| 1 | /*
 | 
|---|
| 2 | ** FFT and FHT routines
 | 
|---|
| 3 | **  Copyright 1988, 1993; Ron Mayer
 | 
|---|
| 4 | **  
 | 
|---|
| 5 | **  fht(fz,n);
 | 
|---|
| 6 | **      Does a hartley transform of "n" points in the array "fz".
 | 
|---|
| 7 | **  fft(n,real,imag)
 | 
|---|
| 8 | **      Does a fourier transform of "n" points of the "real" and
 | 
|---|
| 9 | **      "imag" arrays.
 | 
|---|
| 10 | **  ifft(n,real,imag)
 | 
|---|
| 11 | **      Does an inverse fourier transform of "n" points of the "real"
 | 
|---|
| 12 | **      and "imag" arrays.
 | 
|---|
| 13 | **  realfft(n,real)
 | 
|---|
| 14 | **      Does a real-valued fourier transform of "n" points of the
 | 
|---|
| 15 | **      "real" array. The real part of the transform ends
 | 
|---|
| 16 | **      up in the first half of the array and the imaginary part of the
 | 
|---|
| 17 | **      transform ends up in the second half of the array.
 | 
|---|
| 18 | **  realifft(n,real)
 | 
|---|
| 19 | **      The inverse of the realfft() routine above.
 | 
|---|
| 20 | **      
 | 
|---|
| 21 | **      
 | 
|---|
| 22 | ** NOTE: This routine uses at least 2 patented algorithms, and may be
 | 
|---|
| 23 | **       under the restrictions of a bunch of different organizations.
 | 
|---|
| 24 | **       Although I wrote it completely myself; it is kind of a derivative
 | 
|---|
| 25 | **       of a routine I once authored and released under the GPL, so it
 | 
|---|
| 26 | **       may fall under the free software foundation's restrictions;
 | 
|---|
| 27 | **       it was worked on as a Stanford Univ project, so they claim
 | 
|---|
| 28 | **       some rights to it; it was further optimized at work here, so
 | 
|---|
| 29 | **       I think this company claims parts of it.  The patents are
 | 
|---|
| 30 | **       held by R. Bracewell (the FHT algorithm) and O. Buneman (the
 | 
|---|
| 31 | **       trig generator), both at Stanford Univ.
 | 
|---|
| 32 | **       If it were up to me, I'd say go do whatever you want with it;
 | 
|---|
| 33 | **       but it would be polite to give credit to the following people
 | 
|---|
| 34 | **       if you use this anywhere:
 | 
|---|
| 35 | **           Euler     - probable inventor of the fourier transform.
 | 
|---|
| 36 | **           Gauss     - probable inventor of the FFT.
 | 
|---|
| 37 | **           Hartley   - probable inventor of the hartley transform.
 | 
|---|
| 38 | **           Buneman   - for a really cool trig generator
 | 
|---|
| 39 | **           Mayer(me) - for authoring this particular version and
 | 
|---|
| 40 | **                       including all the optimizations in one package.
 | 
|---|
| 41 | **       Thanks,
 | 
|---|
| 42 | **       Ron Mayer; mayer@acuson.com
 | 
|---|
| 43 | **
 | 
|---|
| 44 | */
 | 
|---|
| 45 | 
 | 
|---|
| 46 | #include "fftmayer.h"
 | 
|---|
| 47 | 
 | 
|---|
| 48 | #define GOOD_TRIG
 | 
|---|
| 49 | #define REAL r_4
 | 
|---|
| 50 | #include "trigtbl.h"
 | 
|---|
| 51 | 
 | 
|---|
| 52 | char fht_r4_version[] = "Brcwl-Hrtly-Ron-dbld";
 | 
|---|
