| [2615] | 1 | #include "sopnamsp.h"
 | 
|---|
| [1942] | 2 | #include "FSAppIrrSmpl.h"
 | 
|---|
 | 3 | 
 | 
|---|
 | 4 | 
 | 
|---|
 | 5 | FSApproximationIrregularSampling::FSApproximationIrregularSampling()  : fftIntfPtr_(NULL) {;}
 | 
|---|
 | 6 | 
 | 
|---|
 | 7 | FSApproximationIrregularSampling::FSApproximationIrregularSampling(TVector<double>& sampling, double offset, double range) 
 | 
|---|
 | 8 |   {
 | 
|---|
 | 9 |     initFFT();
 | 
|---|
 | 10 |     makeSamplingVector(sampling, offset, range);
 | 
|---|
 | 11 |     M_ = 0;
 | 
|---|
 | 12 |   }
 | 
|---|
 | 13 | 
 | 
|---|
 | 14 | 
 | 
|---|
 | 15 | FSApproximationIrregularSampling::~FSApproximationIrregularSampling()
 | 
|---|
 | 16 | {if (fftIntfPtr_!=NULL) delete fftIntfPtr_;}
 | 
|---|
 | 17 | 
 | 
|---|
 | 18 | void FSApproximationIrregularSampling::makeRHS(TVector<complex<double> >& coefSolution)
 | 
|---|
 | 19 | {
 | 
|---|
 | 20 |   int k;
 | 
|---|
 | 21 |   if (exponFourier_.Size() == 0) calculeExponentiellesFourier();
 | 
|---|
 | 22 |   coefSolution.ReSize(2*M_+1);
 | 
|---|
 | 23 |   coefSolution = complex<double>(0.,0.);
 | 
|---|
 | 24 |   int nbEchantillons = samplingValues_.Size();
 | 
|---|
 | 25 | 
 | 
|---|
 | 26 |   // initialisation d'un tableau de travail pour calcul des termes
 | 
|---|
 | 27 |   // du second membre par recurrence
 | 
|---|
 | 28 |   TVector<complex<double> > travail(nbEchantillons);
 | 
|---|
 | 29 |   for (k=0; k < nbEchantillons; k++)
 | 
|---|
 | 30 |     {
 | 
|---|
 | 31 |       travail(k) = poids_(k)*signal_(k);
 | 
|---|
 | 32 |       coefSolution(M_) +=  travail(k);
 | 
|---|
 | 33 |     }
 | 
|---|
 | 34 | 
 | 
|---|
 | 35 |   // recurrence
 | 
|---|
 | 36 |   for (k=1; k<=M_; k++)
 | 
|---|
 | 37 |     {
 | 
|---|
 | 38 |       int j;
 | 
|---|
 | 39 |       for (j=0; j < nbEchantillons; j++)
 | 
|---|
 | 40 |         {
 | 
|---|
 | 41 |           travail(j) *= exponFourier_(j);
 | 
|---|
 | 42 |           coefSolution(M_+k) += travail(j);
 | 
|---|
 | 43 |         }
 | 
|---|
 | 44 |       coefSolution(M_-k) = conj(coefSolution(M_+k));
 | 
|---|
 | 45 |     }
 | 
|---|
 | 46 | }
 | 
|---|
 | 47 | 
 | 
|---|
 | 48 | void FSApproximationIrregularSampling::makeToeplitzMatrix(int M)
 | 
|---|
 | 49 | {
 | 
|---|
 | 50 |   int j,k;
 | 
|---|
 | 51 |   M_ = M;
 | 
|---|
 | 52 |   int nbEchantillons = samplingValues_.Size();
 | 
|---|
 | 53 |   // matrice de Toeplitz
 | 
|---|
 | 54 |    if (exponFourier_.Size() == 0) calculeExponentiellesFourier();
 | 
|---|
 | 55 | 
 | 
|---|
 | 56 |   TVector<complex<double> > gamma(2*M_+1);
 | 
|---|
 | 57 |   gamma = complex<double>(0.,0.);
 | 
|---|
 | 58 |   // initialisation d'un tableau de travail pour calcul des termes
