| 1 | /*
 | 
|---|
| 2 |  *
 | 
|---|
| 3 |  * TWOBODY.C
 | 
|---|
| 4 |  *
 | 
|---|
| 5 |  *  Computation of planetary position, two-body computation
 | 
|---|
| 6 |  *
 | 
|---|
| 7 |  *  Paul Schlyter, 1987-06-15
 | 
|---|
| 8 |  *
 | 
|---|
| 9 |  *  Decreased EPSILON from 2E-4 to 3E-8,  1988-12-05
 | 
|---|
| 10 |  *
 | 
|---|
| 11 |  *  1990-01-01:  Bug fix in almost parabolic orbits: now the routine
 | 
|---|
| 12 |  *       doesn't bomb there (an if block was too large)
 | 
|---|
| 13 |  *
 | 
|---|
| 14 |  *  2000-12-06:  Donated to Elwood Downey if he wants to use it in XEphem
 | 
|---|
| 15 |  */
 | 
|---|
| 16 |  
 | 
|---|
| 17 |  
 | 
|---|
| 18 | #include <stdio.h>
 | 
|---|
| 19 | #include <stdlib.h>
 | 
|---|
| 20 | #include <math.h>
 | 
|---|
| 21 |  
 | 
|---|
| 22 |  
 | 
|---|
| 23 | /* Constants used when solving Kepler's equation */
 | 
|---|
| 24 | #undef  EPSILON
 | 
|---|
| 25 | #define EPSILON   3E-8
 | 
|---|
| 26 | #undef  INFINITY
 | 
|---|
| 27 | #define INFINITY  1E+10
 | 
|---|
| 28 |  
 | 
|---|
| 29 | /* Math constants */
 | 
|---|
| 30 | #undef  PI
 | 
|---|
| 31 | #define PI      3.14159265358979323846
 | 
|---|
| 32 | #define RADEG   ( 180.0 / PI )
 | 
|---|
| 33 | #define DEGRAD  ( PI / 180.0 )
 | 
|---|
| 34 |  
 | 
|---|
| 35 | /* Trig functions in degrees */
 | 
|---|
| 36 | #define sind(x)      sin(x*DEGRAD)
 | 
|---|
| 37 | #define cosd(x)      cos(x*DEGRAD)
 | 
|---|
| 38 | #define atand(x)     (RADEG*atan(x))
 | 
|---|
| 39 | #define atan2d(y,x)  (RADEG*atan2(y,x))
 | 
|---|
| 40 |  
 | 
|---|
| 41 | /* Gauss' grav.-konstant */
 | 
|---|
| 42 | #define K    1.720209895E-2
 | 
|---|
| 43 | #define KD   ( K * 180.0 / PI )
 | 
|---|
| 44 | #define K2   ( K / 2.0 )
 | 
|---|
| 45 |  
 | 
|---|
| 46 |  
 | 
|---|
| 47 |  
 | 
|---|
| 48 |  
 | 
|---|
| 49 | static double cubroot( double x )
 | 
|---|
| 50 | /* Cubic root */
 | 
|---|
| 51 | {
 | 
|---|
| 52 |     double a,b;
 | 
|---|
| 53 |  
 | 
|---|
| 54 |     if ( x == 0.0 )
 | 
|---|
| 55 |         return  0.0;
 | 
|---|
| 56 |     else
 | 
|---|
| 57 |     {
 | 
|---|
| 58 |         a = fabs(x);
 | 
|---|
| 59 |         b = exp( log(a) / 3.0 );
 | 
|---|
| 60 |         return  x > 0.0 ? b : -b;
 | 
|---|
| 61 |     }
 | 
|---|
| 62 | }  /* cubroot */
 | 
|---|
| 63 |  
 | 
|---|
| 64 |  
 | 
|---|
| 65 | static double rev180( double ang )
 | 
|---|
| 66 | /* Normalize angle to between +180 and -180 degrees */
 | 
|---|
| 67 | {
 | 
|---|
| 68 |     return  ang  -  360.0 * floor(ang*(1.0/360.0) + 0.5);
 | 
|---|
| 69 | }  /* rev180 */
 | 
|---|
| 70 |  
 | 
|---|
| 71 |  
 | 
|---|
| 72 |  
 | 
|---|
| 73 | static double kepler( double m, double ex )
