| [2615] | 1 | #include "sopnamsp.h" | 
|---|
| [1942] | 2 | #include "FSAppIrrSmpl.h" | 
|---|
|  | 3 |  | 
|---|
|  | 4 |  | 
|---|
|  | 5 | FSApproximationIrregularSampling::FSApproximationIrregularSampling()  : fftIntfPtr_(NULL) {;} | 
|---|
|  | 6 |  | 
|---|
|  | 7 | FSApproximationIrregularSampling::FSApproximationIrregularSampling(TVector<double>& sampling, double offset, double range) | 
|---|
|  | 8 | { | 
|---|
|  | 9 | initFFT(); | 
|---|
|  | 10 | makeSamplingVector(sampling, offset, range); | 
|---|
|  | 11 | M_ = 0; | 
|---|
|  | 12 | } | 
|---|
|  | 13 |  | 
|---|
|  | 14 |  | 
|---|
|  | 15 | FSApproximationIrregularSampling::~FSApproximationIrregularSampling() | 
|---|
|  | 16 | {if (fftIntfPtr_!=NULL) delete fftIntfPtr_;} | 
|---|
|  | 17 |  | 
|---|
|  | 18 | void FSApproximationIrregularSampling::makeRHS(TVector<complex<double> >& coefSolution) | 
|---|
|  | 19 | { | 
|---|
|  | 20 | int k; | 
|---|
|  | 21 | if (exponFourier_.Size() == 0) calculeExponentiellesFourier(); | 
|---|
|  | 22 | coefSolution.ReSize(2*M_+1); | 
|---|
|  | 23 | coefSolution = complex<double>(0.,0.); | 
|---|
|  | 24 | int nbEchantillons = samplingValues_.Size(); | 
|---|
|  | 25 |  | 
|---|
|  | 26 | // initialisation d'un tableau de travail pour calcul des termes | 
|---|
|  | 27 | // du second membre par recurrence | 
|---|
|  | 28 | TVector<complex<double> > travail(nbEchantillons); | 
|---|
|  | 29 | for (k=0; k < nbEchantillons; k++) | 
|---|
|  | 30 | { | 
|---|
|  | 31 | travail(k) = poids_(k)*signal_(k); | 
|---|
|  | 32 | coefSolution(M_) +=  travail(k); | 
|---|
|  | 33 | } | 
|---|
|  | 34 |  | 
|---|
|  | 35 | // recurrence | 
|---|
|  | 36 | for (k=1; k<=M_; k++) | 
|---|
|  | 37 | { | 
|---|
|  | 38 | int j; | 
|---|
|  | 39 | for (j=0; j < nbEchantillons; j++) | 
|---|
|  | 40 | { | 
|---|
|  | 41 | travail(j) *= exponFourier_(j); | 
|---|
|  | 42 | coefSolution(M_+k) += travail(j); | 
|---|
|  | 43 | } | 
|---|
|  | 44 | coefSolution(M_-k) = conj(coefSolution(M_+k)); | 
|---|
|  | 45 | } | 
|---|
|  | 46 | } | 
|---|
|  | 47 |  | 
|---|
|  | 48 | void FSApproximationIrregularSampling::makeToeplitzMatrix(int M) | 
|---|
|  | 49 | { | 
|---|
|  | 50 | int j,k; | 
|---|
|  | 51 | M_ = M; | 
|---|
|  | 52 | int nbEchantillons = samplingValues_.Size(); | 
|---|
|  | 53 | // matrice de Toeplitz | 
|---|
|  | 54 | if (exponFourier_.Size() == 0) calculeExponentiellesFourier(); | 
|---|
|  | 55 |  | 
|---|
|  | 56 | TVector<complex<double> > gamma(2*M_+1); | 
|---|
|  | 57 | gamma = complex<double>(0.,0.); | 
|---|
|  | 58 | // initialisation d'un tableau de travail pour calcul des termes | 
|---|
|  | 59 | // de la matrice par recurrence | 
|---|
|  | 60 | TVector<complex<double> > travail(nbEchantillons); | 
|---|
|  | 61 | travail = poids_; | 
|---|
|  | 62 |  | 
|---|
|  | 63 | for (j=0; j<nbEchantillons; j++) gamma(0) += travail(j); | 
|---|
|  | 64 |  | 
|---|
|  | 65 | // recurrence | 
|---|
|  | 66 | for (k=1; k<=2*M_; k++) | 
|---|
|  | 67 | { | 
|---|
|  | 68 |  | 
|---|
|  | 69 | for (j=0; j<nbEchantillons; j++) | 
|---|
|  | 70 | { | 
|---|