 | 
|---|
 | 59 |   // de la matrice par recurrence
 | 
|---|
 | 60 |   TVector<complex<double> > travail(nbEchantillons);
 | 
|---|
 | 61 |   travail = poids_;
 | 
|---|
 | 62 | 
 | 
|---|
 | 63 |   for (j=0; j<nbEchantillons; j++) gamma(0) += travail(j);
 | 
|---|
 | 64 | 
 | 
|---|
 | 65 |   // recurrence
 | 
|---|
 | 66 |   for (k=1; k<=2*M_; k++)
 | 
|---|
 | 67 |     {
 | 
|---|
 | 68 | 
 | 
|---|
 | 69 |       for (j=0; j<nbEchantillons; j++)
 | 
|---|
 | 70 |         {
 | 
|---|
 | 71 |           travail(j) *= exponFourier_(j);
 | 
|---|
 | 72 |           gamma(k) += travail(j);
 | 
|---|
 | 73 |         }
 | 
|---|
 | 74 | 
 | 
|---|
 | 75 |     }
 | 
|---|
 | 76 |   
 | 
|---|
 | 77 |   tptz_.setMatrix(gamma);
 | 
|---|
 | 78 | }
 | 
|---|
 | 79 | void FSApproximationIrregularSampling::approximateSignal(int M, const TVector<double>& signal)
 | 
|---|
 | 80 | {
 | 
|---|
 | 81 |   int k;
 | 
|---|
 | 82 |     if (delta_ <= 1./(2.*M) )
 | 
|---|
 | 83 |       {
 | 
|---|
 | 84 |         cout << " FSApproximationIrregularSampling : BON ECHANTILLONNAGE " << endl;
 | 
|---|
 | 85 |       }
 | 
|---|
 | 86 |     else
 | 
|---|
 | 87 |       {
 | 
|---|
 | 88 |         cout << " FSApproximationIrregularSampling : ATTENTION : SIGNAL SOUS-ECHANTILLONNE " << endl;
 | 
|---|
 | 89 |         cout << " deltaMax (normalise) = " << delta_ << " devrait etre inferieur a " << 1./(2.*M) << endl;
 | 
|---|
 | 90 |         cout << " ecart max intervient entre echantillon no " << nokdelta_ << " et le suivant, abscisse= " <<  samplingValues_(nokdelta_)*samplingRange_+samplingOffset_ << endl;
 | 
|---|
 | 91 | 
 | 
|---|
 | 92 |       }
 | 
|---|
 | 93 |     //  PrtTim(" avant toeplitz " );
 | 
|---|
 | 94 | 
 | 
|---|
 | 95 |     if ( M != M_ ) makeToeplitzMatrix(M);
 | 
|---|
 | 96 | 
 | 
|---|
 | 97 |     // PrtTim(" fin toeplitz " );
 | 
|---|
 | 98 | 
 | 
|---|
 | 99 |  
 | 
|---|
 | 100 |    makeSignalVector(signal);
 | 
|---|
 | 101 |    //  PrtTim(" fin fabrication signal " );
 | 
|---|
 | 102 | 
 | 
|---|
 | 103 |     // second membre
 | 
|---|
 | 104 |     
 | 
|---|
 | 105 |     TVector<complex<double> > coefSolution;
 | 
|---|
 | 106 |     makeRHS(coefSolution);
 | 
|---|
 | 107 |     int j;
 | 
|---|
 | 108 |     // PrtTim(" fin fabrication second membre " );
 | 
|---|
 | 109 | 
 | 
|---|
 | 110 |     int niter =  tptz_.gradientToeplitz(coefSolution);
 | 
|---|
 | 111 |     // int niter =  tptz_.gradientToeplitzPreconTChang(coefSolution);
 | 
|---|
 | 112 |     cout << " FSApproximationIrregularSampling::approximateSignal : converged in " << niter << " iterations " << endl;
 | 
|---|
 | 113 |     coefFourier_.ReSize(M_+1);
 | 
|---|
