1 | /* saturn moon info */
|
---|
2 |
|
---|
3 | #include <stdio.h>
|
---|
4 | #include <stdlib.h>
|
---|
5 | #include <string.h>
|
---|
6 | #include <errno.h>
|
---|
7 | #include <math.h>
|
---|
8 |
|
---|
9 | #include "astro.h"
|
---|
10 | #include "bdl.h"
|
---|
11 |
|
---|
12 | static int use_bdl (double JD, char *dir, MoonData md[S_NMOONS]);
|
---|
13 | static void bruton_saturn (Obj *sop, double JD, MoonData md[S_NMOONS]);
|
---|
14 | static void moonradec (double satsize, MoonData md[S_NMOONS]);
|
---|
15 | static void moonSVis (Obj *eop, Obj *sop, MoonData md[S_NMOONS]);
|
---|
16 | static void moonEVis (MoonData md[S_NMOONS]);
|
---|
17 | static void moonPShad (Obj *eop, Obj *sop, MoonData md[S_NMOONS]);
|
---|
18 | static void moonTrans (MoonData md[S_NMOONS]);
|
---|
19 |
|
---|
20 | /* moon table and a few other goodies and when it was last computed */
|
---|
21 | static double mdmjd = -123456;
|
---|
22 | static MoonData smd[S_NMOONS] = {
|
---|
23 | {"Saturn", NULL},
|
---|
24 | {"Mimas", "I"},
|
---|
25 | {"Enceladus","II"},
|
---|
26 | {"Tethys", "III"},
|
---|
27 | {"Dione", "IV"},
|
---|
28 | {"Rhea", "V"},
|
---|
29 | {"Titan", "VI"},
|
---|
30 | {"Hyperion","VII"},
|
---|
31 | {"Iapetus", "VIII"},
|
---|
32 | };
|
---|
33 | static double sizemjd;
|
---|
34 | static double etiltmjd;
|
---|
35 | static double stiltmjd;
|
---|
36 |
|
---|
37 | /* These values are from the Explanatory Supplement.
|
---|
38 | * Precession degrades them gradually over time.
|
---|
39 | */
|
---|
40 | #define POLE_RA degrad(40.58) /* RA of Saturn's north pole */
|
---|
41 | #define POLE_DEC degrad(83.54) /* Dec of Saturn's north pole */
|
---|
42 |
|
---|
43 |
|
---|
44 | /* get saturn info in md[0], moon info in md[1..S_NMOONS-1].
|
---|
45 | * if !dir always use bruton model.
|
---|
46 | * if !sop caller just wants md[] for names
|
---|
47 | * N.B. we assume eop and sop are updated.
|
---|
48 | */
|
---|
49 | void
|
---|
50 | saturn_data (
|
---|
51 | double Mjd, /* mjd */
|
---|
52 | char dir[], /* dir in which to look for helper files */
|
---|
53 | Obj *eop, /* earth == Sun */
|
---|
54 | Obj *sop, /* saturn */
|
---|
55 | double *sizep, /* saturn's angular diam, rads */
|
---|
56 | double *etiltp, double *stiltp, /* earth and sun tilts -- +S */
|
---|
57 | double *polera, double *poledec,/* pole location */
|
---|
58 | MoonData md[S_NMOONS]) /* return info */
|
---|
59 | {
|
---|
60 | double JD;
|
---|
61 |
|
---|
62 | /* always copy back at least for name */
|
---|
63 | memcpy (md, smd, sizeof(smd));
|
---|
64 |
|
---|
65 | /* pole */
|
---|
66 | if (polera) *polera = POLE_RA;
|
---|
67 | if (poledec) *poledec = POLE_DEC;
|
---|
68 |
|
---|
69 | /* nothing else if repeat call or just want names */
|
---|
70 | if (Mjd == mdmjd || !sop) {
|
---|
71 | if (sop) {
