1 | /* VSOP87 planetary theory
|
---|
2 | *
|
---|
3 | * currently uses version VSOP87D:
|
---|
4 | * heliocentric spherical, mean ecliptic of date.
|
---|
5 | *
|
---|
6 | * calculation of rates (daily changes) is optional;
|
---|
7 | * see header file for the necessary #define's
|
---|
8 | *
|
---|
9 | * rough orientation on calculation time, miliseconds
|
---|
10 | * on an HP 715/75, all planets Mercury to Neptune, prec=0.0:
|
---|
11 | *
|
---|
12 | * terms with rates without rates
|
---|
13 | * 3598 11 7.1
|
---|
14 | * 31577 51 44
|
---|
15 | *
|
---|
16 | * with secular terms for JD 2232395.0 19/12/1399 0h TDB:
|
---|
17 | *
|
---|
18 | * FULL PRECISION code (31577 terms), milliseconds
|
---|
19 | * prec terms rates no rates
|
---|
20 | * 1e-8 15086 62 36
|
---|
21 | * 1e-7 10105 44 25
|
---|
22 | * 1e-6 3725 20 13
|
---|
23 | * 1e-5 1324 11 7.8
|
---|
24 | * 1e-4 443 7.0 6.0
|
---|
25 | * 1e-3 139 6.0 5.0
|
---|
26 | *
|
---|
27 | * REDUCED PRECISION code (3598 terms), milliseconds
|
---|
28 | * prec terms rates no rates
|
---|
29 | * 1e-7 2463 9.9 5.5
|
---|
30 | * 1e-6 1939 8.0 4.5
|
---|
31 | * 1e-5 1131 4.9 2.9
|
---|
32 | * 1e-4 443 2.2 1.5
|
---|
33 | * 1e-3 139 1.0 0.9
|
---|
34 | */
|
---|
35 |
|
---|
36 | #include <math.h>
|
---|
37 |
|
---|
38 | #include "astro.h"
|
---|
39 | #include "vsop87.h"
|
---|
40 |
|
---|
41 | #define VSOP_A1000 365250.0 /* days per millenium */
|
---|
42 | #define VSOP_MAXALPHA 5 /* max degree of time */
|
---|
43 |
|
---|
44 | /******************************************************************
|
---|
45 | * adapted from BdL FORTRAN Code; stern
|
---|
46 | *
|
---|
47 | * Reference : Bureau des Longitudes - PBGF9502
|
---|
48 | *
|
---|
49 | * Object : calculate a VSOP87 position for a given time.
|
---|
50 | *
|
---|
51 | * Input :
|
---|
52 | *
|
---|
53 | * mj modified julian date, counted from J1900.0
|
---|
54 | * time scale : dynamical time TDB.
|
---|
55 | *
|
---|
56 | * obj object number as in astro.h, NB: not for pluto
|
---|
57 | *
|
---|
58 | * prec relative precision
|
---|
59 | *
|
---|
60 | * if prec is equal to 0 then the precision is the precision
|
---|
61 | * p0 of the complete solution VSOP87.
|
---|
62 | * Mercury p0 = 0.6 10**-8
|
---|
63 | * Venus p0 = 2.5 10**-8
|
---|
64 | * Earth p0 = 2.5 10**-8
|
---|
65 | * Mars p0 = 10.0 10**-8
|
---|
66 | * Jupiter p0 = 35.0 10**-8
|
---|
67 | * Saturn p0 = 70.0 10**-8
|
---|
68 | * Uranus p0 = 8.0 10**-8
|
---|
69 | * Neptune p0 = 42.0 10**-8
|
---|
70 | *
|
---|
71 | * if prec is not equal to 0, let us say in between p0 and
|
---|
72 | * 10**-3, the precision is :
|
---|
73 | * for the positions :
|
---|
74 | * - prec*a0 au for the distances.
|
---|
75 | * - prec rad for the other variables.
