| 1 | /* | 
|---|
| 2 | * | 
|---|
| 3 | * TWOBODY.C | 
|---|
| 4 | * | 
|---|
| 5 | *  Computation of planetary position, two-body computation | 
|---|
| 6 | * | 
|---|
| 7 | *  Paul Schlyter, 1987-06-15 | 
|---|
| 8 | * | 
|---|
| 9 | *  Decreased EPSILON from 2E-4 to 3E-8,  1988-12-05 | 
|---|
| 10 | * | 
|---|
| 11 | *  1990-01-01:  Bug fix in almost parabolic orbits: now the routine | 
|---|
| 12 | *       doesn't bomb there (an if block was too large) | 
|---|
| 13 | * | 
|---|
| 14 | *  2000-12-06:  Donated to Elwood Downey if he wants to use it in XEphem | 
|---|
| 15 | */ | 
|---|
| 16 |  | 
|---|
| 17 |  | 
|---|
| 18 | #include <stdio.h> | 
|---|
| 19 | #include <stdlib.h> | 
|---|
| 20 | #include <math.h> | 
|---|
| 21 |  | 
|---|
| 22 |  | 
|---|
| 23 | /* Constants used when solving Kepler's equation */ | 
|---|
| 24 | #undef  EPSILON | 
|---|
| 25 | #define EPSILON   3E-8 | 
|---|
| 26 | #undef  INFINITY | 
|---|
| 27 | #define INFINITY  1E+10 | 
|---|
| 28 |  | 
|---|
| 29 | /* Math constants */ | 
|---|
| 30 | #undef  PI | 
|---|
| 31 | #define PI      3.14159265358979323846 | 
|---|
| 32 | #define RADEG   ( 180.0 / PI ) | 
|---|
| 33 | #define DEGRAD  ( PI / 180.0 ) | 
|---|
| 34 |  | 
|---|
| 35 | /* Trig functions in degrees */ | 
|---|
| 36 | #define sind(x)      sin(x*DEGRAD) | 
|---|
| 37 | #define cosd(x)      cos(x*DEGRAD) | 
|---|
| 38 | #define atand(x)     (RADEG*atan(x)) | 
|---|
| 39 | #define atan2d(y,x)  (RADEG*atan2(y,x)) | 
|---|
| 40 |  | 
|---|
| 41 | /* Gauss' grav.-konstant */ | 
|---|
| 42 | #define K    1.720209895E-2 | 
|---|
| 43 | #define KD   ( K * 180.0 / PI ) | 
|---|
| 44 | #define K2   ( K / 2.0 ) | 
|---|
| 45 |  | 
|---|
| 46 |  | 
|---|
| 47 |  | 
|---|
| 48 |  | 
|---|
| 49 | static double cubroot( double x ) | 
|---|
| 50 | /* Cubic root */ | 
|---|
| 51 | { | 
|---|
| 52 | double a,b; | 
|---|
| 53 |  | 
|---|
| 54 | if ( x == 0.0 ) | 
|---|
| 55 | return  0.0; | 
|---|
| 56 | else | 
|---|
| 57 | { | 
|---|
| 58 | a = fabs(x); | 
|---|
| 59 | b = exp( log(a) / 3.0 ); | 
|---|
| 60 | return  x > 0.0 ? b : -b; | 
|---|
| 61 | } | 
|---|
| 62 | }  /* cubroot */ | 
|---|
| 63 |  | 
|---|
| 64 |  | 
|---|
| 65 | static double rev180( double ang ) | 
|---|
| 66 | /* Normalize angle to between +180 and -180 degrees */ | 
|---|
| 67 | { | 
|---|
| 68 | return  ang  -  360.0 * floor(ang*(1.0/360.0) + 0.5); | 
|---|
| 69 | }  /* rev180 */ | 
|---|
| 70 |  | 
|---|
| 71 |  | 
|---|
| 72 |  | 
|---|
| 73 | static double kepler( double m, double ex ) | 
|---|
| 74 | /* | 
|---|
| 75 | * Solves Kepler's equation | 
|---|
| 76 | *  m      = mean anomaly | 
|---|
| 77 | *  ex     = eccentricity | 
|---|
| 78 | *  kepler = eccentric anomaly | 
|---|
| 79 | */ | 
|---|
| 80 | { | 
|---|
| 81 | double m1, sinm, cosm, exd, exan, dexan, lim1, adko, adk, denom; | 
|---|
| 82 | int converged; | 
|---|
| 83 |  | 
|---|
| 84 | m1 = rev180(m); | 
|---|
| 85 | sinm = sind(m1); | 
|---|
| 86 | cosm = cosd(m1); | 
|---|
| 87 | /* 1st approximation: */ | 
|---|
| 88 | exan = atan2d(sinm,cosm-ex); | 
|---|
| 89 | if ( ex > 0.008 ) | 
|---|
| 90 | { /* Iteration formula: */ | 
|---|