|
---|
72 | *sizep = sizemjd;
|
---|
73 | *etiltp = etiltmjd;
|
---|
74 | *stiltp = stiltmjd;
|
---|
75 | }
|
---|
76 | return;
|
---|
77 | }
|
---|
78 | JD = Mjd + MJD0;
|
---|
79 |
|
---|
80 | /* planet in [0] */
|
---|
81 | md[0].ra = sop->s_ra;
|
---|
82 | md[0].dec = sop->s_dec;
|
---|
83 | md[0].mag = get_mag(sop);
|
---|
84 | md[0].x = 0;
|
---|
85 | md[0].y = 0;
|
---|
86 | md[0].z = 0;
|
---|
87 | md[0].evis = 1;
|
---|
88 | md[0].svis = 1;
|
---|
89 |
|
---|
90 | /* size is straight from sop */
|
---|
91 | *sizep = degrad(sop->s_size/3600.0);
|
---|
92 |
|
---|
93 | /* Visual Magnitude of the Satellites */
|
---|
94 |
|
---|
95 | md[1].mag = 13; md[2].mag = 11.8; md[3].mag = 10.3; md[4].mag = 10.2;
|
---|
96 | md[5].mag = 9.8; md[6].mag = 8.4; md[7].mag = 14.3; md[8].mag = 11.2;
|
---|
97 |
|
---|
98 | /* get tilts from sky and tel code */
|
---|
99 | satrings (sop->s_hlat, sop->s_hlong, sop->s_sdist, eop->s_hlong,
|
---|
100 | eop->s_edist, JD, etiltp, stiltp);
|
---|
101 |
|
---|
102 | /* get moon x,y,z from BDL if possible, else Bruton's model */
|
---|
103 | if (dir && use_bdl (JD, dir, md) < 0)
|
---|
104 | bruton_saturn (sop, JD, md);
|
---|
105 |
|
---|
106 | /* set visibilities */
|
---|
107 | moonSVis (eop, sop, md);
|
---|
108 | moonPShad (eop, sop, md);
|
---|
109 | moonEVis (md);
|
---|
110 | moonTrans (md);
|
---|
111 |
|
---|
112 | /* fill in moon ra and dec */
|
---|
113 | moonradec (*sizep, md);
|
---|
114 |
|
---|
115 | /* save */
|
---|
116 | mdmjd = Mjd;
|
---|
117 | etiltmjd = *etiltp;
|
---|
118 | stiltmjd = *stiltp;
|
---|
119 | sizemjd = *sizep;
|
---|
120 | memcpy (smd, md, sizeof(smd));
|
---|
121 | }
|
---|
122 |
|
---|
123 | /* hunt for BDL file in dir[] and use if possible.
|
---|
124 | * return 0 if ok, else -1
|
---|
125 | */
|
---|
126 | static int
|
---|
127 | use_bdl (
|
---|
128 | double JD, /* julian date */
|
---|
129 | char dir[], /* directory */
|
---|
130 | MoonData md[S_NMOONS]) /* fill md[1..NM-1].x/y/z for each moon */
|
---|
131 | {
|
---|
132 | #define SATRAU .0004014253 /* saturn radius, AU */
|
---|
133 | double x[S_NMOONS], y[S_NMOONS], z[S_NMOONS];
|
---|
134 | char buf[1024];
|
---|
135 | FILE *fp;
|
---|
136 | char *fn;
|
---|
137 | int i;
|
---|
138 |
|
---|
139 | /* check ranges and appropriate data file */
|
---|
140 | if (JD < 2451179.50000) /* Jan 1 1999 UTC */
|
---|
141 | return (-1);
|
---|
142 | if (JD < 2455562.5) /* Jan 1 2011 UTC */
|
---|
143 | fn = "saturne.9910";
|
---|
144 | else if (JD < 2459215.5) /* Jan 1 2021 UTC */
|
---|
145 | fn = "saturne.1020";
|
---|
146 | else
|
---|
147 | return (-1);
|
---|
148 |
|
---|
149 | /* open */
|
---|
150 | (void) sprintf (buf, "%s/%s", dir, fn);
|
---|
151 | fp = fopen (buf, "r");
|
---|
152 | if (!fp) {
|
---|
153 | fprintf (stderr, "%s: %s\n", fn, strerror(errno));
