1 | // This may look like C code, but it is really -*- C++ -*-
|
---|
2 | //-----------------------------------------------------------
|
---|
3 | // Class PrimesNumbers (prime numbers)
|
---|
4 | // Class QNumber (Rational numbers)
|
---|
5 | // SOPHYA class library - (C) UPS+LAL IN2P3/CNRS , CEA-Irfu
|
---|
6 | // R. Ansari UPS+LAL IN2P3/CNRS 2012
|
---|
7 | //-----------------------------------------------------------
|
---|
8 |
|
---|
9 | #ifndef PQNUMBER_H_SEEN
|
---|
10 | #define PQNUMBER_H_SEEN
|
---|
11 |
|
---|
12 |
|
---|
13 | #include "machdefs.h"
|
---|
14 | #include <string>
|
---|
15 | #include <vector>
|
---|
16 | #include <iostream>
|
---|
17 |
|
---|
18 | #include "pexceptions.h"
|
---|
19 | #include "ppersist.h"
|
---|
20 |
|
---|
21 |
|
---|
22 | namespace SOPHYA {
|
---|
23 |
|
---|
24 | //--------------------------------------------------------------------------------
|
---|
25 | //------------------------------ PrimeNumbers class ------------------------------
|
---|
26 | //--------------------------------------------------------------------------------
|
---|
27 |
|
---|
28 | //! Class providing list of prime number
|
---|
29 | class PrimeNumbers {
|
---|
30 | public:
|
---|
31 | //! Default constructor
|
---|
32 | PrimeNumbers();
|
---|
33 | //! Copy constructor
|
---|
34 | PrimeNumbers(PrimeNumbers const& p);
|
---|
35 |
|
---|
36 | //! return the next prime number
|
---|
37 | inline uint_8 Next()
|
---|
38 | { uint_8 rp=Get(my_prime_idx_); my_prime_idx_++; return rp; }
|
---|
39 | //! rewind / reset prime number index for the Next() method
|
---|
40 | inline void Rewind() { my_prime_idx_=0; }
|
---|
41 | //! Reset prime number index for the Next() method
|
---|
42 | inline void ResetIndex() { my_prime_idx_=0; }
|
---|
43 |
|
---|
44 | //! return the \b k th prime number
|
---|
45 | uint_8 Get(size_t k) const;
|
---|
46 | //! return the \b k th prime number (operator [] overload)
|
---|
47 | inline uint_8 operator[](size_t k) const { return Get(k); }
|
---|
48 | //! return the \b k th prime number (operator () overload)
|
---|
49 | inline uint_8 operator()(size_t k) const { return Get(k); }
|
---|
50 | //! return true if the argument \b n is a prime number
|
---|
51 | static bool CheckIfPrim(uint_8 n);
|
---|
52 | //! return the prime number factorization of \b n
|
---|
53 | static std::vector<uint_8> PrimeFactors(uint_8 n, bool fgprt=false);
|
---|
54 |
|
---|
55 | //! Computes an interval for the n-th (n>=6) prime number
|
---|
56 | static void encadre6(size_t nieme,double &nlow,double &nhigh);
|
---|
57 | //! Computes an interval for the n-th (n>=40000) prime number
|
---|
58 | static void encadre40k(size_t nieme,double &nlow,double &nhigh);
|
---|
59 | //! Return an approximate value for the n-th prime number
|
---|
60 | static double approx(unsigned int nieme);
|
---|
61 |
|
---|
62 | private:
|
---|
63 | //! Global initialization (Mutex object and prime number array creation)
|
---|
64 | static void Init();
|
---|
65 | //! Extends the prime number array by finding the next \b nxt prime numbers
|
---|
66 | static void Extend(size_t nxt);
|
---|
67 | //! Extends the prime number array by finding all prime numbers p such as p<=n
|
---|
68 | static void Extend2(uint_8 n);
|
---|
69 |
|
---|
70 | //! Static private member used by Extend() to check if a number is prime
|
---|
71 | static bool CheckIfPrim_P(uint_8 n);
|
---|
72 | //! Static private member to find all prime numbers less than P. return the list of flags.
