[1719] | 1 | /*
|
---|
| 2 | *
|
---|
| 3 | * TWOBODY.C
|
---|
| 4 | *
|
---|
| 5 | * Computation of planetary position, two-body computation
|
---|
| 6 | *
|
---|
| 7 | * Paul Schlyter, 1987-06-15
|
---|
| 8 | *
|
---|
| 9 | * Decreased EPSILON from 2E-4 to 3E-8, 1988-12-05
|
---|
| 10 | *
|
---|
| 11 | * 1990-01-01: Bug fix in almost parabolic orbits: now the routine
|
---|
| 12 | * doesn't bomb there (an if block was too large)
|
---|
| 13 | *
|
---|
| 14 | * 2000-12-06: Donated to Elwood Downey if he wants to use it in XEphem
|
---|
| 15 | */
|
---|
| 16 |
|
---|
| 17 |
|
---|
| 18 | #include <stdio.h>
|
---|
| 19 | #include <stdlib.h>
|
---|
| 20 | #include <math.h>
|
---|
| 21 |
|
---|
| 22 |
|
---|
| 23 | /* Constants used when solving Kepler's equation */
|
---|
[2551] | 24 | #undef EPSILON
|
---|
[1719] | 25 | #define EPSILON 3E-8
|
---|
[2551] | 26 | #undef INFINITY
|
---|
[1719] | 27 | #define INFINITY 1E+10
|
---|
| 28 |
|
---|
| 29 | /* Math constants */
|
---|
[2551] | 30 | #undef PI
|
---|
[1719] | 31 | #define PI 3.14159265358979323846
|
---|
| 32 | #define RADEG ( 180.0 / PI )
|
---|
| 33 | #define DEGRAD ( PI / 180.0 )
|
---|
| 34 |
|
---|
| 35 | /* Trig functions in degrees */
|
---|
| 36 | #define sind(x) sin(x*DEGRAD)
|
---|
| 37 | #define cosd(x) cos(x*DEGRAD)
|
---|
| 38 | #define atand(x) (RADEG*atan(x))
|
---|
| 39 | #define atan2d(y,x) (RADEG*atan2(y,x))
|
---|
| 40 |
|
---|
| 41 | /* Gauss' grav.-konstant */
|
---|
| 42 | #define K 1.720209895E-2
|
---|
| 43 | #define KD ( K * 180.0 / PI )
|
---|
| 44 | #define K2 ( K / 2.0 )
|
---|
| 45 |
|
---|
| 46 |
|
---|
| 47 |
|
---|
| 48 |
|
---|
| 49 | static double cubroot( double x )
|
---|
| 50 | /* Cubic root */
|
---|
| 51 | {
|
---|
| 52 | double a,b;
|
---|
| 53 |
|
---|
| 54 | if ( x == 0.0 )
|
---|
| 55 | return 0.0;
|
---|
| 56 | else
|
---|
| 57 | {
|
---|
| 58 | a = fabs(x);
|
---|
| 59 | b = exp( log(a) / 3.0 );
|
---|
| 60 | return x > 0.0 ? b : -b;
|
---|
| 61 | }
|
---|
| 62 | } /* cubroot */
|
---|
| 63 |
|
---|
| 64 |
|
---|
| 65 | static double rev180( double ang )
|
---|
| 66 | /* Normalize angle to between +180 and -180 degrees */
|
---|
| 67 | {
|
---|
| 68 | return ang - 360.0 * floor(ang*(1.0/360.0) + 0.5);
|
---|
| 69 | } /* rev180 */
|
---|
| 70 |
|
---|
| 71 |
|
---|
| 72 |
|
---|
| 73 | static double kepler( double m, double ex )
|
---|
| 74 | /*
|
---|
| 75 | * Solves Kepler's equation
|
---|
| 76 | * m = mean anomaly
|
---|
| 77 | * ex = eccentricity
|
---|
| 78 | * kepler = eccentric anomaly
|
---|
| 79 | */
|
---|
| 80 | {
|
---|
| 81 | double m1, sinm, cosm, exd, exan, dexan, lim1, adko, adk, denom;
|
---|
| 82 | int converged;
|
---|
| 83 |
|
---|
| 84 | m1 = rev180(m);
|
---|
| 85 | sinm = sind(m1);
|
---|
| 86 | cosm = cosd(m1);
|
---|
| 87 | /* 1st approximation: */
|
---|
| 88 | exan = atan2d(sinm,cosm-ex);
|
---|
| 89 | if ( ex > 0.008 )
|
---|
| 90 | { /* Iteration formula: */
|
---|
| 91 | exd = ex * RADEG;
|
---|
| 92 | lim1 = 1E-3 / ex;
|
---|
| 93 | adko = INFINITY;
|
---|
| 94 | denom = 1.0 - ex * cosd(exan);
|
---|
| 95 | do
|
---|
| 96 | {
|
---|
| 97 | dexan = (m1 + exd * sind(exan) - exan) / denom;
|
---|
| 98 | exan = exan + dexan;
|
---|
| 99 | adk = fabs(dexan);
|
---|
| 100 | converged = adk < EPSILON || adk >= adko ;
|
---|
| 101 | adko = adk;
|
---|
| 102 | if ( !converged && adk > lim1 )
|
---|
| 103 | denom = 1.0 - ex * cosd(exan);
|
---|
| 104 | } while ( !converged );
|
---|
| 105 | }
|
---|
| 106 | return exan;
|
---|
| 107 | } /* kepler */
|
---|
| 108 |
|
---|
| 109 |
|
---|
| 110 | static void vr( double *v, double *r, double m, double e, double a )
|
---|
| 111 | /*
|
---|
| 112 | * Elliptic orbits only:
|
---|
| 113 | * computes: v = true anomaly (degrees)
|
---|
| 114 | * r = radius vector (a.u.)