|
---|
154 | return (-1);
|
---|
155 | }
|
---|
156 |
|
---|
157 | /* use it */
|
---|
158 | if ((i = read_bdl (fp, JD, x, y, z, buf)) < 0) {
|
---|
159 | fprintf (stderr, "%s: %s\n", fn, buf);
|
---|
160 | fclose (fp);
|
---|
161 | return (-1);
|
---|
162 | }
|
---|
163 | if (i != S_NMOONS-1) {
|
---|
164 | fprintf (stderr, "%s: BDL says %d moons, code expects %d", fn,
|
---|
165 | i, S_NMOONS-1);
|
---|
166 | fclose (fp);
|
---|
167 | return (-1);
|
---|
168 | }
|
---|
169 |
|
---|
170 | /* copy into md[1..NM-1] with our scale and sign conventions */
|
---|
171 | for (i = 1; i < S_NMOONS; i++) {
|
---|
172 | md[i].x = x[i-1]/SATRAU; /* we want sat radii +E */
|
---|
173 | md[i].y = -y[i-1]/SATRAU; /* we want sat radii +S */
|
---|
174 | md[i].z = -z[i-1]/SATRAU; /* we want sat radii +front */
|
---|
175 | }
|
---|
176 |
|
---|
177 | /* ok */
|
---|
178 | fclose (fp);
|
---|
179 | return (0);
|
---|
180 | }
|
---|
181 |
|
---|
182 | /* */
|
---|
183 | /* SS2TXT.BAS Dan Bruton, astro@tamu.edu */
|
---|
184 | /* */
|
---|
185 | /* This is a text version of SATSAT2.BAS. It is smaller, */
|
---|
186 | /* making it easier to convert other languages (250 lines */
|
---|
187 | /* compared to 850 lines). */
|
---|
188 | /* */
|
---|
189 | /* This BASIC program computes and displays the locations */
|
---|
190 | /* of Saturn's Satellites for a given date and time. See */
|
---|
191 | /* "Practical Astronomy with your Calculator" by Peter */
|
---|
192 | /* Duffett-Smith and the Astronomical Almanac for explanations */
|
---|
193 | /* of some of the calculations here. The code is included so */
|
---|
194 | /* that users can make changes or convert to other languages. */
|
---|
195 | /* This code was made using QBASIC (comes with DOS 5.0). */
|
---|
196 | /* */
|
---|
197 | /* ECD: merged with Sky and Tel, below, for better earth and sun ring tilt */
|
---|
198 | /* */
|
---|
199 |
|
---|
200 | /* ECD: BASICeze */
|
---|
201 | #define FOR for
|
---|
202 | #define IF if
|
---|
203 | #define ELSE else
|
---|
204 | #define COS cos
|
---|
205 | #define SIN sin
|
---|
206 | #define TAN tan
|
---|
207 | #define ATN atan
|
---|
208 | #define ABS fabs
|
---|
209 | #define SQR sqrt
|
---|
210 |
|
---|
211 | /* find saturn moon data from Bruton's model */
|
---|
212 | /* this originally computed +X:East +Y:North +Z:behind in [1..8] indeces.
|
---|
213 | * and +tilt:front south, rads
|
---|
214 | * then we adjust things in md[].x/y/z/mag to fit into our MoonData format.
|
---|
215 | */
|
---|
216 | static void
|
---|
217 | bruton_saturn (
|
---|
218 | Obj *sop, /* saturn */
|
---|
219 | double JD, /* julian date */
|
---|
220 | MoonData md[S_NMOONS]) /* fill md[1..NM-1].x/y/z for each moon */
|
---|
221 | {
|
---|
222 | /* ECD: code does not use [0].
