1 | #include "sopnamsp.h"
|
---|
2 | #include "FSAppIrrSmpl.h"
|
---|
3 |
|
---|
4 |
|
---|
5 | FSApproximationIrregularSampling::FSApproximationIrregularSampling() : fftIntfPtr_(NULL) {;}
|
---|
6 |
|
---|
7 | FSApproximationIrregularSampling::FSApproximationIrregularSampling(TVector<double>& sampling, double offset, double range)
|
---|
8 | {
|
---|
9 | initFFT();
|
---|
10 | makeSamplingVector(sampling, offset, range);
|
---|
11 | M_ = 0;
|
---|
12 | }
|
---|
13 |
|
---|
14 |
|
---|
15 | FSApproximationIrregularSampling::~FSApproximationIrregularSampling()
|
---|
16 | {if (fftIntfPtr_!=NULL) delete fftIntfPtr_;}
|
---|
17 |
|
---|
18 | void FSApproximationIrregularSampling::makeRHS(TVector<complex<double> >& coefSolution)
|
---|
19 | {
|
---|
20 | int k;
|
---|
21 | if (exponFourier_.Size() == 0) calculeExponentiellesFourier();
|
---|
22 | coefSolution.ReSize(2*M_+1);
|
---|
23 | coefSolution = complex<double>(0.,0.);
|
---|
24 | int nbEchantillons = samplingValues_.Size();
|
---|
25 |
|
---|
26 | // initialisation d'un tableau de travail pour calcul des termes
|
---|
27 | // du second membre par recurrence
|
---|
28 | TVector<complex<double> > travail(nbEchantillons);
|
---|
29 | for (k=0; k < nbEchantillons; k++)
|
---|
30 | {
|
---|
31 | travail(k) = poids_(k)*signal_(k);
|
---|
32 | coefSolution(M_) += travail(k);
|
---|
33 | }
|
---|
34 |
|
---|
35 | // recurrence
|
---|
36 | for (k=1; k<=M_; k++)
|
---|
37 | {
|
---|
38 | int j;
|
---|
39 | for (j=0; j < nbEchantillons; j++)
|
---|
40 | {
|
---|
41 | travail(j) *= exponFourier_(j);
|
---|
42 | coefSolution(M_+k) += travail(j);
|
---|
43 | }
|
---|
44 | coefSolution(M_-k) = conj(coefSolution(M_+k));
|
---|
45 | }
|
---|
46 | }
|
---|
47 |
|
---|
48 | void FSApproximationIrregularSampling::makeToeplitzMatrix(int M)
|
---|
49 | {
|
---|
50 | int j,k;
|
---|
51 | M_ = M;
|
---|
52 | int nbEchantillons = samplingValues_.Size();
|
---|
53 | // matrice de Toeplitz
|
---|
54 | if (exponFourier_.Size() == 0) calculeExponentiellesFourier();
|
---|
55 |
|
---|
56 | TVector<complex<double> > gamma(2*M_+1);
|
---|
57 | gamma = complex<double>(0.,0.);
|
---|
58 | // initialisation d'un tableau de travail pour calcul des termes
|
---|
59 | // de la matrice par recurrence
|
---|
60 | TVector<complex<double> > travail(nbEchantillons);
|
---|
61 | travail = poids_;
|
---|
62 |
|
---|
63 | for (j=0; j<nbEchantillons; j++) gamma(0) += travail(j);
|
---|
64 |
|
---|
65 | // recurrence
|
---|
66 | for (k=1; k<=2*M_; k++)
|
---|
67 | {
|
---|
68 |
|
---|
69 | for (j=0; j<nbEchantillons; j++)
|
---|
70 | {
|
---|
71 | travail(j) *= exponFourier_(j);
|
---|
72 | gamma(k) += travail(j);
|
---|
73 | }
|
---|
74 |
|
---|
75 | }
|
---|
76 |
|
---|
77 | tptz_.setMatrix(gamma);
|
---|
78 | }
|
---|
79 | void FSApproximationIrregularSampling::approximateSignal(int M, const TVector<double>& signal)
|
---|
80 | {
|
---|
81 | int k;
|
---|
82 | if (delta_ <= 1./(2.*M) )
|
---|
83 | {
|
---|
84 | cout << " FSApproximationIrregularSampling : BON ECHANTILLONNAGE " << endl;
|
---|
85 | }
|
---|
86 | else
|
---|
87 | {
|
---|
88 | cout << " FSApproximationIrregularSampling : ATTENTION : SIGNAL SOUS-ECHANTILLONNE " << endl;
|
---|
89 | cout << " deltaMax (normalise) = " << delta_ << " devrait etre inferieur a " << 1./(2.*M) << endl;
|
---|
90 | cout << " ecart max intervient entre echantillon no " << nokdelta_ << " et le suivant, abscisse= " << samplingValues_(nokdelta_)*samplingRange_+samplingOffset_ << endl;
|
---|
91 |
|
---|
92 | }
|
---|
93 | // PrtTim(" avant toeplitz " );
|
---|
94 |
|
---|
95 | if ( M != M_ ) makeToeplitzMatrix(M);
|
---|
96 |
|
---|
97 | // PrtTim(" fin toeplitz " );
|
---|
98 |
|
---|