 | 114 |     coefFourier_ = coefSolution(Range(M_, 2*M_));
 | 
|---|
 | 115 | }
 | 
|---|
 | 116 | 
 | 
|---|
 | 117 | // la periode normalisee 1 est divisee en nbInterv intervalles
 | 
|---|
 | 118 | // les valeurs de la solution sont donnes en 0, 1/n, ..... (n-1)/n 
 | 
|---|
 | 119 | // le calcul est beaucoup plus rapide si nbInterv est pair (FFT)
 | 
|---|
 | 120 | void FSApproximationIrregularSampling::restaureRegularlySampledSignal(int nbInterv, TVector<double>& solution) const
 | 
|---|
 | 121 | {
 | 
|---|
| [1962] | 122 |   cout << " c'est celui que je corrige " << endl;
 | 
|---|
 | 123 |   int k; 
 | 
|---|
 | 124 |   if (nbInterv < 2*M_+1) 
 | 
|---|
| [1942] | 125 |       {
 | 
|---|
 | 126 |         solution.ReSize(nbInterv); 
 | 
|---|
 | 127 |         double delta = 1./nbInterv;
 | 
|---|
 | 128 |         for (k=0; k<nbInterv; k++)
 | 
|---|
 | 129 |           {
 | 
|---|
 | 130 |             double u = k*delta;
 | 
|---|
 | 131 |             solution(k) = valeursSerie(u);
 | 
|---|
 | 132 |           }
 | 
|---|
 | 133 |       }
 | 
|---|
 | 134 |     else
 | 
|---|
 | 135 |       {
 | 
|---|
| [1962] | 136 |         TVector<complex<double> > TFf(nbInterv);
 | 
|---|
 | 137 |         TVector<complex<double> > bidon(nbInterv);
 | 
|---|
| [1942] | 138 |         TFf = complex<double>(0.,0.);
 | 
|---|
 | 139 |         TFf(Range(0,M_)) = coefFourier_;
 | 
|---|
| [1962] | 140 |         for ( k=1; k<= M_; k++)
 | 
|---|
 | 141 |           { 
 | 
|---|
 | 142 |             TFf(nbInterv-k) = conj(coefFourier_(k));
 | 
|---|
 | 143 |           }
 | 
|---|
 | 144 |         fftIntfPtr_-> FFTBackward(TFf, bidon);
 | 
|---|
 | 145 |         cout << " taille de bidon "<< bidon.Size() << endl;
 | 
|---|
 | 146 |         solution.ReSize(nbInterv);
 | 
|---|
 | 147 |         for (k=0; k< nbInterv; k++) solution(k) = bidon(k).real();
 | 
|---|
| [1942] | 148 |       }
 | 
|---|
 | 149 |   reshapeSignalInUsersFrame(solution);
 | 
|---|
 | 150 | }
 | 
|---|
 | 151 | 
 | 
|---|
 | 152 | void FSApproximationIrregularSampling::computeSignalOnASampling(const TVector<double>& abscisses, TVector<double>& solution ) const
 | 
|---|
 | 153 | {
 | 
|---|
 | 154 |   int k;
 | 
|---|
 | 155 |   int n= abscisses.Size();
 | 
|---|
 | 156 |   if (n<=0) 
 | 
|---|
 | 157 |     {
 | 
|---|
 | 158 |       cout << " restaurationEnPoints: vecteurs de points vide " << endl;
 | 
|---|
 | 159 |       return;
 | 
|---|
 | 160 |     }
 | 
|---|
 | 161 |   TVector<double> abscissesLocales;
 | 
|---|
 | 162 |   abscissesLocales = abscisses;
 | 
|---|
 | 163 |   matchToSamplingReference(abscissesLocales);
 | 
|---|
 | 164 |   solution.ReSize(n);
 | 
|---|
 | 165 |   for (k=0; k<n; k++)
 | 
|---|
 | 166 |     {
 | 