|
---|
223 | * ECD and why 11 here? seems like 9 would do
|
---|
224 | */
|
---|
225 | double SMA[11], U[11], U0[11], PD[11];
|
---|
226 | double X[S_NMOONS], Y[S_NMOONS], Z[S_NMOONS];
|
---|
227 |
|
---|
228 | double P,TP,TE,EP,EE,RE0,RP0,RS;
|
---|
229 | double JDE,LPE,LPP,LEE,LEP;
|
---|
230 | double NN,ME,MP,VE,VP;
|
---|
231 | double LE,LP,RE,RP,DT,II,F,F1;
|
---|
232 | double RA,DECL;
|
---|
233 | double TVA,PVA,TVC,PVC,DOT1,INC,TVB,PVB,DOT2,INCI;
|
---|
234 | double TRIP,GAM,TEMPX,TEMPY,TEMPZ;
|
---|
235 | int I;
|
---|
236 |
|
---|
237 | /* saturn */
|
---|
238 | RA = sop->s_ra;
|
---|
239 | DECL = sop->s_dec;
|
---|
240 |
|
---|
241 | /* ******************************************************************** */
|
---|
242 | /* * * */
|
---|
243 | /* * Constants * */
|
---|
244 | /* * * */
|
---|
245 | /* ******************************************************************** */
|
---|
246 | P = PI / 180;
|
---|
247 | /* Orbital Rate of Saturn in Radians per Days */
|
---|
248 | TP = 2 * PI / (29.45771 * 365.2422);
|
---|
249 | /* Orbital Rate of Earth in Radians per Day */
|
---|
250 | TE = 2 * PI / (1.00004 * 365.2422);
|
---|
251 | /* Eccentricity of Saturn's Orbit */
|
---|
252 | EP = .0556155;
|
---|
253 | /* Eccentricity of Earth's Orbit */
|
---|
254 | EE = .016718;
|
---|
255 | /* Semimajor axis of Earth's and Saturn's orbit in Astronomical Units */
|
---|
256 | RE0 = 1; RP0 = 9.554747;
|
---|
257 | /* Semimajor Axis of the Satellites' Orbit in Kilometers */
|
---|
258 | SMA[1] = 185600; SMA[2] = 238100; SMA[3] = 294700; SMA[4] = 377500;
|
---|
259 | SMA[5] = 527200; SMA[6] = 1221600; SMA[7] = 1483000; SMA[8] = 3560100;
|
---|
260 | /* Eccentricity of Satellites' Orbit [Program uses 0] */
|
---|
261 | /* Synodic Orbital Period of Moons in Days */
|
---|
262 | PD[1] = .9425049;
|
---|
263 | PD[2] = 1.3703731;
|
---|
264 | PD[3] = 1.8880926;
|
---|
265 | PD[4] = 2.7375218;
|
---|
266 | PD[5] = 4.5191631;
|
---|
267 | PD[6] = 15.9669028;
|
---|
268 | PD[7] = 21.3174647;
|
---|
269 | PD[8] = 79.9190206; /* personal mail 1/14/95 */
|
---|
270 | RS = 60330; /* Radius of planet in kilometers */
|
---|
271 |
|
---|
272 | /* ******************************************************************** */
|
---|
273 | /* * * */
|
---|
274 | /* * Epoch Information * */
|
---|
275 | /* * * */
|
---|
276 | /* ******************************************************************** */
|
---|
277 | JDE = 2444238.5; /* Epoch Jan 0.0 1980 = December 31,1979 0:0:0 UT */
|
---|
278 | LPE = 165.322242 * P; /* Longitude of Saturn at Epoch */
|
---|
279 | LPP = 92.6653974 * P; /* Longitude of Saturn`s Perihelion */