99 |
|
---|
100 | makeSignalVector(signal);
|
---|
101 | // PrtTim(" fin fabrication signal " );
|
---|
102 |
|
---|
103 | // second membre
|
---|
104 |
|
---|
105 | TVector<complex<double> > coefSolution;
|
---|
106 | makeRHS(coefSolution);
|
---|
107 | int j;
|
---|
108 | // PrtTim(" fin fabrication second membre " );
|
---|
109 |
|
---|
110 | int niter = tptz_.gradientToeplitz(coefSolution);
|
---|
111 | // int niter = tptz_.gradientToeplitzPreconTChang(coefSolution);
|
---|
112 | cout << " FSApproximationIrregularSampling::approximateSignal : converged in " << niter << " iterations " << endl;
|
---|
113 | coefFourier_.ReSize(M_+1);
|
---|
114 | coefFourier_ = coefSolution(Range(M_, 2*M_));
|
---|
115 | }
|
---|
116 |
|
---|
117 | // la periode normalisee 1 est divisee en nbInterv intervalles
|
---|
118 | // les valeurs de la solution sont donnes en 0, 1/n, ..... (n-1)/n
|
---|
119 | // le calcul est beaucoup plus rapide si nbInterv est pair (FFT)
|
---|
120 | void FSApproximationIrregularSampling::restaureRegularlySampledSignal(int nbInterv, TVector<double>& solution) const
|
---|
121 | {
|
---|
122 | cout << " c'est celui que je corrige " << endl;
|
---|
123 | int k;
|
---|
124 | if (nbInterv < 2*M_+1)
|
---|
125 | {
|
---|
126 | solution.ReSize(nbInterv);
|
---|
127 | double delta = 1./nbInterv;
|
---|
128 | for (k=0; k<nbInterv; k++)
|
---|
129 | {
|
---|
130 | double u = k*delta;
|
---|
131 | solution(k) = valeursSerie(u);
|
---|
132 | }
|
---|
133 | }
|
---|
134 | else
|
---|
135 | {
|
---|
136 | TVector<complex<double> > TFf(nbInterv);
|
---|
137 | TVector<complex<double> > bidon(nbInterv);
|
---|
138 | TFf = complex<double>(0.,0.);
|
---|
139 | TFf(Range(0,M_)) = coefFourier_;
|
---|
140 | for ( k=1; k<= M_; k++)
|
---|
141 | {
|
---|
142 | TFf(nbInterv-k) = conj(coefFourier_(k));
|
---|
143 | }
|
---|
144 | fftIntfPtr_-> FFTBackward(TFf, bidon);
|
---|
145 | cout << " taille de bidon "<< bidon.Size() << endl;
|
---|
146 | solution.ReSize(nbInterv);
|
---|
147 | for (k=0; k< nbInterv; k++) solution(k) = bidon(k).real();
|
---|
148 | }
|
---|
149 | reshapeSignalInUsersFrame(solution);
|
---|
150 | }
|
---|
151 |
|
---|
152 | void FSApproximationIrregularSampling::computeSignalOnASampling(const TVector<double>& abscisses, TVector<double>& solution ) const
|
---|
153 | {
|
---|
154 | int k;
|
---|
155 | int n= abscisses.Size();
|
---|
156 | if (n<=0)
|
---|
157 | {
|
---|
158 | cout << " restaurationEnPoints: vecteurs de points vide " << endl;
|
---|
159 | return;
|
---|
160 | }
|
---|
161 | TVector<double> abscissesLocales;
|
---|
162 | abscissesLocales = abscisses;
|
---|
163 | matchToSamplingReference(abscissesLocales);
|
---|
164 | solution.ReSize(n);
|
---|
165 | for (k=0; k<n; k++)
|
---|
166 | {
|
---|
167 | double u = abscissesLocales(k);
|
---|
168 | solution(k) = valeursSerie(u);
|
---|
169 | }
|
---|
170 | reshapeSignalInUsersFrame(abscisses, solution);
|
---|
171 |
|
---|
172 | }
|
---|
173 |
|
---|
174 | double FSApproximationIrregularSampling::estimationConditionnement() const
|
---|
175 | {
|
---|
176 | double deuxDeltaM = 2.*delta_*M_;
|
---|
177 | double cond = (1.+deuxDeltaM)/(1.-deuxDeltaM);
|
---|
178 | cond *= cond;
|
---|
179 | return cond;
|
---|
180 | }
|
---|
181 |
|
---|
182 | void FSApproximationIrregularSampling::samplingValues(TVector<double>& sv) const
|
---|
183 | {
|
---|
184 | int k;
|
---|
185 | int n = samplingValues_.Size();
|
---|
186 | sv.ReSize(n);
|
---|
187 | for (k=0; k<n;k++)
|
---|
188 | {
|
---|
189 | sv(k) = samplingOffset_+samplingRange_*samplingValues_(k);
|
---|
190 | }
|
---|
191 |
|
---|
192 | }
|
---|
193 |
|
---|
194 | // terme constant, puis cos, sin, cos, sin......