|
---|
73 | static unsigned char* eratosthene(uint_8 P, size_t& npremiers);
|
---|
74 |
|
---|
75 | size_t my_prime_idx_; // prime number index for Next() method
|
---|
76 | static std::vector<uint_8> * prime_list_p_; // global prime number array
|
---|
77 | };
|
---|
78 |
|
---|
79 | //--------------------------------------------------------------------------------
|
---|
80 | //---------------------- QNumber class : rational numbers ------------------------
|
---|
81 | //--------------------------------------------------------------------------------
|
---|
82 |
|
---|
83 | //! Class representing rational numbers : q = m/n with m,n integers)
|
---|
84 | class QNumber { // : public AnyDataObj {
|
---|
85 | public:
|
---|
86 | //! Default constructor, with 0 value (= 0 / 1)
|
---|
87 | explicit QNumber()
|
---|
88 | { num_=0; den_=1; }
|
---|
89 | //! Constructor from two integers, numerator and denominator
|
---|
90 | QNumber(int_8 m, int_8 n=1)
|
---|
91 | {
|
---|
92 | if (n==0) throw MathExc("QNumber(m,n) n=0->null denominator");
|
---|
93 | num_=m; den_=n;
|
---|
94 | if (den_<0) { num_=-num_; den_=-den_; }
|
---|
95 | }
|
---|
96 | //! Copy constructor
|
---|
97 | QNumber(QNumber const& q)
|
---|
98 | { num_=q.num_; den_=q.den_; }
|
---|
99 |
|
---|
100 | //! copy (equal) operator
|
---|
101 | inline QNumber& operator = (QNumber const & q)
|
---|
102 | { num_=q.num_; den_=q.den_; return(*this); }
|
---|
103 |
|
---|
104 | //! Return the simplified rational number (division by all common divisors of numerator and denominator)
|
---|
105 | QNumber Simplify() const;
|
---|
106 |
|
---|
107 | //! Convert to decimal (double precision) number
|
---|
108 | inline operator double() const { return (double)num_/(double)den_; }
|
---|
109 | //! Return the numerator
|
---|
110 | inline int_8 Numerator() const { return num_; }
|
---|
111 | //! Return the denominator
|
---|
112 | inline int_8 Denominator() const { return den_; }
|
---|
113 |
|
---|
114 | //! Return the opposite (-q) of the rational number
|
---|
115 | inline QNumber Opposite() const
|
---|
116 | { return QNumber(-num_, den_); }
|
---|
117 | //! Return the inverse (1/q) of the rational number
|
---|
118 | inline QNumber Inverse() const
|
---|
119 | { return QNumber(den_, num_); }
|
---|
120 |
|
---|
121 | //! Return true if the rational number is equal to zero , false otherwise
|
---|
122 | inline bool isZero() const
|
---|
123 | { return ( (num_==0)?true:false ); }
|
---|
124 | //! Return true if the rational number represents an integer , false otherwise
|
---|
125 | inline bool isInteger() const
|
---|
126 | { return ((Simplify().Denominator()==1)?true:false); }
|
---|
127 |
|
---|
128 | //! Return the rational number in string format (num/den)
|
---|
129 | std::string ToString();
|
---|
130 | //! Prints the rational number on \b cout (return the cout stream object)
|
---|
131 | inline ostream& Print() const
|
---|
132 | { return Print(cout); }
|
---|
133 | //! Prints the rational number on stream \b os (return the os stream object)
|
---|
134 | inline ostream& Print(ostream& os) const
|
---|
135 | {
|
---|
136 | if (den_==1) os << num_;
|
---|
137 | else os << "(" << num_ << '/' << den_ <<")";
|
---|
138 | return os;
|
---|
139 | }
|
---|
140 |
|
---|
141 | //! Add two QNumbers (simplify the result if fgsimp true)
|
---|
142 | static QNumber Add(QNumber const & a, QNumber const & b, bool fgsimp=true);
|
---|
143 | //! Subtract two QNumbers (simplify the result if fgsimp true)
|
---|