|---|
 | 167 |       double u = abscissesLocales(k);
 | 
|---|
 | 168 |       solution(k) =  valeursSerie(u);
 | 
|---|
 | 169 |     }
 | 
|---|
 | 170 |   reshapeSignalInUsersFrame(abscisses, solution);
 | 
|---|
 | 171 | 
 | 
|---|
 | 172 | }
 | 
|---|
 | 173 | 
 | 
|---|
 | 174 | double FSApproximationIrregularSampling::estimationConditionnement() const
 | 
|---|
 | 175 | {
 | 
|---|
 | 176 |   double deuxDeltaM = 2.*delta_*M_; 
 | 
|---|
 | 177 |   double cond = (1.+deuxDeltaM)/(1.-deuxDeltaM);
 | 
|---|
 | 178 |   cond *= cond;
 | 
|---|
 | 179 |   return cond;
 | 
|---|
 | 180 | }
 | 
|---|
 | 181 | 
 | 
|---|
 | 182 | void  FSApproximationIrregularSampling::samplingValues(TVector<double>& sv) const 
 | 
|---|
 | 183 | {
 | 
|---|
 | 184 |   int k; 
 | 
|---|
 | 185 |   int n = samplingValues_.Size();
 | 
|---|
 | 186 |   sv.ReSize(n);
 | 
|---|
 | 187 |   for (k=0; k<n;k++)
 | 
|---|
 | 188 |     {
 | 
|---|
 | 189 |       sv(k) = samplingOffset_+samplingRange_*samplingValues_(k);
 | 
|---|
 | 190 |     }
 | 
|---|
 | 191 | 
 | 
|---|
 | 192 | }
 | 
|---|
 | 193 | 
 | 
|---|
 | 194 | // terme constant, puis cos, sin, cos, sin......
 | 
|---|
 | 195 | void FSApproximationIrregularSampling::coeffCosSin(TVector<double>& coef) const
 | 
|---|
 | 196 | {
 | 
|---|
 | 197 |   int j;
 | 
|---|
 | 198 |   coef.ReSize(2*M_+1);
 | 
|---|
 | 199 |   coef(0) = coefFourier_(0).real();
 | 
|---|
 | 200 |   for (j=1; j<M_; j++)
 | 
|---|
 | 201 |     {
 | 
|---|
 | 202 |       double aj =  2.*coefFourier_(j).real();
 | 
|---|
 | 203 |       double bj =  -2.*coefFourier_(j).imag();
 | 
|---|
 | 204 |       coef(2*(j-1)+1) = aj;
 | 
|---|
 | 205 |       coef(2*(j-1)+2) = bj;
 | 
|---|
 | 206 |     }
 | 
|---|
 | 207 |   coef *= normeSignal_;
 | 
|---|
 | 208 | }  
 | 
|---|
 | 209 | 
 | 
|---|
 | 210 | // exprime les valeurs d'abscisses, selon la reference locale
 | 
|---|
 | 211 | void FSApproximationIrregularSampling::matchToSamplingReference(TVector<double>& sampling) const
 | 
|---|
 | 212 | 
 | 
|---|
 | 213 | {
 | 
|---|
 | 214 |   int k;
 | 
|---|
 | 215 |   int compteur = sampling.Size();
 | 
|---|
 | 216 |   double fac = 1./samplingRange_;
 | 
|---|
 | 217 |   for (k=0; k<compteur; k++)
 | 
|---|
 | 218 |     {
 | 
|---|
 | 219 |       sampling(k) = (sampling(k)-samplingOffset_)*fac;
 | 
|---|
 | 220 |  
 | 
|---|
 | 221 |     }
 | 
|---|
 | 222 |   if ( sampling(0) <0. || sampling(compteur-1) >1. )
 | 
|---|
 | 223 |     {
 | 
|---|
 | 224 |       cout << " matchToSamplingReference: points hors [0.,1.] " << endl;
 | 
|---|
 | 225 |       cout << " " << sampling(0) << " " << sampling(compteur-1) << endl;
 | 
|---|
 | 226 |     }
 | 
|---|
 | 227 | }
 | 
|---|
 | 228 | 