 | 
|---|
| 74 | /*
 | 
|---|
| 75 |  * Solves Kepler's equation
 | 
|---|
| 76 |  *  m      = mean anomaly
 | 
|---|
| 77 |  *  ex     = eccentricity
 | 
|---|
| 78 |  *  kepler = eccentric anomaly
 | 
|---|
| 79 |  */
 | 
|---|
| 80 | {
 | 
|---|
| 81 |     double m1, sinm, cosm, exd, exan, dexan, lim1, adko, adk, denom;
 | 
|---|
| 82 |     int converged;
 | 
|---|
| 83 |  
 | 
|---|
| 84 |     m1 = rev180(m);
 | 
|---|
| 85 |     sinm = sind(m1);
 | 
|---|
| 86 |     cosm = cosd(m1);
 | 
|---|
| 87 |     /* 1st approximation: */
 | 
|---|
| 88 |     exan = atan2d(sinm,cosm-ex);
 | 
|---|
| 89 |     if ( ex > 0.008 )
 | 
|---|
| 90 |     { /* Iteration formula: */
 | 
|---|
| 91 |         exd = ex * RADEG;
 | 
|---|
| 92 |         lim1 = 1E-3 / ex;
 | 
|---|
| 93 |         adko = INFINITY;
 | 
|---|
| 94 |         denom = 1.0 - ex * cosd(exan);
 | 
|---|
| 95 |         do
 | 
|---|
| 96 |         {
 | 
|---|
| 97 |             dexan = (m1 + exd * sind(exan) - exan) / denom;
 | 
|---|
| 98 |             exan = exan + dexan;
 | 
|---|
| 99 |             adk = fabs(dexan);
 | 
|---|
| 100 |             converged = adk < EPSILON  ||  adk >= adko ;
 | 
|---|
| 101 |             adko = adk;
 | 
|---|
| 102 |             if ( !converged  &&  adk > lim1 )
 | 
|---|
| 103 |                 denom = 1.0 - ex * cosd(exan);
 | 
|---|
| 104 |         } while ( !converged );
 | 
|---|
| 105 |     }
 | 
|---|
| 106 |     return  exan;
 | 
|---|
| 107 | }  /* kepler */
 | 
|---|
| 108 |  
 | 
|---|
| 109 |  
 | 
|---|
| 110 | static void vr( double *v, double *r, double m, double e, double a )
 | 
|---|
| 111 | /*
 | 
|---|
| 112 |  * Elliptic orbits only:
 | 
|---|
| 113 |  * computes: v = true anomaly   (degrees)
 | 
|---|
| 114 |  *           r = radius vector  (a.u.)
 | 
|---|
| 115 |  *   from:   m = mean anomaly   (degrees)
 | 
|---|
| 116 |  *           e = eccentricity
 | 
|---|
| 117 |  *           a = semimajor axis (a.u.)
 | 
|---|
| 118 |  */
 | 
|---|
| 119 | {
 | 
|---|
| 120 |     double ean, x, y;
 | 
|---|
| 121 |  
 | 
|---|
| 122 |     ean = kepler(m,e);
 | 
|---|
| 123 |     x = a*(cosd(ean)-e);
 | 
|---|
| 124 |     y = a*sqrt(1.-e*e)*sind(ean);
 | 
|---|
| 125 |     *r = sqrt(x*x+y*y);
 | 
|---|
| 126 |     *v = atan2d(y,x);
 | 
|---|
| 127 | }  /* vr */
 | 
|---|
| 128 |  
 | 
|---|
| 129 |  
 | 
|---|
| 130 | /* return 0 if ok, else -1 */
 | 
|---|
| 131 | int vrc( double *v, double *r, double tp, double e, double q )
 | 
|---|
| 132 | /*
 | 
|---|
| 133 |  * Elliptic, hyperbolic and near-parabolic orbits:
 | 
|---|
| 134 |  * computes: v  = true anomaly  (degrees)
 | 
|---|
| 135 |  *           r  = radius vector (a.u.)