| 91 | exd = ex * RADEG; | 
|---|
| 92 | lim1 = 1E-3 / ex; | 
|---|
| 93 | adko = INFINITY; | 
|---|
| 94 | denom = 1.0 - ex * cosd(exan); | 
|---|
| 95 | do | 
|---|
| 96 | { | 
|---|
| 97 | dexan = (m1 + exd * sind(exan) - exan) / denom; | 
|---|
| 98 | exan = exan + dexan; | 
|---|
| 99 | adk = fabs(dexan); | 
|---|
| 100 | converged = adk < EPSILON  ||  adk >= adko ; | 
|---|
| 101 | adko = adk; | 
|---|
| 102 | if ( !converged  &&  adk > lim1 ) | 
|---|
| 103 | denom = 1.0 - ex * cosd(exan); | 
|---|
| 104 | } while ( !converged ); | 
|---|
| 105 | } | 
|---|
| 106 | return  exan; | 
|---|
| 107 | }  /* kepler */ | 
|---|
| 108 |  | 
|---|
| 109 |  | 
|---|
| 110 | static void vr( double *v, double *r, double m, double e, double a ) | 
|---|
| 111 | /* | 
|---|
| 112 | * Elliptic orbits only: | 
|---|
| 113 | * computes: v = true anomaly   (degrees) | 
|---|
| 114 | *           r = radius vector  (a.u.) | 
|---|
| 115 | *   from:   m = mean anomaly   (degrees) | 
|---|
| 116 | *           e = eccentricity | 
|---|
| 117 | *           a = semimajor axis (a.u.) | 
|---|
| 118 | */ | 
|---|
| 119 | { | 
|---|
| 120 | double ean, x, y; | 
|---|
| 121 |  | 
|---|
| 122 | ean = kepler(m,e); | 
|---|
| 123 | x = a*(cosd(ean)-e); | 
|---|
| 124 | y = a*sqrt(1.-e*e)*sind(ean); | 
|---|
| 125 | *r = sqrt(x*x+y*y); | 
|---|
| 126 | *v = atan2d(y,x); | 
|---|
| 127 | }  /* vr */ | 
|---|
| 128 |  | 
|---|
| 129 |  | 
|---|
| 130 | /* return 0 if ok, else -1 */ | 
|---|
| 131 | int vrc( double *v, double *r, double tp, double e, double q ) | 
|---|
| 132 | /* | 
|---|
| 133 | * Elliptic, hyperbolic and near-parabolic orbits: | 
|---|
| 134 | * computes: v  = true anomaly  (degrees) | 
|---|
| 135 | *           r  = radius vector (a.u.) | 
|---|
| 136 | *   from:   tp = time from perihelion (days) | 
|---|
| 137 | *           e  = eccentricity | 
|---|
| 138 | *           q  = perihelion distance (a.u.) | 
|---|
| 139 | */ | 
|---|
| 140 | { | 
|---|
| 141 |  | 
|---|
| 142 | double lambda; | 
|---|
| 143 |  | 
|---|
| 144 | double a, b, w, w2, w4, c, c1, c2, c3, c5, a0, a1, a2, | 
|---|
| 145 | a3, m, n, g, adgg, adgg2, gs, dg; | 
|---|
| 146 |  | 
|---|
| 147 | if ( tp == 0.0 )  /* In perihelion */ | 
|---|
| 148 | { | 
|---|
| 149 | *v = 0.0; | 
|---|
| 150 | *r = q; | 
|---|
| 151 | return 0; | 
|---|
| 152 | } | 
|---|
| 153 |  | 
|---|
| 154 |  | 
|---|
| 155 | lambda = (1.0-e) / (1.0+e); | 
|---|
| 156 |  | 
|---|
| 157 | if ( fabs(lambda) < 0.01 ) | 
|---|
| 158 | {  /* Near-parabolic orbits */ | 
|---|
| 159 | a = K2 * sqrt((1.0+e)/(q*q*q)) * tp; | 
|---|
| 160 | b = sqrt( 1.0 + 2.25*a*a ); | 
|---|
| 161 | w = cubroot( b + 1.5*a ) - cubroot( b - 1.5*a ); | 
|---|
| 162 |  | 
|---|
| 163 | /* Test if it's accuate enough to compute this as a near-parabolic orbit */ | 
|---|
| 164 | if ( fabs(w*w*lambda) > 0.2 ) | 
|---|
| 165 | { | 
|---|
| 166 | if ( fabs(lambda) < 0.0002 ) | 
|---|
| 167 | { | 
|---|
| 168 | /* Sorry, but we cannot compute this at all -- we must give up! | 
|---|
| 169 | * | 
|---|
| 170 | * This happens very rarely, in orbits having an eccentricity | 
|---|
| 171 | * some 2% away from 1.0 AND if the body is very very far from | 