|  | 71 | travail(j) *= exponFourier_(j); | 
|---|
|  | 72 | gamma(k) += travail(j); | 
|---|
|  | 73 | } | 
|---|
|  | 74 |  | 
|---|
|  | 75 | } | 
|---|
|  | 76 |  | 
|---|
|  | 77 | tptz_.setMatrix(gamma); | 
|---|
|  | 78 | } | 
|---|
|  | 79 | void FSApproximationIrregularSampling::approximateSignal(int M, const TVector<double>& signal) | 
|---|
|  | 80 | { | 
|---|
|  | 81 | int k; | 
|---|
|  | 82 | if (delta_ <= 1./(2.*M) ) | 
|---|
|  | 83 | { | 
|---|
|  | 84 | cout << " FSApproximationIrregularSampling : BON ECHANTILLONNAGE " << endl; | 
|---|
|  | 85 | } | 
|---|
|  | 86 | else | 
|---|
|  | 87 | { | 
|---|
|  | 88 | cout << " FSApproximationIrregularSampling : ATTENTION : SIGNAL SOUS-ECHANTILLONNE " << endl; | 
|---|
|  | 89 | cout << " deltaMax (normalise) = " << delta_ << " devrait etre inferieur a " << 1./(2.*M) << endl; | 
|---|
|  | 90 | cout << " ecart max intervient entre echantillon no " << nokdelta_ << " et le suivant, abscisse= " <<  samplingValues_(nokdelta_)*samplingRange_+samplingOffset_ << endl; | 
|---|
|  | 91 |  | 
|---|
|  | 92 | } | 
|---|
|  | 93 | //  PrtTim(" avant toeplitz " ); | 
|---|
|  | 94 |  | 
|---|
|  | 95 | if ( M != M_ ) makeToeplitzMatrix(M); | 
|---|
|  | 96 |  | 
|---|
|  | 97 | // PrtTim(" fin toeplitz " ); | 
|---|
|  | 98 |  | 
|---|
|  | 99 |  | 
|---|
|  | 100 | makeSignalVector(signal); | 
|---|
|  | 101 | //  PrtTim(" fin fabrication signal " ); | 
|---|
|  | 102 |  | 
|---|
|  | 103 | // second membre | 
|---|
|  | 104 |  | 
|---|
|  | 105 | TVector<complex<double> > coefSolution; | 
|---|
|  | 106 | makeRHS(coefSolution); | 
|---|
|  | 107 | int j; | 
|---|
|  | 108 | // PrtTim(" fin fabrication second membre " ); | 
|---|
|  | 109 |  | 
|---|
|  | 110 | int niter =  tptz_.gradientToeplitz(coefSolution); | 
|---|
|  | 111 | // int niter =  tptz_.gradientToeplitzPreconTChang(coefSolution); | 
|---|
|  | 112 | cout << " FSApproximationIrregularSampling::approximateSignal : converged in " << niter << " iterations " << endl; | 
|---|
|  | 113 | coefFourier_.ReSize(M_+1); | 
|---|
|  | 114 | coefFourier_ = coefSolution(Range(M_, 2*M_)); | 
|---|
|  | 115 | } | 
|---|
|  | 116 |  | 
|---|
|  | 117 | // la periode normalisee 1 est divisee en nbInterv intervalles | 
|---|
|  | 118 | // les valeurs de la solution sont donnes en 0, 1/n, ..... (n-1)/n | 
|---|
|  | 119 | // le calcul est beaucoup plus rapide si nbInterv est pair (FFT) | 
|---|
|  | 120 | void FSApproximationIrregularSampling::restaureRegularlySampledSignal(int nbInterv, TVector<double>& solution) const | 
|---|
|  | 121 | { | 
|---|
| [1962] | 122 | cout << " c'est celui que je corrige " << endl; | 
|---|
|  | 123 | int k; | 
|---|
|  | 124 | if (nbInterv < 2*M_+1) | 
|---|
| [1942] | 125 | { | 
|---|
|  | 126 | solution.ReSize(nbInterv); | 
|---|
|  | 127 | double delta = 1./nbInterv; | 
|---|
|  | 128 | for (k=0; k<nbInterv; k++) | 
|---|
|  | 129 | { | 
|---|
|  | 130 | double u = k*delta; | 
|---|
|  | 131 | solution(k) = valeursSerie(u); | 
|---|
|  | 132 | } | 
|---|
|  | 133 | } | 
|---|
|  | 134 | else | 
|---|
|  | 135 | { | 
|---|