|
---|
76 | * for the velocities :
|
---|
77 | * - prec*a0 au/day for the distances.
|
---|
78 | * - prec rad/day for the other variables.
|
---|
79 | * a0 is the semi-major axis of the body.
|
---|
80 | *
|
---|
81 | * Output :
|
---|
82 | *
|
---|
83 | * ret[6] array of the results (double).
|
---|
84 | *
|
---|
85 | * for spherical coordinates :
|
---|
86 | * 1: longitude (rd)
|
---|
87 | * 2: latitude (rd)
|
---|
88 | * 3: radius (au)
|
---|
89 | * #if VSOP_GETRATE:
|
---|
90 | * 4: longitude velocity (rad/day)
|
---|
91 | * 5: latitude velocity (rad/day)
|
---|
92 | * 6: radius velocity (au/day)
|
---|
93 | *
|
---|
94 | * return: error index (int)
|
---|
95 | * 0: no error.
|
---|
96 | * 2: object out of range [MERCURY .. NEPTUNE, SUN]
|
---|
97 | * 3: precision out of range [0.0 .. 1e-3]
|
---|
98 | ******************************************************************/
|
---|
99 | int
|
---|
100 | vsop87 (double mj, int obj, double prec, double *ret)
|
---|
101 | {
|
---|
102 | static double (*vx_map[])[3] = { /* data tables */
|
---|
103 | vx_mercury, vx_venus, vx_mars, vx_jupiter,
|
---|
104 | vx_saturn, vx_uranus, vx_neptune, 0, vx_earth,
|
---|
105 | };
|
---|
106 | static int (*vn_map[])[3] = { /* indexes */
|
---|
107 | vn_mercury, vn_venus, vn_mars, vn_jupiter,
|
---|
108 | vn_saturn, vn_uranus, vn_neptune, 0, vn_earth,
|
---|
109 | };
|
---|
110 | static double a0[] = { /* semimajor axes; for precision ctrl only */
|
---|
111 | 0.39, 0.72, 1.5, 5.2, 9.6, 19.2, 30.1, 39.5, 1.0,
|
---|
112 | };
|
---|
113 | double (*vx_obj)[3] = vx_map[obj]; /* VSOP87 data and indexes */
|
---|
114 | int (*vn_obj)[3] = vn_map[obj];
|
---|
115 |
|
---|
116 | double t[VSOP_MAXALPHA+1]; /* powers of time */
|
---|
117 | double t_abs[VSOP_MAXALPHA+1]; /* powers of abs(time) */
|
---|
118 | double q; /* aux for precision control */
|
---|
119 | int i, cooidx, alpha; /* misc indexes */
|
---|
120 |
|
---|
121 | if (obj == PLUTO || obj > SUN)
|
---|
122 | return (2);
|
---|
123 |
|
---|
124 | if (prec < 0.0 || prec > 1e-3)
|
---|
125 | return(3);
|
---|
126 |
|
---|
127 | /* zero result array */
|
---|
128 | for (i = 0; i < 6; ++i) ret[i] = 0.0;
|
---|
129 |
|
---|
130 | /* time and its powers */
|
---|
131 | t[0] = 1.0;
|
---|
132 | t[1] = (mj - J2000)/VSOP_A1000;
|
---|
133 | for (i = 2; i <= VSOP_MAXALPHA; ++i) t[i] = t[i-1] * t[1];
|
---|
134 | t_abs[0] = 1.0;
|
---|
135 | for (i = 1; i <= VSOP_MAXALPHA; ++i) t_abs[i] = fabs(t[i]);
|
---|
136 |
|
---|
137 | /* precision control */
|
---|
138 | q = -log10(prec + 1e-35) - 2; /* decades below 1e-2 */
|
---|
139 | q = VSOP_ASCALE * prec / 10.0 / q; /* reduce threshold progressively