144 | static QNumber Subtract(QNumber const & a, QNumber const & b, bool fgsimp=true);
|
---|
145 | //! Multiply two QNumbers (simplify the result if fgsimp true)
|
---|
146 | static QNumber Multiply(QNumber const & a, QNumber const & b, bool fgsimp=true);
|
---|
147 | //! Divide two QNumbers (simplify the result if fgsimp true)
|
---|
148 | static QNumber Divide(QNumber const & a, QNumber const & b, bool fgsimp=true);
|
---|
149 | //! Compare two QNumbers: return -1 (a<b), 0 (a==b), 1 (a>b)
|
---|
150 | static int Compare(QNumber const & a, QNumber const & b);
|
---|
151 |
|
---|
152 | protected:
|
---|
153 | int_8 num_,den_; // numerateur et denominateur
|
---|
154 | };
|
---|
155 |
|
---|
156 |
|
---|
157 | /*! operator << overloading - prints the QNumber q on \b os*/
|
---|
158 | inline ostream& operator << (ostream& s, QNumber q)
|
---|
159 | { q.Print(s); return(s); }
|
---|
160 |
|
---|
161 | /*! Sum operator definition for QNumbers : r = a + b */
|
---|
162 | inline QNumber operator + (QNumber a, QNumber b)
|
---|
163 | { return QNumber::Add(a,b); }
|
---|
164 |
|
---|
165 | /*! Difference (subtraction) operator definition for QNumbers : r = a - b */
|
---|
166 | inline QNumber operator - (QNumber a, QNumber b)
|
---|
167 | { return QNumber::Subtract(a,b); }
|
---|
168 |
|
---|
169 | /*! Product (multiplication) operator definition for QNumbers : r = a * b */
|
---|
170 | inline QNumber operator * (QNumber a, QNumber b)
|
---|
171 | { return QNumber::Multiply(a,b); }
|
---|
172 |
|
---|
173 | /*! Divide operator definition for QNumbers : r = a / b */
|
---|
174 | inline QNumber operator / (QNumber a, QNumber b)
|
---|
175 | { return QNumber::Divide(a,b); }
|
---|
176 |
|
---|
177 | /*! Equality comparison operator == for QNumbers : return true if (a == b) */
|
---|
178 | inline bool operator == (QNumber a, QNumber b)
|
---|
179 | { return ( QNumber::Compare(a,b)==0); }
|
---|
180 |
|
---|
181 | /*! Not equal comparison operator != for QNumbers : return true if (a != b) */
|
---|
182 | inline bool operator != (QNumber a, QNumber b)
|
---|
183 | { return ( QNumber::Compare(a,b)!=0); }
|
---|
184 |
|
---|
185 | /*! Comparison operator < for QNumbers : return true if (a < b) */
|
---|
186 | inline bool operator < (QNumber a, QNumber b)
|
---|
187 | { return ( QNumber::Compare(a,b)<0); }
|
---|
188 |
|
---|
189 | /*! Comparison operator > for QNumbers : return true if (a > b) */
|
---|
190 | inline bool operator > (QNumber a, QNumber b)
|
---|
191 | { return ( QNumber::Compare(a,b)>0); }
|
---|
192 |
|
---|
193 | /*! Comparison operator <= for QNumbers : return true if (a <= b) */
|
---|
194 | inline bool operator <= (QNumber a, QNumber b)
|
---|
195 | { return ( QNumber::Compare(a,b)<=0); }
|
---|
196 |
|
---|
197 | /*! Comparison operator >= for QNumbers : return true if (a >= b) */
|
---|
198 | inline bool operator >= (QNumber a, QNumber b)
|
---|
199 | { return ( QNumber::Compare(a,b)>=0); }
|
---|
200 |
|
---|
201 | /*! Writes the two integers representing a QNumber in the POutPersist stream \b os */
|
---|
202 | inline POutPersist& operator << (POutPersist& os, QNumber const& q)
|
---|
203 | { os << q.Numerator() << q.Denominator(); return(os); }
|
---|
204 | /*! Reads the object from the PInPersist stream \b is */
|
---|
205 | inline PInPersist& operator >> (PInPersist& is, QNumber& q)
|
---|
206 | { int_8 num,den; is >> num >> den; q = QNumber(num,den); return(is); }
|
---|
207 |
|
---|
208 |
|
---|
209 | } // namespace SOPHYA
|
---|
210 |
|
---|
211 | #endif
|
---|