| 53 | 
 | 
|---|
| 54 | #define SQRT2_2   0.70710678118654752440084436210484
 | 
|---|
| 55 | #define SQRT2   2*0.70710678118654752440084436210484
 | 
|---|
| 56 | 
 | 
|---|
| 57 | void fht_r4(r_4 *fz,int n)
 | 
|---|
| 58 | {
 | 
|---|
| 59 |  r_4 a,b;
 | 
|---|
| 60 |  r_4 c1,s1,s2,c2,s3,c3,s4,c4;
 | 
|---|
| 61 |  r_4 f0,g0,f1,g1,f2,g2,f3,g3;
 | 
|---|
| 62 |  int i,k,k1,k2,k3,k4,kx;
 | 
|---|
| 63 |  r_4 *fi,*fn,*gi;
 | 
|---|
| 64 |  TRIG_VARS;
 | 
|---|
| 65 | 
 | 
|---|
| 66 |  for (k1=1,k2=0;k1<n;k1++)
 | 
|---|
| 67 |     {
 | 
|---|
| 68 |      r_4 a;
 | 
|---|
| 69 |      for (k=n>>1; (!((k2^=k)&k)); k>>=1);
 | 
|---|
| 70 |      if (k1>k2)
 | 
|---|
| 71 |         {
 | 
|---|
| 72 |              a=fz[k1];fz[k1]=fz[k2];fz[k2]=a;
 | 
|---|
| 73 |         }
 | 
|---|
| 74 |     }
 | 
|---|
| 75 |  for ( k=0 ; (1<<k)<n ; k++ );
 | 
|---|
| 76 |  k  &= 1;
 | 
|---|
| 77 |  if (k==0)
 | 
|---|
| 78 |     {
 | 
|---|
| 79 |          for (fi=fz,fn=fz+n;fi<fn;fi+=4)
 | 
|---|
| 80 |             {
 | 
|---|
| 81 |              r_4 f0,f1,f2,f3;
 | 
|---|
| 82 |              f1     = fi[0 ]-fi[1 ];
 | 
|---|
| 83 |              f0     = fi[0 ]+fi[1 ];
 | 
|---|
| 84 |              f3     = fi[2 ]-fi[3 ];
 | 
|---|
| 85 |              f2     = fi[2 ]+fi[3 ];
 | 
|---|
| 86 |              fi[2 ] = (f0-f2);  
 | 
|---|
| 87 |              fi[0 ] = (f0+f2);
 | 
|---|
| 88 |              fi[3 ] = (f1-f3);  
 | 
|---|
| 89 |              fi[1 ] = (f1+f3);
 | 
|---|
| 90 |             }
 | 
|---|
| 91 |     }
 | 
|---|
| 92 |  else
 | 
|---|
| 93 |     {
 | 
|---|
| 94 |          for (fi=fz,fn=fz+n,gi=fi+1;fi<fn;fi+=8,gi+=8)
 | 
|---|
| 95 |             {
 | 
|---|
| 96 |              r_4 s1,c1,s2,c2,s3,c3,s4,c4,g0,f0,f1,g1,f2,g2,f3,g3;
 | 
|---|
| 97 |              c1     = fi[0 ] - gi[0 ];
 | 
|---|
| 98 |              s1     = fi[0 ] + gi[0 ];
 | 
|---|
| 99 |              c2     = fi[2 ] - gi[2 ];
 | 
|---|
| 100 |              s2     = fi[2 ] + gi[2 ];
 | 
|---|
| 101 |              c3     = fi[4 ] - gi[4 ];
 | 
|---|
| 102 |              s3     = fi[4 ] + gi[4 ];
 | 
|---|
| 103 |              c4     = fi[6 ] - gi[6 ];
 | 
|---|
| 104 |              s4     = fi[6 ] + gi[6 ];
 | 
|---|
| 105 |              f1     = (s1 - s2);        
 | 
|---|
| 106 |              f0     = (s1 + s2);
 | 
|---|
| 107 |              g1     = (c1 - c2);        
 | 
|---|
| 108 |              g0     = (c1 + c2);
 | 
|---|
| 109 |              f3     = (s3 - s4);        
 | 
|---|
| 110 |              f2     = (s3 + s4);
 | 
|---|
| 111 |              g3     = SQRT2*c4;         
 | 
|---|
| 112 |              g2     = SQRT2*c3;
 | 
|---|
| 113 |              fi[4 ] = f0 - f2;
 | 
|---|
| 114 |              fi[0 ] = f0 + f2;
 | 
|---|
| 115 |              fi[6 ] = f1 - f3;
 | 
|---|
| 116 |              fi[2 ] = f1 + f3;
 | 
|---|
| 117 |              gi[4 ] = g0 - g2;
 | 
|---|
| 118 |              gi[0 ] = g0 + g2;
 | 
|---|
| 119 |              gi[6 ] = g1 - g3;
 | 
|---|
| 120 |              gi[2 ] = g1 + g3;
 | 
|---|