 | 
|---|
 | 229 | // exprime les valeurs d'echantillonnage entre 0 et 1
 | 
|---|
 | 230 | void FSApproximationIrregularSampling::resizeSamplingIn_0_1(double offset, double range) 
 | 
|---|
 | 231 | {
 | 
|---|
 | 232 |   int k;
 | 
|---|
 | 233 |   int compteur = samplingValues_.Size();
 | 
|---|
 | 234 |   samplingOffset_ = offset;
 | 
|---|
 | 235 |   samplingRange_ = range;
 | 
|---|
 | 236 |   double fac = 1./samplingRange_;
 | 
|---|
 | 237 |   for (k=0; k<compteur ;k++)
 | 
|---|
 | 238 |     {
 | 
|---|
 | 239 |       samplingValues_(k) = (samplingValues_(k)-samplingOffset_)*fac;
 | 
|---|
 | 240 |     }
 | 
|---|
 | 241 | }
 | 
|---|
 | 242 | 
 | 
|---|
 | 243 | void FSApproximationIrregularSampling::computeWeights()
 | 
|---|
 | 244 | {
 | 
|---|
 | 245 |   int k;
 | 
|---|
 | 246 |   int nbEchantillons = samplingValues_.Size();
 | 
|---|
 | 247 |   nokdelta_ = 0;
 | 
|---|
 | 248 | 
 | 
|---|
 | 249 |   // calcul de l'ecart maximum entre deux temps d'echantillonnage consecutifs
 | 
|---|
 | 250 |   delta_ = samplingValues_(0)-samplingValues_(nbEchantillons-1)+1;
 | 
|---|
 | 251 |   for (k=0; k< nbEchantillons-1; k++)
 | 
|---|
 | 252 |     {
 | 
|---|
 | 253 |       double diff = samplingValues_(k+1)-samplingValues_(k);
 | 
|---|
 | 254 |       if ( diff > delta_ )
 | 
|---|
 | 255 |         {
 | 
|---|
 | 256 |           delta_ = diff;
 | 
|---|
 | 257 |           nokdelta_ = k;
 | 
|---|
 | 258 |         }
 | 
|---|
 | 259 |     }
 | 
|---|
 | 260 |   // calcul des poids (pour tenir compte de l'irregularite de 
 | 
|---|
 | 261 |   // l'echantillonnage)
 | 
|---|
 | 262 |   poids_.ReSize(nbEchantillons);
 | 
|---|
 | 263 |   poids_(0) = 0.5*(samplingValues_(1)-samplingValues_(nbEchantillons-1) + 1.);
 | 
|---|
 | 264 |   for (k=1; k< nbEchantillons-1; k++)
 | 
|---|
 | 265 |     {
 | 
|---|
 | 266 |       poids_(k) = 0.5*(samplingValues_(k+1)-samplingValues_(k-1));
 | 
|---|
 | 267 |     }
 | 
|---|
 | 268 |   poids_(nbEchantillons-1) = 0.5*(samplingValues_(0) +1 - samplingValues_(nbEchantillons-2));
 | 
|---|
 | 269 |   
 | 
|---|
 | 270 | }
 | 
|---|
 | 271 | void FSApproximationIrregularSampling::NormSignal()
 | 
|---|
 | 272 | {
 | 
|---|
 | 273 |   int k;
 | 
|---|
 | 274 |   int nbEchantillons = samplingValues_.Size();
 | 
|---|
 | 275 |   normeSignal_=0;
 | 
|---|
 | 276 |   for (k=0; k< nbEchantillons; k++)
 | 
|---|
 | 277 |     {
 | 
|---|
 | 278 |       double s = signal_(k); 
 | 
|---|
 | 279 |       normeSignal_ += s*s*poids_(k);
 | 
|---|
 | 280 |     }
 | 
|---|
 | 281 |   normeSignal_=sqrt(normeSignal_);
 | 
|---|
 | 282 |   double fac = 1./normeSignal_;
 | 
|---|
 | 283 |   signal_ *= fac;
 | 
|---|
 | 284 | }
 | 
|---|
 | 285 | 