|
---|
195 | void FSApproximationIrregularSampling::coeffCosSin(TVector<double>& coef) const
|
---|
196 | {
|
---|
197 | int j;
|
---|
198 | coef.ReSize(2*M_+1);
|
---|
199 | coef(0) = coefFourier_(0).real();
|
---|
200 | for (j=1; j<M_; j++)
|
---|
201 | {
|
---|
202 | double aj = 2.*coefFourier_(j).real();
|
---|
203 | double bj = -2.*coefFourier_(j).imag();
|
---|
204 | coef(2*(j-1)+1) = aj;
|
---|
205 | coef(2*(j-1)+2) = bj;
|
---|
206 | }
|
---|
207 | coef *= normeSignal_;
|
---|
208 | }
|
---|
209 |
|
---|
210 | // exprime les valeurs d'abscisses, selon la reference locale
|
---|
211 | void FSApproximationIrregularSampling::matchToSamplingReference(TVector<double>& sampling) const
|
---|
212 |
|
---|
213 | {
|
---|
214 | int k;
|
---|
215 | int compteur = sampling.Size();
|
---|
216 | double fac = 1./samplingRange_;
|
---|
217 | for (k=0; k<compteur; k++)
|
---|
218 | {
|
---|
219 | sampling(k) = (sampling(k)-samplingOffset_)*fac;
|
---|
220 |
|
---|
221 | }
|
---|
222 | if ( sampling(0) <0. || sampling(compteur-1) >1. )
|
---|
223 | {
|
---|
224 | cout << " matchToSamplingReference: points hors [0.,1.] " << endl;
|
---|
225 | cout << " " << sampling(0) << " " << sampling(compteur-1) << endl;
|
---|
226 | }
|
---|
227 | }
|
---|
228 |
|
---|
229 | // exprime les valeurs d'echantillonnage entre 0 et 1
|
---|
230 | void FSApproximationIrregularSampling::resizeSamplingIn_0_1(double offset, double range)
|
---|
231 | {
|
---|
232 | int k;
|
---|
233 | int compteur = samplingValues_.Size();
|
---|
234 | samplingOffset_ = offset;
|
---|
235 | samplingRange_ = range;
|
---|
236 | double fac = 1./samplingRange_;
|
---|
237 | for (k=0; k<compteur ;k++)
|
---|
238 | {
|
---|
239 | samplingValues_(k) = (samplingValues_(k)-samplingOffset_)*fac;
|
---|
240 | }
|
---|
241 | }
|
---|
242 |
|
---|
243 | void FSApproximationIrregularSampling::computeWeights()
|
---|
244 | {
|
---|
245 | int k;
|
---|
246 | int nbEchantillons = samplingValues_.Size();
|
---|
247 | nokdelta_ = 0;
|
---|
248 |
|
---|
249 | // calcul de l'ecart maximum entre deux temps d'echantillonnage consecutifs
|
---|
250 | delta_ = samplingValues_(0)-samplingValues_(nbEchantillons-1)+1;
|
---|
251 | for (k=0; k< nbEchantillons-1; k++)
|
---|
252 | {
|
---|
253 | double diff = samplingValues_(k+1)-samplingValues_(k);
|
---|
254 | if ( diff > delta_ )
|
---|
255 | {
|
---|
256 | delta_ = diff;
|
---|
257 | nokdelta_ = k;
|
---|
258 | }
|
---|
259 | }
|
---|
260 | // calcul des poids (pour tenir compte de l'irregularite de
|
---|
261 | // l'echantillonnage)
|
---|
262 | poids_.ReSize(nbEchantillons);
|
---|
263 | poids_(0) = 0.5*(samplingValues_(1)-samplingValues_(nbEchantillons-1) + 1.);
|
---|
264 | for (k=1; k< nbEchantillons-1; k++)
|
---|
265 | {
|
---|
266 | poids_(k) = 0.5*(samplingValues_(k+1)-samplingValues_(k-1));