|
---|
280 | LEE = 98.83354 * P; /* Longitude of Earth at Epoch */
|
---|
281 | LEP = 102.596403 * P; /* Longitude of Earth's Perihelion */
|
---|
282 | /* U0[I] = Angle from inferior geocentric conjuction */
|
---|
283 | /* measured westward along the orbit at epoch */
|
---|
284 | U0[1] = 18.2919 * P;
|
---|
285 | U0[2] = 174.2135 * P;
|
---|
286 | U0[3] = 172.8546 * P;
|
---|
287 | U0[4] = 76.8438 * P;
|
---|
288 | U0[5] = 37.2555 * P;
|
---|
289 | U0[6] = 57.7005 * P;
|
---|
290 | U0[7] = 266.6977 * P;
|
---|
291 | U0[8] = 195.3513 * P; /* from personal mail 1/14/1995 */
|
---|
292 |
|
---|
293 | /* ******************************************************************** */
|
---|
294 | /* * * */
|
---|
295 | /* * Orbit Calculations * */
|
---|
296 | /* * * */
|
---|
297 | /* ******************************************************************** */
|
---|
298 | /* ****************** FIND MOON ORBITAL ANGLES ************************ */
|
---|
299 | NN = JD - JDE; /* NN = Number of days since epoch */
|
---|
300 | ME = ((TE * NN) + LEE - LEP); /* Mean Anomoly of Earth */
|
---|
301 | MP = ((TP * NN) + LPE - LPP); /* Mean Anomoly of Saturn */
|
---|
302 | VE = ME; VP = MP; /* True Anomolies - Solve Kepler's Equation */
|
---|
303 | FOR (I = 1; I <= 3; I++) {
|
---|
304 | VE = VE - (VE - (EE * SIN(VE)) - ME) / (1 - (EE * COS(VE)));
|
---|
305 | VP = VP - (VP - (EP * SIN(VP)) - MP) / (1 - (EP * COS(VP)));
|
---|
306 | }
|
---|
307 | VE = 2 * ATN(SQR((1 + EE) / (1 - EE)) * TAN(VE / 2));
|
---|
308 | IF (VE < 0) VE = (2 * PI) + VE;
|
---|
309 | VP = 2 * ATN(SQR((1 + EP) / (1 - EP)) * TAN(VP / 2));
|
---|
310 | IF (VP < 0) VP = (2 * PI) + VP;
|
---|
311 | /* Heliocentric Longitudes of Earth and Saturn */
|
---|
312 | LE = VE + LEP; IF (LE > (2 * PI)) LE = LE - (2 * PI);
|
---|
313 | LP = VP + LPP; IF (LP > (2 * PI)) LP = LP - (2 * PI);
|
---|
314 | /* Distances of Earth and Saturn from the Sun in AU's */
|
---|
315 | RE = RE0 * (1 - EE * EE) / (1 + EE * COS(VE));
|
---|
316 | RP = RP0 * (1 - EP * EP) / (1 + EP * COS(VP));
|
---|
317 | /* DT = Distance from Saturn to Earth in AU's - Law of Cosines */
|
---|
318 | DT = SQR((RE * RE) + (RP * RP) - (2 * RE * RP * COS(LE - LP)));
|
---|
319 | /* II = Angle between Earth and Sun as seen from Saturn */
|
---|
320 | II = RE * SIN(LE - LP) / DT;
|
---|
321 | II = ATN(II / SQR(1 - II * II)); /* ArcSIN and Law of Sines */
|
---|
322 | /* F = NN - (Light Time to Earth in days) */
|
---|
323 | F = NN - (DT / 173.83);
|
---|
324 | F1 = II + MP - VP;
|
---|
325 | /* U(I) = Angle from inferior geocentric conjuction measured westward */
