DEC, mdp->x, mdp->y, mdp->z, &mdp->sx, &mdp->sy); } } /* set whether moons are transiting */ static void moonTrans (MoonData md[S_NMOONS]) { int i; for (i = 1; i < S_NMOONS; i++) { MoonData *mdp = &md[i]; mdp->trans = mdp->z > 0 && mdp->x*mdp->x + mdp->y*mdp->y < 1; } } /* For RCS Only -- Do Not Edit */ static char *rcsid[2] = {(char *)rcsid, "@(#) $RCSfile: satmoon.c,v $ $Date: 2005-08-21 10:02:39 $ $Revision: 1.3 $ $Name: not supported by cvs2svn $"};