|
---|
| 115 | * from: m = mean anomaly (degrees)
|
---|
| 116 | * e = eccentricity
|
---|
| 117 | * a = semimajor axis (a.u.)
|
---|
| 118 | */
|
---|
| 119 | {
|
---|
| 120 | double ean, x, y;
|
---|
| 121 |
|
---|
| 122 | ean = kepler(m,e);
|
---|
| 123 | x = a*(cosd(ean)-e);
|
---|
| 124 | y = a*sqrt(1.-e*e)*sind(ean);
|
---|
| 125 | *r = sqrt(x*x+y*y);
|
---|
| 126 | *v = atan2d(y,x);
|
---|
| 127 | } /* vr */
|
---|
| 128 |
|
---|
| 129 |
|
---|
[2551] | 130 | /* return 0 if ok, else -1 */
|
---|
| 131 | int vrc( double *v, double *r, double tp, double e, double q )
|
---|
[1719] | 132 | /*
|
---|
| 133 | * Elliptic, hyperbolic and near-parabolic orbits:
|
---|
| 134 | * computes: v = true anomaly (degrees)
|
---|
| 135 | * r = radius vector (a.u.)
|
---|
| 136 | * from: tp = time from perihelion (days)
|
---|
| 137 | * e = eccentricity
|
---|
| 138 | * q = perihelion distance (a.u.)
|
---|
| 139 | */
|
---|
| 140 | {
|
---|
| 141 |
|
---|
| 142 | double lambda;
|
---|
| 143 |
|
---|
| 144 | double a, b, w, w2, w4, c, c1, c2, c3, c5, a0, a1, a2,
|
---|
| 145 | a3, m, n, g, adgg, adgg2, gs, dg;
|
---|
| 146 |
|
---|
| 147 | if ( tp == 0.0 ) /* In perihelion */
|
---|
| 148 | {
|
---|
| 149 | *v = 0.0;
|
---|
| 150 | *r = q;
|
---|
[2551] | 151 | return 0;
|
---|
[1719] | 152 | }
|
---|
| 153 |
|
---|
| 154 |
|
---|
| 155 | lambda = (1.0-e) / (1.0+e);
|
---|
| 156 |
|
---|
| 157 | if ( fabs(lambda) < 0.01 )
|
---|
| 158 | { /* Near-parabolic orbits */
|
---|
| 159 | a = K2 * sqrt((1.0+e)/(q*q*q)) * tp;
|
---|
| 160 | b = sqrt( 1.0 + 2.25*a*a );
|
---|
| 161 | w = cubroot( b + 1.5*a ) - cubroot( b - 1.5*a );
|
---|
| 162 |
|
---|
| 163 | /* Test if it's accuate enough to compute this as a near-parabolic orbit */
|
---|
| 164 | if ( fabs(w*w*lambda) > 0.2 )
|
---|
| 165 | {
|
---|
| 166 | if ( fabs(lambda) < 0.0002 )
|
---|
| 167 | {
|
---|
| 168 | /* Sorry, but we cannot compute this at all -- we must give up!
|
---|
| 169 | *
|
---|
| 170 | * This happens very rarely, in orbits having an eccentricity
|
---|
| 171 | * some 2% away from 1.0 AND if the body is very very far from
|
---|
| 172 | * perihelion. E.g. a Kreutz sun-grazing comet having
|
---|
| 173 | * eccentricity near 0.98 or 1.02, and being outside
|
---|
| 174 | * the orbit of Pluto. For any reasonable orbit this will
|
---|
| 175 | * never happen in practice.