| [1962] | 136 | TVector<complex<double> > TFf(nbInterv); | 
|---|
|  | 137 | TVector<complex<double> > bidon(nbInterv); | 
|---|
| [1942] | 138 | TFf = complex<double>(0.,0.); | 
|---|
|  | 139 | TFf(Range(0,M_)) = coefFourier_; | 
|---|
| [1962] | 140 | for ( k=1; k<= M_; k++) | 
|---|
|  | 141 | { | 
|---|
|  | 142 | TFf(nbInterv-k) = conj(coefFourier_(k)); | 
|---|
|  | 143 | } | 
|---|
|  | 144 | fftIntfPtr_-> FFTBackward(TFf, bidon); | 
|---|
|  | 145 | cout << " taille de bidon "<< bidon.Size() << endl; | 
|---|
|  | 146 | solution.ReSize(nbInterv); | 
|---|
|  | 147 | for (k=0; k< nbInterv; k++) solution(k) = bidon(k).real(); | 
|---|
| [1942] | 148 | } | 
|---|
|  | 149 | reshapeSignalInUsersFrame(solution); | 
|---|
|  | 150 | } | 
|---|
|  | 151 |  | 
|---|
|  | 152 | void FSApproximationIrregularSampling::computeSignalOnASampling(const TVector<double>& abscisses, TVector<double>& solution ) const | 
|---|
|  | 153 | { | 
|---|
|  | 154 | int k; | 
|---|
|  | 155 | int n= abscisses.Size(); | 
|---|
|  | 156 | if (n<=0) | 
|---|
|  | 157 | { | 
|---|
|  | 158 | cout << " restaurationEnPoints: vecteurs de points vide " << endl; | 
|---|
|  | 159 | return; | 
|---|
|  | 160 | } | 
|---|
|  | 161 | TVector<double> abscissesLocales; | 
|---|
|  | 162 | abscissesLocales = abscisses; | 
|---|
|  | 163 | matchToSamplingReference(abscissesLocales); | 
|---|
|  | 164 | solution.ReSize(n); | 
|---|
|  | 165 | for (k=0; k<n; k++) | 
|---|
|  | 166 | { | 
|---|
|  | 167 | double u = abscissesLocales(k); | 
|---|
|  | 168 | solution(k) =  valeursSerie(u); | 
|---|
|  | 169 | } | 
|---|
|  | 170 | reshapeSignalInUsersFrame(abscisses, solution); | 
|---|
|  | 171 |  | 
|---|
|  | 172 | } | 
|---|
|  | 173 |  | 
|---|
|  | 174 | double FSApproximationIrregularSampling::estimationConditionnement() const | 
|---|
|  | 175 | { | 
|---|
|  | 176 | double deuxDeltaM = 2.*delta_*M_; | 
|---|
|  | 177 | double cond = (1.+deuxDeltaM)/(1.-deuxDeltaM); | 
|---|
|  | 178 | cond *= cond; | 
|---|
|  | 179 | return cond; | 
|---|
|  | 180 | } | 
|---|
|  | 181 |  | 
|---|
|  | 182 | void  FSApproximationIrregularSampling::samplingValues(TVector<double>& sv) const | 
|---|
|  | 183 | { | 
|---|
|  | 184 | int k; | 
|---|
|  | 185 | int n = samplingValues_.Size(); | 
|---|
|  | 186 | sv.ReSize(n); | 
|---|
|  | 187 | for (k=0; k<n;k++) | 
|---|
|  | 188 | { | 
|---|
|  | 189 | sv(k) = samplingOffset_+samplingRange_*samplingValues_(k); | 
|---|
|  | 190 | } | 
|---|
|  | 191 |  | 
|---|
|  | 192 | } | 
|---|
|  | 193 |  | 
|---|
|  | 194 | // terme constant, puis cos, sin, cos, sin...... | 
|---|
|  | 195 | void FSApproximationIrregularSampling::coeffCosSin(TVector<double>& coef) const | 
|---|
|  | 196 | { | 
|---|
|  | 197 | int j; | 
|---|
|  | 198 | coef.ReSize(2*M_+1); | 
|---|
|  | 199 | coef(0) = coefFourier_(0).real(); | 
|---|
|  | 200 | for (j=1; j<M_; j++) | 
|---|
|  | 201 | { | 
|---|
|  | 202 | double aj =  2.*coefFourier_(j).real(); | 
|---|
|  | 203 | double bj =  -2.*coefFourier_(j).imag(); | 
|---|
|  | 204 | coef(2*(j-1)+1) = aj; | 
|---|
|  | 205 | coef(2*(j-1)+2) = bj; | 