|
---|
326 | FOR (I = 1; I < S_NMOONS; I++) {
|
---|
327 | U[I] = U0[I] + (F * 2 * PI / PD[I]) + F1;
|
---|
328 | U[I] = ((U[I] / (2 * PI)) - (int)(U[I] / (2 * PI))) * 2 * PI;
|
---|
329 |
|
---|
330 | }
|
---|
331 |
|
---|
332 | /* **************** FIND INCLINATION OF RINGS ************************* */
|
---|
333 | /* Use dot product of Earth-Saturn vector and Saturn's rotation axis */
|
---|
334 | TVA = (90 - 83.51) * P; /* Theta coordinate of Saturn's axis */
|
---|
335 | PVA = 40.27 * P; /* Phi coordinate of Saturn's axis */
|
---|
336 | TVC = (PI / 2) - DECL;
|
---|
337 | PVC = RA;
|
---|
338 | DOT1 = SIN(TVA) * COS(PVA) * SIN(TVC) * COS(PVC);
|
---|
339 | DOT1 = DOT1 + SIN(TVA) * SIN(PVA) * SIN(TVC) * SIN(PVC);
|
---|
340 | DOT1 = DOT1 + COS(TVA) * COS(TVC);
|
---|
341 | INC = ATN(SQR(1 - DOT1 * DOT1) / DOT1); /* ArcCOS */
|
---|
342 | IF (INC > 0) INC = (PI / 2) - INC; ELSE INC = -(PI / 2) - INC;
|
---|
343 |
|
---|
344 | /* ************* FIND INCLINATION OF IAPETUS' ORBIT ******************* */
|
---|
345 | /* Use dot product of Earth-Saturn vector and Iapetus' orbit axis */
|
---|
346 | /* Vector B */
|
---|
347 | TVB = (90 - 75.6) * P; /* Theta coordinate of Iapetus' orbit axis (estimate) */
|
---|
348 | PVB = 21.34 * 2 * PI / 24; /* Phi coordinate of Iapetus' orbit axis (estimate) */
|
---|
349 | DOT2 = SIN(TVB) * COS(PVB) * SIN(TVC) * COS(PVC);
|
---|
350 | DOT2 = DOT2 + SIN(TVB) * SIN(PVB) * SIN(TVC) * SIN(PVC);
|
---|
351 | DOT2 = DOT2 + COS(TVB) * COS(TVC);
|
---|
352 | INCI = ATN(SQR(1 - DOT2 * DOT2) / DOT2); /* ArcCOS */
|
---|
353 | IF (INCI > 0) INCI = (PI / 2) - INCI; ELSE INCI = -(PI / 2) - INCI;
|
---|
354 |
|
---|
355 | /* ************* FIND ROTATION ANGLE OF IAPETUS' ORBIT **************** */
|
---|
356 | /* Use inclination of Iapetus' orbit with respect to ring plane */
|
---|
357 | /* Triple Product */
|
---|
358 | TRIP = SIN(TVC) * COS(PVC) * SIN(TVA) * SIN(PVA) * COS(TVB);
|
---|
359 | TRIP = TRIP - SIN(TVC) * COS(PVC) * SIN(TVB) * SIN(PVB) * COS(TVA);
|
---|
360 | TRIP = TRIP + SIN(TVC) * SIN(PVC) * SIN(TVB) * COS(PVB) * COS(TVA);
|
---|
361 | TRIP = TRIP - SIN(TVC) * SIN(PVC) * SIN(TVA) * COS(PVA) * COS(TVB);
|
---|
362 | TRIP = TRIP + COS(TVC) * SIN(TVA) * COS(PVA) * SIN(TVB) * SIN(PVB);
|
---|
363 | TRIP = TRIP - COS(TVC) * SIN(TVB) * COS(PVB) * SIN(TVA) * SIN(PVA);
|
---|
364 | GAM = -1 * ATN(TRIP / SQR(1 - TRIP * TRIP)); /* ArcSIN */
|
---|
365 |
|
---|
366 | /* ******************************************************************** */
|
---|
367 | /* * * */
|
---|
368 | /* * Compute Moon Positions * */
|
---|