|
---|
| 176 | *
|
---|
| 177 | * You might want to code a more graceful error exit here though.
|
---|
| 178 | *
|
---|
| 179 | */
|
---|
| 180 | printf( "\nNear-parabolic orbit: inaccurate result."
|
---|
| 181 | "\n e = %f, lambda = %f, w = %f", e, lambda, w );
|
---|
[2551] | 182 | return -1;
|
---|
[1719] | 183 | }
|
---|
| 184 | else
|
---|
| 185 | {
|
---|
| 186 | /* We cannot compute this as a near-parabolic orbit, so let's
|
---|
| 187 | compute it as an elliptic or hyperbolic orbit instead. */
|
---|
| 188 | goto ellipse_hyperbola;
|
---|
| 189 | }
|
---|
| 190 | }
|
---|
| 191 |
|
---|
| 192 | /* Go ahead computing the near-parabolic case */
|
---|
| 193 | c = 1.0 + 1.0 / (w*w);
|
---|
| 194 | c1 = 1.0 / c;
|
---|
| 195 | c2 = c1*c1;
|
---|
| 196 | c3 = c1*c2;
|
---|
| 197 | c5 = c3*c2;
|
---|
| 198 | w2 = w*w;
|
---|
| 199 | w4 = w2*w2;
|
---|
| 200 | a0 = w;
|
---|
| 201 | a1 = 2.0 * w * (0.33333333 + 0.2*w2) * c1;
|
---|
| 202 | a2 = 0.2 * w * (7.0 + 0.14285714 * (33.0*w2+7.4*w4)) * c3;
|
---|
| 203 | a3 = 0.022857143 * (108.0 + 37.177777*w2 + 5.1111111*w4) * c5;
|
---|
| 204 | w = (( lambda * a3 + a2 ) * lambda + a1 ) * lambda + a0;
|
---|
| 205 | w2 = w*w;
|
---|
| 206 | *v = 2.0 * atand(w);
|
---|
| 207 | *r = q * (1+w2) / ( 1.0 + w2*lambda );
|
---|
[2551] | 208 | return 0; /* Near-parabolic orbit */
|
---|
[1719] | 209 | }
|
---|
| 210 |
|
---|
| 211 |
|
---|
| 212 | ellipse_hyperbola:
|
---|
| 213 |
|
---|
| 214 | if ( lambda > 0.0 )
|
---|
| 215 | { /* Elliptic orbit: */
|
---|
| 216 | a = q / (1.0-e); /* Semi-major axis */
|
---|
| 217 | m = KD * tp / sqrt(a*a*a); /* Mean Anomaly */
|
---|
| 218 | vr( v, r, m, e, a ); /* Solve Kepler's equation, etc */
|
---|
| 219 | }
|
---|
| 220 | else
|
---|
| 221 | { /* Hyperbolic orbit: */
|
---|
| 222 | a = q / (e-1.0); /* Semi-major axis */
|
---|
| 223 | n = K * tp / sqrt(a*a*a); /* "Daily motion" */
|
---|
| 224 | g = n/e;
|
---|
| 225 | adgg = INFINITY;
|
---|
| 226 | do
|
---|
| 227 | {
|
---|
| 228 | adgg2 = adgg;
|
---|
| 229 | gs = sqrt(g*g+1.0);
|
---|
| 230 | dg = -( e*g - log(g+gs) - n ) / ( e - 1.0/gs );
|
---|
| 231 | g = g + dg;
|
---|
| 232 | adgg = fabs(dg/g);
|
---|
| 233 | } while ( adgg < adgg2 && adgg > 1E-5 );
|
---|
| 234 | gs = sqrt(g*g+1.0);
|
---|
| 235 | *v = 2.0 * atand( sqrt( (e+1.0)/(e-1.0) ) * g / (gs+1.0) );
|
---|
| 236 | *r = q * (1.0+e) / ( 1.0 + e*cosd(*v) );
|
---|
| 237 | }
|
---|
[2551] | 238 | return 0;
|
---|
[1719] | 239 |
|
---|
| 240 | } /* vrc */
|
---|
| 241 |
|
---|
| 242 | /* For RCS Only -- Do Not Edit */
|
---|
[3111] | 243 | static char *rcsid[2] = {(char *)rcsid, "@(#) $RCSfile: twobody.c,v $ $Date: 2006-11-22 13:53:31 $ $Revision: 1.5 $ $Name: not supported by cvs2svn $"};
|
---|