 | 
|---|
| 136 |  *   from:   tp = time from perihelion (days)
 | 
|---|
| 137 |  *           e  = eccentricity
 | 
|---|
| 138 |  *           q  = perihelion distance (a.u.)
 | 
|---|
| 139 |  */
 | 
|---|
| 140 | {
 | 
|---|
| 141 |  
 | 
|---|
| 142 |     double lambda;
 | 
|---|
| 143 |  
 | 
|---|
| 144 |     double a, b, w, w2, w4, c, c1, c2, c3, c5, a0, a1, a2,
 | 
|---|
| 145 |            a3, m, n, g, adgg, adgg2, gs, dg;
 | 
|---|
| 146 |  
 | 
|---|
| 147 |     if ( tp == 0.0 )  /* In perihelion */
 | 
|---|
| 148 |     {
 | 
|---|
| 149 |         *v = 0.0;
 | 
|---|
| 150 |         *r = q;
 | 
|---|
| 151 |         return 0;
 | 
|---|
| 152 |     }
 | 
|---|
| 153 |  
 | 
|---|
| 154 |  
 | 
|---|
| 155 |     lambda = (1.0-e) / (1.0+e);
 | 
|---|
| 156 |  
 | 
|---|
| 157 |     if ( fabs(lambda) < 0.01 )
 | 
|---|
| 158 |     {  /* Near-parabolic orbits */
 | 
|---|
| 159 |         a = K2 * sqrt((1.0+e)/(q*q*q)) * tp;
 | 
|---|
| 160 |         b = sqrt( 1.0 + 2.25*a*a );
 | 
|---|
| 161 |         w = cubroot( b + 1.5*a ) - cubroot( b - 1.5*a );
 | 
|---|
| 162 |  
 | 
|---|
| 163 |         /* Test if it's accuate enough to compute this as a near-parabolic orbit */
 | 
|---|
| 164 |         if ( fabs(w*w*lambda) > 0.2 )
 | 
|---|
| 165 |         {
 | 
|---|
| 166 |             if ( fabs(lambda) < 0.0002 )
 | 
|---|
| 167 |             {
 | 
|---|
| 168 |                 /* Sorry, but we cannot compute this at all -- we must give up!
 | 
|---|
| 169 |                  *
 | 
|---|
| 170 |                  * This happens very rarely, in orbits having an eccentricity
 | 
|---|
| 171 |                  * some 2% away from 1.0 AND if the body is very very far from
 | 
|---|
| 172 |                  * perihelion.  E.g. a Kreutz sun-grazing comet having
 | 
|---|
| 173 |                  * eccentricity near 0.98 or 1.02, and being outside
 | 
|---|
| 174 |                  * the orbit of Pluto.  For any reasonable orbit this will
 | 
|---|
| 175 |                  * never happen in practice.
 | 
|---|
| 176 |                  *
 | 
|---|
| 177 |                  * You might want to code a more graceful error exit here though.
 | 
|---|
| 178 |                  *
 | 
|---|
| 179 |                  */
 | 
|---|
| 180 |                 printf( "\nNear-parabolic orbit: inaccurate result."