 | 
|---|
 | 286 | 
 | 
|---|
 | 287 | 
 | 
|---|
 | 288 | void FSApproximationIrregularSampling::reshapeSignalInUsersFrame(const TVector<double>& abscisses, TVector<double>& resultat) const
 | 
|---|
 | 289 | {
 | 
|---|
 | 290 |   if (resultat.Size() <= 0) 
 | 
|---|
 | 291 |     {
 | 
|---|
 | 292 |       cout << " reshapeSignalInUsersFrame: vecteur solution VIDE" << endl;
 | 
|---|
 | 293 |     }
 | 
|---|
 | 294 |   resultat *= normeSignal_;
 | 
|---|
 | 295 | }
 | 
|---|
 | 296 | 
 | 
|---|
 | 297 | void FSApproximationIrregularSampling::reshapeSignalInUsersFrame(TVector<double>& resultat) const
 | 
|---|
 | 298 | {
 | 
|---|
 | 299 |   if (resultat.Size() <= 0) 
 | 
|---|
 | 300 |     {
 | 
|---|
 | 301 |       cout << " reshapeSignalInUsersFrame: vecteur solution VIDE" << endl;
 | 
|---|
 | 302 |     }
 | 
|---|
 | 303 |   resultat *= normeSignal_;
 | 
|---|
 | 304 | }
 | 
|---|
 | 305 | 
 | 
|---|
 | 306 | 
 | 
|---|
 | 307 | void FSApproximationIrregularSampling::makeSamplingVector(const TVector<double>& sampling, double offset, double range)
 | 
|---|
 | 308 | {
 | 
|---|
 | 309 |   samplingValues_.ReSize(sampling.Size());
 | 
|---|
 | 310 |   samplingValues_ = sampling;
 | 
|---|
 | 311 |   resizeSamplingIn_0_1(offset, range);
 | 
|---|
 | 312 |   computeWeights();
 | 
|---|
 | 313 | }
 | 
|---|
 | 314 | 
 | 
|---|
 | 315 | void FSApproximationIrregularSampling::makeSignalVector(const TVector<double>& signal)
 | 
|---|
 | 316 | {
 | 
|---|
 | 317 |   int n = samplingValues_.Size();
 | 
|---|
 | 318 |     if (n != signal.Size() )
 | 
|---|
 | 319 |       {
 | 
|---|
 | 320 |         cout << " echantillonnage et signal n'ont pas les memes dimensions " << endl;
 | 
|---|
 | 321 |       }
 | 
|---|
 | 322 |     signal_ = signal;
 | 
|---|
 | 323 |     NormSignal();
 | 
|---|
 | 324 | }
 | 
|---|
 | 325 | 
 | 
|---|
 | 326 | 
 | 
|---|
 | 327 | 
 | 
|---|
 | 328 | 
 | 
|---|
 | 329 | 
 | 
|---|
 | 330 | void FSApproximationIrregularSampling::restaureSignal(TVector<double>& solution) const
 | 
|---|
 | 331 | {
 | 
|---|
 | 332 |   int k;
 | 
|---|
 | 333 |   int n= samplingValues_.Size();
 | 
|---|
 | 334 |   if (n<=0) 
 | 
|---|
 | 335 |     {
 | 
|---|
 | 336 |       cout << " restaurationEnPoints: vecteurs de points vide " << endl;
 | 
|---|
 | 337 |       return;
 | 
|---|
 | 338 |     }
 | 
|---|
 | 339 |   solution.ReSize(n);
 | 
|---|
 | 340 |   for (k=0; k<n; k++)
 | 
|---|
 | 341 |     {
 | 
|---|
 | 342 |       double u = samplingValues_(k);
 | 
|---|
 | 343 |       solution(k) = valeursSerie(u);
 | 
|---|
 | 344 |     }
 | 
|---|
 | 345 |   reshapeSignalInUsersFrame(solution);
 | 
|---|
 | 346 | }
 | 
|---|
 | 347 | 
 | 
|---|
 | 348 | 
 | 
|---|