|---|
|  | 206 | } | 
|---|
|  | 207 | coef *= normeSignal_; | 
|---|
|  | 208 | } | 
|---|
|  | 209 |  | 
|---|
|  | 210 | // exprime les valeurs d'abscisses, selon la reference locale | 
|---|
|  | 211 | void FSApproximationIrregularSampling::matchToSamplingReference(TVector<double>& sampling) const | 
|---|
|  | 212 |  | 
|---|
|  | 213 | { | 
|---|
|  | 214 | int k; | 
|---|
|  | 215 | int compteur = sampling.Size(); | 
|---|
|  | 216 | double fac = 1./samplingRange_; | 
|---|
|  | 217 | for (k=0; k<compteur; k++) | 
|---|
|  | 218 | { | 
|---|
|  | 219 | sampling(k) = (sampling(k)-samplingOffset_)*fac; | 
|---|
|  | 220 |  | 
|---|
|  | 221 | } | 
|---|
|  | 222 | if ( sampling(0) <0. || sampling(compteur-1) >1. ) | 
|---|
|  | 223 | { | 
|---|
|  | 224 | cout << " matchToSamplingReference: points hors [0.,1.] " << endl; | 
|---|
|  | 225 | cout << " " << sampling(0) << " " << sampling(compteur-1) << endl; | 
|---|
|  | 226 | } | 
|---|
|  | 227 | } | 
|---|
|  | 228 |  | 
|---|
|  | 229 | // exprime les valeurs d'echantillonnage entre 0 et 1 | 
|---|
|  | 230 | void FSApproximationIrregularSampling::resizeSamplingIn_0_1(double offset, double range) | 
|---|
|  | 231 | { | 
|---|
|  | 232 | int k; | 
|---|
|  | 233 | int compteur = samplingValues_.Size(); | 
|---|
|  | 234 | samplingOffset_ = offset; | 
|---|
|  | 235 | samplingRange_ = range; | 
|---|
|  | 236 | double fac = 1./samplingRange_; | 
|---|
|  | 237 | for (k=0; k<compteur ;k++) | 
|---|
|  | 238 | { | 
|---|
|  | 239 | samplingValues_(k) = (samplingValues_(k)-samplingOffset_)*fac; | 
|---|
|  | 240 | } | 
|---|
|  | 241 | } | 
|---|
|  | 242 |  | 
|---|
|  | 243 | void FSApproximationIrregularSampling::computeWeights() | 
|---|
|  | 244 | { | 
|---|
|  | 245 | int k; | 
|---|
|  | 246 | int nbEchantillons = samplingValues_.Size(); | 
|---|
|  | 247 | nokdelta_ = 0; | 
|---|
|  | 248 |  | 
|---|
|  | 249 | // calcul de l'ecart maximum entre deux temps d'echantillonnage consecutifs | 
|---|
|  | 250 | delta_ = samplingValues_(0)-samplingValues_(nbEchantillons-1)+1; | 
|---|
|  | 251 | for (k=0; k< nbEchantillons-1; k++) | 
|---|
|  | 252 | { | 
|---|
|  | 253 | double diff = samplingValues_(k+1)-samplingValues_(k); | 
|---|
|  | 254 | if ( diff > delta_ ) | 
|---|
|  | 255 | { | 
|---|
|  | 256 | delta_ = diff; | 
|---|
|  | 257 | nokdelta_ = k; | 
|---|
|  | 258 | } | 
|---|
|  | 259 | } | 
|---|
|  | 260 | // calcul des poids (pour tenir compte de l'irregularite de | 
|---|
|  | 261 | // l'echantillonnage) | 
|---|
|  | 262 | poids_.ReSize(nbEchantillons); | 
|---|
|  | 263 | poids_(0) = 0.5*(samplingValues_(1)-samplingValues_(nbEchantillons-1) + 1.); | 
|---|
|  | 264 | for (k=1; k< nbEchantillons-1; k++) | 
|---|
|  | 265 | { | 
|---|
|  | 266 | poids_(k) = 0.5*(samplingValues_(k+1)-samplingValues_(k-1)); | 
|---|
|  | 267 | } | 
|---|
|  | 268 | poids_(nbEchantillons-1) = 0.5*(samplingValues_(0) +1 - samplingValues_(nbEchantillons-2)); | 
|---|
|  | 269 |  | 
|---|
|  | 270 | } | 
|---|
|  | 271 | void FSApproximationIrregularSampling::NormSignal() | 
|---|
|  | 272 | { | 
|---|
|  | 273 | int k; | 