 | 
|---|
| 181 |                         "\n  e = %f, lambda = %f, w = %f", e, lambda, w );
 | 
|---|
| 182 |                 return -1;
 | 
|---|
| 183 |             }
 | 
|---|
| 184 |             else
 | 
|---|
| 185 |             {
 | 
|---|
| 186 |                 /* We cannot compute this as a near-parabolic orbit, so let's
 | 
|---|
| 187 |                    compute it as an elliptic or hyperbolic orbit instead. */
 | 
|---|
| 188 |                 goto ellipse_hyperbola;
 | 
|---|
| 189 |             }
 | 
|---|
| 190 |         }
 | 
|---|
| 191 |  
 | 
|---|
| 192 |         /* Go ahead computing the near-parabolic case */
 | 
|---|
| 193 |         c = 1.0 + 1.0 / (w*w);
 | 
|---|
| 194 |         c1 = 1.0 / c;
 | 
|---|
| 195 |         c2 = c1*c1;
 | 
|---|
| 196 |         c3 = c1*c2;
 | 
|---|
| 197 |         c5 = c3*c2;
 | 
|---|
| 198 |         w2 = w*w;
 | 
|---|
| 199 |         w4 = w2*w2;
 | 
|---|
| 200 |         a0 = w;
 | 
|---|
| 201 |         a1 = 2.0 * w * (0.33333333 + 0.2*w2) * c1;
 | 
|---|
| 202 |         a2 = 0.2 * w * (7.0 + 0.14285714 * (33.0*w2+7.4*w4)) * c3;
 | 
|---|
| 203 |         a3 = 0.022857143 * (108.0 + 37.177777*w2 + 5.1111111*w4) * c5;
 | 
|---|
| 204 |         w = (( lambda * a3 + a2 ) * lambda + a1 ) * lambda + a0;
 | 
|---|
| 205 |         w2 = w*w;
 | 
|---|
| 206 |         *v = 2.0 * atand(w);
 | 
|---|
| 207 |         *r = q * (1+w2) / ( 1.0 + w2*lambda );
 | 
|---|
| 208 |         return 0;  /* Near-parabolic orbit */
 | 
|---|
| 209 |     }
 | 
|---|
| 210 |  
 | 
|---|
| 211 |  
 | 
|---|
| 212 | ellipse_hyperbola:
 | 
|---|
| 213 |  
 | 
|---|
| 214 |     if ( lambda > 0.0 )
 | 
|---|
| 215 |     {   /* Elliptic orbit: */
 | 
|---|
| 216 |         a = q / (1.0-e);            /* Semi-major axis */
 | 
|---|
| 217 |         m = KD * tp / sqrt(a*a*a);  /* Mean Anomaly */
 | 
|---|
| 218 |         vr( v, r, m, e, a );        /* Solve Kepler's equation, etc */
 | 
|---|
| 219 |     }
 | 
|---|
| 220 |     else
 | 
|---|
| 221 |     {   /* Hyperbolic orbit: */
 | 
|---|
| 222 |         a = q / (e-1.0);            /* Semi-major axis */
 | 
|---|
| 223 |         n = K * tp / sqrt(a*a*a);   /* "Daily motion" */
 | 
|---|
| 224 |         g = n/e;
 | 
|---|
| 225 |         adgg = INFINITY;
 | 
|---|
| 226 |         do  
 | 
|---|
| 227 |         {
 | 
|---|
| 228 |             adgg2 = adgg;
 | 
|---|
| 229 |             gs = sqrt(g*g+1.0);
 | 
|---|
| 230 |             dg = -( e*g - log(g+gs) - n ) / ( e - 1.0/gs );
 | 
|---|
| 231 |             g = g + dg;
 | 
|---|
| 232 |             adgg = fabs(dg/g);
 | 
|---|
| 233 |         } while ( adgg < adgg2  &&  adgg > 1E-5 );
 | 
|---|
| 234 |         gs = sqrt(g*g+1.0);
 | 
|---|
| 235 |         *v = 2.0 * atand( sqrt( (e+1.0)/(e-1.0) ) * g / (gs+1.0) );
 | 
|---|
| 236 |         *r = q * (1.0+e) / ( 1.0 + e*cosd(*v) );
 | 
|---|
| 237 |     }
 | 
|---|
| 238 |     return 0;
 | 
|---|
| 239 |  
 | 
|---|
| 240 | } /* vrc */
 | 
|---|
| 241 | 
 | 
|---|
| 242 | /* For RCS Only -- Do Not Edit */
 | 
|---|
| 243 | static char *rcsid[2] = {(char *)rcsid, "@(#) $RCSfile: twobody.c,v $ $Date: 2009-07-16 10:34:39 $ $Revision: 1.7 $ $Name: not supported by cvs2svn $"};
 | 
|---|