369 | /* * * */
|
---|
370 | /* ******************************************************************** */
|
---|
371 | FOR (I = 1; I < S_NMOONS - 1; I++) {
|
---|
372 | X[I] = -1 * SMA[I] * SIN(U[I]) / RS;
|
---|
373 | Z[I] = -1 * SMA[I] * COS(U[I]) / RS; /* ECD */
|
---|
374 | Y[I] = SMA[I] * COS(U[I]) * SIN(INC) / RS;
|
---|
375 | }
|
---|
376 | /* ************************* Iapetus' Orbit *************************** */
|
---|
377 | TEMPX = -1 * SMA[8] * SIN(U[8]) / RS;
|
---|
378 | TEMPZ = -1 * SMA[8] * COS(U[8]) / RS;
|
---|
379 | TEMPY = SMA[8] * COS(U[8]) * SIN(INCI) / RS;
|
---|
380 | X[8] = TEMPX * COS(GAM) + TEMPY * SIN(GAM); /* Rotation */
|
---|
381 | Z[8] = TEMPZ * COS(GAM) + TEMPY * SIN(GAM);
|
---|
382 | Y[8] = -1 * TEMPX * SIN(GAM) + TEMPY * COS(GAM);
|
---|
383 |
|
---|
384 | #ifdef SHOWALL
|
---|
385 | /* ******************************************************************** */
|
---|
386 | /* * * */
|
---|
387 | /* * Show Results * */
|
---|
388 | /* * * */
|
---|
389 | /* ******************************************************************** */
|
---|
390 | printf (" Julian Date : %g\n", JD);
|
---|
391 | printf (" Right Ascension of Saturn : %g Hours\n", RA * 24 / (2 * PI));
|
---|
392 | printf (" Declination of Saturn : %g\n", DECL / P);
|
---|
393 | printf (" Ring Inclination as seen from Earth : %g\n", -1 * INC / P);
|
---|
394 | printf (" Heliocentric Longitude of Saturn : %g\n", LP / P);
|
---|
395 | printf (" Heliocentric Longitude of Earth : %g\n", LE / P);
|
---|
396 | printf (" Sun-Saturn-Earth Angle : %g\n", II / P);
|
---|
397 | printf (" Distance between Saturn and Earth : %g AU = %g million miles\n", DT, (DT * 93));
|
---|
398 | printf (" Light time from Saturn to Earth : %g minutes\n", DT * 8.28);
|
---|
399 | TEMP = 2 * ATN(TAN(165.6 * P / (2 * 3600)) / DT) * 3600 / P;
|
---|
400 | printf (" Angular Size of Saturn : %g arcsec\n", TEMP);
|
---|
401 | printf (" Major Angular Size of Saturn's Rings : %g arcsec\n", RS4 * TEMP / RS);
|
---|
402 | printf (" Minor Angular Size of Saturn's Rings : %g arcsec\n", ABS(RS4 * TEMP * SIN(INC) / RS));
|
---|
403 | #endif
|
---|
404 |
|
---|
405 | /* copy into md[1..S_NMOONS-1] with our sign conventions */
|
---|
406 | for (I = 1; I < S_NMOONS; I++) {
|
---|
407 | md[I].x = X[I]; /* we want +E */
|
---|
408 | md[I].y = -Y[I]; /* we want +S */
|
---|
409 | md[I].z = -Z[I]; /* we want +front */
|
---|
410 | }
|
---|
411 | }
|
---|
412 |
|
---|
413 | /* given saturn loc in md[0].ra/dec and size, and location of each moon in
|
---|
414 | * md[1..NM-1].x/y in sat radii, find ra/dec of each moon in md[1..NM-1].ra/dec.