| 121 |             }
 | 
|---|
| 122 |     }
 | 
|---|
| 123 |  if (n<16) return;
 | 
|---|
| 124 | 
 | 
|---|
| 125 |  do
 | 
|---|
| 126 |     {
 | 
|---|
| 127 |      r_4 s1,c1;
 | 
|---|
| 128 |      k  += 2;
 | 
|---|
| 129 |      k1  = 1  << k;
 | 
|---|
| 130 |      k2  = k1 << 1;
 | 
|---|
| 131 |      k4  = k2 << 1;
 | 
|---|
| 132 |      k3  = k2 + k1;
 | 
|---|
| 133 |      kx  = k1 >> 1;
 | 
|---|
| 134 |          fi  = fz;
 | 
|---|
| 135 |          gi  = fi + kx;
 | 
|---|
| 136 |          fn  = fz + n;
 | 
|---|
| 137 |          do
 | 
|---|
| 138 |             {
 | 
|---|
| 139 |              r_4 g0,f0,f1,g1,f2,g2,f3,g3;
 | 
|---|
| 140 |              f1      = fi[0 ] - fi[k1];
 | 
|---|
| 141 |              f0      = fi[0 ] + fi[k1];
 | 
|---|
| 142 |              f3      = fi[k2] - fi[k3];
 | 
|---|
| 143 |              f2      = fi[k2] + fi[k3];
 | 
|---|
| 144 |              fi[k2]  = f0         - f2;
 | 
|---|
| 145 |              fi[0 ]  = f0         + f2;
 | 
|---|
| 146 |              fi[k3]  = f1         - f3;
 | 
|---|
| 147 |              fi[k1]  = f1         + f3;
 | 
|---|
| 148 |              g1      = gi[0 ] - gi[k1];
 | 
|---|
| 149 |              g0      = gi[0 ] + gi[k1];
 | 
|---|
| 150 |              g3      = SQRT2  * gi[k3];
 | 
|---|
| 151 |              g2      = SQRT2  * gi[k2];
 | 
|---|
| 152 |              gi[k2]  = g0         - g2;
 | 
|---|
| 153 |              gi[0 ]  = g0         + g2;
 | 
|---|
| 154 |              gi[k3]  = g1         - g3;
 | 
|---|
| 155 |              gi[k1]  = g1         + g3;
 | 
|---|
| 156 |              gi     += k4;
 | 
|---|
| 157 |              fi     += k4;
 | 
|---|
| 158 |             } while (fi<fn);
 | 
|---|
| 159 |      TRIG_INIT(k,c1,s1);
 | 
|---|
| 160 |      for (i=1;i<kx;i++)
 | 
|---|
| 161 |         {
 | 
|---|
| 162 |          r_4 c2,s2;
 | 
|---|
| 163 |          TRIG_NEXT(k,c1,s1);
 | 
|---|
| 164 |          c2 = c1*c1 - s1*s1;
 | 
|---|
| 165 |          s2 = 2*(c1*s1);
 | 
|---|
| 166 |              fn = fz + n;
 | 
|---|
| 167 |              fi = fz +i;
 | 
|---|
| 168 |              gi = fz +k1-i;
 | 
|---|
| 169 |              do
 | 
|---|
| 170 |                 {
 | 
|---|
| 171 |                  r_4 a,b,g0,f0,f1,g1,f2,g2,f3,g3;
 | 
|---|
| 172 |                  b       = s2*fi[k1] - c2*gi[k1];
 | 
|---|
| 173 |                  a       = c2*fi[k1] + s2*gi[k1];
 | 
|---|
| 174 |                  f1      = fi[0 ]    - a;
 | 
|---|
| 175 |                  f0      = fi[0 ]    + a;
 | 
|---|
| 176 |                  g1      = gi[0 ]    - b;
 | 
|---|
| 177 |                  g0      = gi[0 ]    + b;
 | 
|---|
| 178 |                  b       = s2*fi[k3] - c2*gi[k3];
 | 
|---|
| 179 |                  a       = c2*fi[k3] + s2*gi[k3];
 | 
|---|
| 180 |                  f3      = fi[k2]    - a;
 | 
|---|
| 181 |                  f2      = fi[k2]    + a;
 | 
|---|
| 182 |                  g3      = gi[k2]    - b;
 | 
|---|
| 183 |                  g2      = gi[k2]    + b;
 | 
|---|
| 184 |                  b       = s1*f2     - c1*g3;