|---|
| 172 | * perihelion.  E.g. a Kreutz sun-grazing comet having | 
|---|
| 173 | * eccentricity near 0.98 or 1.02, and being outside | 
|---|
| 174 | * the orbit of Pluto.  For any reasonable orbit this will | 
|---|
| 175 | * never happen in practice. | 
|---|
| 176 | * | 
|---|
| 177 | * You might want to code a more graceful error exit here though. | 
|---|
| 178 | * | 
|---|
| 179 | */ | 
|---|
| 180 | printf( "\nNear-parabolic orbit: inaccurate result." | 
|---|
| 181 | "\n  e = %f, lambda = %f, w = %f", e, lambda, w ); | 
|---|
| 182 | return -1; | 
|---|
| 183 | } | 
|---|
| 184 | else | 
|---|
| 185 | { | 
|---|
| 186 | /* We cannot compute this as a near-parabolic orbit, so let's | 
|---|
| 187 | compute it as an elliptic or hyperbolic orbit instead. */ | 
|---|
| 188 | goto ellipse_hyperbola; | 
|---|
| 189 | } | 
|---|
| 190 | } | 
|---|
| 191 |  | 
|---|
| 192 | /* Go ahead computing the near-parabolic case */ | 
|---|
| 193 | c = 1.0 + 1.0 / (w*w); | 
|---|
| 194 | c1 = 1.0 / c; | 
|---|
| 195 | c2 = c1*c1; | 
|---|
| 196 | c3 = c1*c2; | 
|---|
| 197 | c5 = c3*c2; | 
|---|
| 198 | w2 = w*w; | 
|---|
| 199 | w4 = w2*w2; | 
|---|
| 200 | a0 = w; | 
|---|
| 201 | a1 = 2.0 * w * (0.33333333 + 0.2*w2) * c1; | 
|---|
| 202 | a2 = 0.2 * w * (7.0 + 0.14285714 * (33.0*w2+7.4*w4)) * c3; | 
|---|
| 203 | a3 = 0.022857143 * (108.0 + 37.177777*w2 + 5.1111111*w4) * c5; | 
|---|
| 204 | w = (( lambda * a3 + a2 ) * lambda + a1 ) * lambda + a0; | 
|---|
| 205 | w2 = w*w; | 
|---|
| 206 | *v = 2.0 * atand(w); | 
|---|
| 207 | *r = q * (1+w2) / ( 1.0 + w2*lambda ); | 
|---|
| 208 | return 0;  /* Near-parabolic orbit */ | 
|---|
| 209 | } | 
|---|
| 210 |  | 
|---|
| 211 |  | 
|---|
| 212 | ellipse_hyperbola: | 
|---|
| 213 |  | 
|---|
| 214 | if ( lambda > 0.0 ) | 
|---|
| 215 | {   /* Elliptic orbit: */ | 
|---|
| 216 | a = q / (1.0-e);            /* Semi-major axis */ | 
|---|
| 217 | m = KD * tp / sqrt(a*a*a);  /* Mean Anomaly */ | 
|---|
| 218 | vr( v, r, m, e, a );        /* Solve Kepler's equation, etc */ | 
|---|
| 219 | } | 
|---|
| 220 | else | 
|---|
| 221 | {   /* Hyperbolic orbit: */ | 
|---|
| 222 | a = q / (e-1.0);            /* Semi-major axis */ | 
|---|
| 223 | n = K * tp / sqrt(a*a*a);   /* "Daily motion" */ | 
|---|
| 224 | g = n/e; | 
|---|
| 225 | adgg = INFINITY; | 
|---|
| 226 | do | 
|---|
| 227 | { | 
|---|
| 228 | adgg2 = adgg; | 
|---|
| 229 | gs = sqrt(g*g+1.0); | 
|---|
| 230 | dg = -( e*g - log(g+gs) - n ) / ( e - 1.0/gs ); | 
|---|
| 231 | g = g + dg; | 
|---|
| 232 | adgg = fabs(dg/g); | 
|---|
| 233 | } while ( adgg < adgg2  &&  adgg > 1E-5 ); | 
|---|
| 234 | gs = sqrt(g*g+1.0); | 
|---|
| 235 | *v = 2.0 * atand( sqrt( (e+1.0)/(e-1.0) ) * g / (gs+1.0) ); | 
|---|
| 236 | *r = q * (1.0+e) / ( 1.0 + e*cosd(*v) ); | 
|---|
| 237 | } | 
|---|
| 238 | return 0; | 
|---|
| 239 |  | 
|---|
| 240 | } /* vrc */ | 
|---|
| 241 |  | 
|---|
| 242 | /* For RCS Only -- Do Not Edit */ | 
|---|
| 243 | static char *rcsid[2] = {(char *)rcsid, "@(#) $RCSfile: twobody.c,v $ $Date: 2005-08-21 10:02:40 $ $Revision: 1.4 $ $Name: not supported by cvs2svn $"}; | 
|---|