|
---|
415 | */
|
---|
416 | static void
|
---|
417 | moonradec (
|
---|
418 | double satsize, /* sat diameter, rads */
|
---|
419 | MoonData md[S_NMOONS]) /* fill in RA and Dec */
|
---|
420 | {
|
---|
421 | double satrad = satsize/2;
|
---|
422 | double satra = md[0].ra;
|
---|
423 | double satdec = md[0].dec;
|
---|
424 | int i;
|
---|
425 |
|
---|
426 | for (i = 1; i < S_NMOONS; i++) {
|
---|
427 | double dra = satrad * md[i].x;
|
---|
428 | double ddec = satrad * md[i].y;
|
---|
429 | md[i].ra = satra + dra;
|
---|
430 | md[i].dec = satdec - ddec;
|
---|
431 | }
|
---|
432 | }
|
---|
433 |
|
---|
434 | /* set svis according to whether moon is in sun light */
|
---|
435 | static void
|
---|
436 | moonSVis(
|
---|
437 | Obj *eop, /* earth == SUN */
|
---|
438 | Obj *sop, /* saturn */
|
---|
439 | MoonData md[S_NMOONS])
|
---|
440 | {
|
---|
441 | double esd = eop->s_edist;
|
---|
442 | double eod = sop->s_edist;
|
---|
443 | double sod = sop->s_sdist;
|
---|
444 | double soa = degrad(sop->s_elong);
|
---|
445 | double esa = asin(esd*sin(soa)/sod);
|
---|
446 | double h = sod*sop->s_hlat;
|
---|
447 | double nod = h*(1./eod - 1./sod);
|
---|
448 | double sca = cos(esa), ssa = sin(esa);
|
---|
449 | int i;
|
---|
450 |
|
---|
451 | for (i = 1; i < S_NMOONS; i++) {
|
---|
452 | MoonData *mdp = &md[i];
|
---|
453 | double xp = sca*mdp->x + ssa*mdp->z;
|
---|
454 | double yp = mdp->y;
|
---|
455 | double zp = -ssa*mdp->x + sca*mdp->z;
|
---|
456 | double ca = cos(nod), sa = sin(nod);
|
---|
457 | double xpp = xp;
|
---|
458 | double ypp = ca*yp - sa*zp;
|
---|
459 | double zpp = sa*yp + ca*zp;
|
---|
460 | int outside = xpp*xpp + ypp*ypp > 1.0;
|
---|
461 | int infront = zpp > 0.0;
|
---|
462 | mdp->svis = outside || infront;
|
---|
463 | }
|
---|
464 | }
|
---|
465 |
|
---|
466 | /* set evis according to whether moon is geometrically visible from earth */
|
---|
467 | static void
|
---|
468 | moonEVis (MoonData md[S_NMOONS])
|
---|
469 | {
|
---|
470 | int i;
|
---|
471 |
|
---|
472 | for (i = 1; i < S_NMOONS; i++) {
|
---|
473 | MoonData *mdp = &md[i];
|
---|
474 | int outside = mdp->x*mdp->x + mdp->y*mdp->y > 1.0;
|
---|
475 | int infront = mdp->z > 0.0;
|
---|
476 | mdp->evis = outside || infront;
|
---|
477 | }
|
---|
478 | }
|
---|
479 |
|
---|
480 | /* set pshad and sx,sy shadow info */
|
---|
481 | static void
|
---|
482 | moonPShad(
|
---|
483 | Obj *eop, /* earth == SUN */
|
---|
484 | Obj *sop, /* saturn */
|
---|
485 | MoonData md[S_NMOONS])
|
---|
486 | {
|
---|
487 | int i;
|
---|
488 |
|
---|
489 | for (i = 1; i < S_NMOONS; i++) {
|
---|
490 | MoonData *mdp = &md[i];
|
---|
491 | mdp->pshad = !plshadow (sop, eop, POLE_RA, POLE_DEC, mdp->x,
|
---|
492 | mdp->y, mdp->z, &mdp->sx, &mdp->sy);
|
---|
493 | }
|
---|
494 | }
|
---|
495 |
|
---|
496 |
|
---|
497 | /* set whether moons are transiting */
|
---|
498 | static void
|
---|
499 | moonTrans (MoonData md[S_NMOONS])
|
---|
500 | {
|
---|
501 | int i;
|
---|
502 |
|
---|
503 | for (i = 1; i < S_NMOONS; i++) {
|
---|
504 | MoonData *mdp = &md[i];
|
---|
505 | mdp->trans = mdp->z > 0 && mdp->x*mdp->x + mdp->y*mdp->y < 1;
|
---|
506 | }
|
---|
507 | }
|
---|
508 |
|
---|
509 | /* For RCS Only -- Do Not Edit */
|
---|
510 | static char *rcsid[2] = {(char *)rcsid, "@(#) $RCSfile: satmoon.c,v $ $Date: 2006-11-22 13:53:31 $ $Revision: 1.4 $ $Name: not supported by cvs2svn $"};
|
---|