|
---|
140 | * for higher precision */
|
---|
141 |
|
---|
142 | /* do the term summation; first the spatial dimensions */
|
---|
143 | for (cooidx = 0; cooidx < 3; ++cooidx) {
|
---|
144 |
|
---|
145 | /* then the powers of time */
|
---|
146 | for (alpha = 0; vn_obj[alpha+1][cooidx] ; ++alpha) {
|
---|
147 | double p, term, termdot;
|
---|
148 |
|
---|
149 | /* precision threshold */
|
---|
150 | p= alpha ? q/(t_abs[alpha] + alpha*t_abs[alpha-1]*1e-4 + 1e-35) : q;
|
---|
151 | #if VSOP_SPHERICAL
|
---|
152 | if (cooidx == 2) /* scale by semimajor axis for radius */
|
---|
153 | #endif
|
---|
154 | p *= a0[obj];
|
---|
155 |
|
---|
156 | term = termdot = 0.0;
|
---|
157 | for (i = vn_obj[alpha][cooidx]; i < vn_obj[alpha+1][cooidx]; ++i) {
|
---|
158 | double a, b, c, arg;
|
---|
159 |
|
---|
160 | a = vx_obj[i][0];
|
---|
161 | if (a < p) continue; /* ignore small terms */
|
---|
162 |
|
---|
163 | b = vx_obj[i][1];
|
---|
164 | c = vx_obj[i][2];
|
---|
165 |
|
---|
166 | arg = b + c * t[1];
|
---|
167 | term += a * cos(arg);
|
---|
168 | #if VSOP_GETRATE
|
---|
169 | termdot += -c * a * sin(arg);
|
---|
170 | #endif
|
---|
171 | }
|
---|
172 |
|
---|
173 | ret[cooidx] += t[alpha] * term;
|
---|
174 | #if VSOP_GETRATE
|
---|
175 | ret[cooidx + 3] += t[alpha] * termdot +
|
---|
176 | ((alpha > 0) ? alpha * t[alpha - 1] * term : 0.0);
|
---|
177 | #endif
|
---|
178 | } /* alpha */
|
---|
179 | } /* cooidx */
|
---|
180 |
|
---|
181 | for (i = 0; i < 6; ++i) ret[i] /= VSOP_ASCALE;
|
---|
182 |
|
---|
183 | #if VSOP_SPHERICAL
|
---|
184 | /* reduce longitude to 0..2pi */
|
---|
185 | ret[0] -= floor(ret[0]/(2.*PI)) * (2.*PI);
|
---|
186 | #endif
|
---|
187 |
|
---|
188 | #if VSOP_GETRATE
|
---|
189 | /* convert millenium rate to day rate */
|
---|
190 | for (i = 3; i < 6; ++i) ret[i] /= VSOP_A1000;
|
---|
191 | #endif
|
---|
192 |
|
---|
193 | #if VSOP_SPHERICAL
|
---|
194 | /* reduction from dynamical equinox of VSOP87 to FK5;
|
---|
195 | */
|
---|
196 | if (prec < 5e-7) { /* 5e-7 rad = 0.1 arc seconds */
|
---|
197 | double L1, c1, s1;
|
---|
198 | L1 = ret[0] - degrad(13.97 * t[1] - 0.031 * t[2]);
|
---|
199 | c1 = cos(L1); s1 = sin(L1);
|
---|
200 | ret[0] += degrad(-0.09033 + 0.03916 * (c1 + s1) * tan(ret[1]))/3600.0;
|
---|
201 | ret[1] += degrad(0.03916 * (c1 - s1))/3600.0;
|
---|
202 | }
|
---|
203 | #endif
|
---|
204 |
|
---|
205 | return (0);
|
---|
206 | }
|
---|
207 |
|
---|
208 | /* For RCS Only -- Do Not Edit */
|
---|
209 | static char *rcsid[2] = {(char *)rcsid, "@(#) $RCSfile: vsop87.c,v $ $Date: 2009-07-16 10:34:39 $ $Revision: 1.9 $ $Name: not supported by cvs2svn $"};
|
---|