 | 
|---|
| 185 |                  a       = c1*f2     + s1*g3;
 | 
|---|
| 186 |                  fi[k2]  = f0        - a;
 | 
|---|
| 187 |                  fi[0 ]  = f0        + a;
 | 
|---|
| 188 |                  gi[k3]  = g1        - b;
 | 
|---|
| 189 |                  gi[k1]  = g1        + b;
 | 
|---|
| 190 |                  b       = c1*g2     - s1*f3;
 | 
|---|
| 191 |                  a       = s1*g2     + c1*f3;
 | 
|---|
| 192 |                  gi[k2]  = g0        - a;
 | 
|---|
| 193 |                  gi[0 ]  = g0        + a;
 | 
|---|
| 194 |                  fi[k3]  = f1        - b;
 | 
|---|
| 195 |                  fi[k1]  = f1        + b;
 | 
|---|
| 196 |                  gi     += k4;
 | 
|---|
| 197 |                  fi     += k4;
 | 
|---|
| 198 |                 } while (fi<fn);
 | 
|---|
| 199 |         }
 | 
|---|
| 200 |      TRIG_RESET(k,c1,s1);
 | 
|---|
| 201 |     } while (k4<n);
 | 
|---|
| 202 | }
 | 
|---|
| 203 | 
 | 
|---|
| 204 | 
 | 
|---|
| 205 | void ifft_r4(int n, r_4 *real, r_4 *imag)
 | 
|---|
| 206 | {
 | 
|---|
| 207 |  r_4 a,b,c,d;
 | 
|---|
| 208 |  r_4 q,r,s,t;
 | 
|---|
| 209 |  int i,j,k;
 | 
|---|
| 210 |  fht_r4(real,n);
 | 
|---|
| 211 |  fht_r4(imag,n);
 | 
|---|
| 212 |  for (i=1,j=n-1,k=n/2;i<k;i++,j--) {
 | 
|---|
| 213 |   a = real[i]; b = real[j];  q=a+b; r=a-b;
 | 
|---|
| 214 |   c = imag[i]; d = imag[j];  s=c+d; t=c-d;
 | 
|---|
| 215 |   imag[i] = (s+r)*0.5;  imag[j] = (s-r)*0.5;
 | 
|---|
| 216 |   real[i] = (q-t)*0.5;  real[j] = (q+t)*0.5;
 | 
|---|
| 217 |  }
 | 
|---|
| 218 | }
 | 
|---|
| 219 | 
 | 
|---|
| 220 | void realfft_r4(int n, r_4 *real)
 | 
|---|
| 221 | {
 | 
|---|
| 222 |  r_4 a,b,c,d;
 | 
|---|
| 223 |  int i,j,k;
 | 
|---|
| 224 |  fht_r4(real,n);
 | 
|---|
| 225 |  for (i=1,j=n-1,k=n/2;i<k;i++,j--) {
 | 
|---|
| 226 |   a = real[i];
 | 
|---|
| 227 |   b = real[j];
 | 
|---|
| 228 |   real[j] = (a-b)*0.5;
 | 
|---|
| 229 |   real[i] = (a+b)*0.5;
 | 
|---|
| 230 |  }
 | 
|---|
| 231 | }
 | 
|---|
| 232 | 
 | 
|---|
| 233 | void fft_r4(int n, r_4 *real,r_4 *imag)
 | 
|---|
| 234 | {
 | 
|---|
| 235 |  r_4 a,b,c,d;
 | 
|---|
| 236 |  r_4 q,r,s,t;
 | 
|---|
| 237 |  int i,j,k;
 | 
|---|
| 238 |  for (i=1,j=n-1,k=n/2;i<k;i++,j--) {
 | 
|---|
| 239 |   a = real[i]; b = real[j];  q=a+b; r=a-b;
 | 
|---|
| 240 |   c = imag[i]; d = imag[j];  s=c+d; t=c-d;
 | 
|---|
| 241 |   real[i] = (q+t)*.5; real[j] = (q-t)*.5;
 | 
|---|
| 242 |   imag[i] = (s-r)*.5; imag[j] = (s+r)*.5;
 | 
|---|
| 243 |  }
 | 
|---|
| 244 |  fht_r4(real,n);
 | 
|---|
| 245 |  fht_r4(imag,n);
 | 
|---|
| 246 | }
 | 
|---|
| 247 | 
 | 
|---|
| 248 | void realifft_r4(int n,r_4 *real)
 | 
|---|
| 249 | {
 | 
|---|
| 250 |  r_4 a,b,c,d;
 | 
|---|
| 251 |  int i,j,k;
 | 
|---|
| 252 |  for (i=1,j=n-1,k=n/2;i<k;i++,j--) {
 | 
|---|
| 253 |   a = real[i];
 | 
|---|
| 254 |   b = real[j];
 | 
|---|
| 255 |   real[j] = (a-b);
 | 
|---|
| 256 |   real[i] = (a+b);
 | 
|---|
| 257 |  }
 | 
|---|
| 258 |  fht_r4(real,n);
 | 
|---|
| 259 | }
 | 
|---|