|
---|
267 | }
|
---|
268 | poids_(nbEchantillons-1) = 0.5*(samplingValues_(0) +1 - samplingValues_(nbEchantillons-2));
|
---|
269 |
|
---|
270 | }
|
---|
271 | void FSApproximationIrregularSampling::NormSignal()
|
---|
272 | {
|
---|
273 | int k;
|
---|
274 | int nbEchantillons = samplingValues_.Size();
|
---|
275 | normeSignal_=0;
|
---|
276 | for (k=0; k< nbEchantillons; k++)
|
---|
277 | {
|
---|
278 | double s = signal_(k);
|
---|
279 | normeSignal_ += s*s*poids_(k);
|
---|
280 | }
|
---|
281 | normeSignal_=sqrt(normeSignal_);
|
---|
282 | double fac = 1./normeSignal_;
|
---|
283 | signal_ *= fac;
|
---|
284 | }
|
---|
285 |
|
---|
286 |
|
---|
287 |
|
---|
288 | void FSApproximationIrregularSampling::reshapeSignalInUsersFrame(const TVector<double>& abscisses, TVector<double>& resultat) const
|
---|
289 | {
|
---|
290 | if (resultat.Size() <= 0)
|
---|
291 | {
|
---|
292 | cout << " reshapeSignalInUsersFrame: vecteur solution VIDE" << endl;
|
---|
293 | }
|
---|
294 | resultat *= normeSignal_;
|
---|
295 | }
|
---|
296 |
|
---|
297 | void FSApproximationIrregularSampling::reshapeSignalInUsersFrame(TVector<double>& resultat) const
|
---|
298 | {
|
---|
299 | if (resultat.Size() <= 0)
|
---|
300 | {
|
---|
301 | cout << " reshapeSignalInUsersFrame: vecteur solution VIDE" << endl;
|
---|
302 | }
|
---|
303 | resultat *= normeSignal_;
|
---|
304 | }
|
---|
305 |
|
---|
306 |
|
---|
307 | void FSApproximationIrregularSampling::makeSamplingVector(const TVector<double>& sampling, double offset, double range)
|
---|
308 | {
|
---|
309 | samplingValues_.ReSize(sampling.Size());
|
---|
310 | samplingValues_ = sampling;
|
---|
311 | resizeSamplingIn_0_1(offset, range);
|
---|
312 | computeWeights();
|
---|
313 | }
|
---|
314 |
|
---|
315 | void FSApproximationIrregularSampling::makeSignalVector(const TVector<double>& signal)
|
---|
316 | {
|
---|
317 | int n = samplingValues_.Size();
|
---|
318 | if (n != signal.Size() )
|
---|
319 | {
|
---|
320 | cout << " echantillonnage et signal n'ont pas les memes dimensions " << endl;
|
---|
321 | }
|
---|
322 | signal_ = signal;
|
---|
323 | NormSignal();
|
---|
324 | }
|
---|
325 |
|
---|
326 |
|
---|
327 |
|
---|
328 |
|
---|
329 |
|
---|
330 | void FSApproximationIrregularSampling::restaureSignal(TVector<double>& solution) const
|
---|
331 | {
|
---|
332 | int k;
|
---|
333 | int n= samplingValues_.Size();
|
---|
334 | if (n<=0)
|
---|
335 | {
|
---|
336 | cout << " restaurationEnPoints: vecteurs de points vide " << endl;
|
---|
337 | return;
|
---|
338 | }
|
---|
339 | solution.ReSize(n);
|
---|
340 | for (k=0; k<n; k++)
|
---|
341 | {
|
---|
342 | double u = samplingValues_(k);
|
---|
343 | solution(k) = valeursSerie(u);
|
---|
344 | }
|
---|
345 | reshapeSignalInUsersFrame(solution);
|
---|
346 | }
|
---|
347 |
|
---|
348 |
|
---|