|---|
|  | 274 | int nbEchantillons = samplingValues_.Size(); | 
|---|
|  | 275 | normeSignal_=0; | 
|---|
|  | 276 | for (k=0; k< nbEchantillons; k++) | 
|---|
|  | 277 | { | 
|---|
|  | 278 | double s = signal_(k); | 
|---|
|  | 279 | normeSignal_ += s*s*poids_(k); | 
|---|
|  | 280 | } | 
|---|
|  | 281 | normeSignal_=sqrt(normeSignal_); | 
|---|
|  | 282 | double fac = 1./normeSignal_; | 
|---|
|  | 283 | signal_ *= fac; | 
|---|
|  | 284 | } | 
|---|
|  | 285 |  | 
|---|
|  | 286 |  | 
|---|
|  | 287 |  | 
|---|
|  | 288 | void FSApproximationIrregularSampling::reshapeSignalInUsersFrame(const TVector<double>& abscisses, TVector<double>& resultat) const | 
|---|
|  | 289 | { | 
|---|
|  | 290 | if (resultat.Size() <= 0) | 
|---|
|  | 291 | { | 
|---|
|  | 292 | cout << " reshapeSignalInUsersFrame: vecteur solution VIDE" << endl; | 
|---|
|  | 293 | } | 
|---|
|  | 294 | resultat *= normeSignal_; | 
|---|
|  | 295 | } | 
|---|
|  | 296 |  | 
|---|
|  | 297 | void FSApproximationIrregularSampling::reshapeSignalInUsersFrame(TVector<double>& resultat) const | 
|---|
|  | 298 | { | 
|---|
|  | 299 | if (resultat.Size() <= 0) | 
|---|
|  | 300 | { | 
|---|
|  | 301 | cout << " reshapeSignalInUsersFrame: vecteur solution VIDE" << endl; | 
|---|
|  | 302 | } | 
|---|
|  | 303 | resultat *= normeSignal_; | 
|---|
|  | 304 | } | 
|---|
|  | 305 |  | 
|---|
|  | 306 |  | 
|---|
|  | 307 | void FSApproximationIrregularSampling::makeSamplingVector(const TVector<double>& sampling, double offset, double range) | 
|---|
|  | 308 | { | 
|---|
|  | 309 | samplingValues_.ReSize(sampling.Size()); | 
|---|
|  | 310 | samplingValues_ = sampling; | 
|---|
|  | 311 | resizeSamplingIn_0_1(offset, range); | 
|---|
|  | 312 | computeWeights(); | 
|---|
|  | 313 | } | 
|---|
|  | 314 |  | 
|---|
|  | 315 | void FSApproximationIrregularSampling::makeSignalVector(const TVector<double>& signal) | 
|---|
|  | 316 | { | 
|---|
|  | 317 | int n = samplingValues_.Size(); | 
|---|
|  | 318 | if (n != signal.Size() ) | 
|---|
|  | 319 | { | 
|---|
|  | 320 | cout << " echantillonnage et signal n'ont pas les memes dimensions " << endl; | 
|---|
|  | 321 | } | 
|---|
|  | 322 | signal_ = signal; | 
|---|
|  | 323 | NormSignal(); | 
|---|
|  | 324 | } | 
|---|
|  | 325 |  | 
|---|
|  | 326 |  | 
|---|
|  | 327 |  | 
|---|
|  | 328 |  | 
|---|
|  | 329 |  | 
|---|
|  | 330 | void FSApproximationIrregularSampling::restaureSignal(TVector<double>& solution) const | 
|---|
|  | 331 | { | 
|---|
|  | 332 | int k; | 
|---|
|  | 333 | int n= samplingValues_.Size(); | 
|---|
|  | 334 | if (n<=0) | 
|---|
|  | 335 | { | 
|---|
|  | 336 | cout << " restaurationEnPoints: vecteurs de points vide " << endl; | 
|---|
|  | 337 | return; | 
|---|
|  | 338 | } | 
|---|
|  | 339 | solution.ReSize(n); | 
|---|
|  | 340 | for (k=0; k<n; k++) | 
|---|
|  | 341 | { | 
|---|
|  | 342 | double u = samplingValues_(k); | 
|---|
|  | 343 | solution(k) = valeursSerie(u); | 
|---|
|  | 344 | } | 
|---|
|  | 345 | reshapeSignalInUsersFrame(solution); | 
|---|
|  | 346 | } | 
|---|
|  | 347 |  | 
|---|
|  | 348 |  | 
|---|