1 | /*
|
---|
2 | ** FFT and FHT routines
|
---|
3 | ** Copyright 1988, 1993; Ron Mayer
|
---|
4 | **
|
---|
5 | ** fht(fz,n);
|
---|
6 | ** Does a hartley transform of "n" points in the array "fz".
|
---|
7 | ** fft(n,real,imag)
|
---|
8 | ** Does a fourier transform of "n" points of the "real" and
|
---|
9 | ** "imag" arrays.
|
---|
10 | ** ifft(n,real,imag)
|
---|
11 | ** Does an inverse fourier transform of "n" points of the "real"
|
---|
12 | ** and "imag" arrays.
|
---|
13 | ** realfft(n,real)
|
---|
14 | ** Does a real-valued fourier transform of "n" points of the
|
---|
15 | ** "real" array. The real part of the transform ends
|
---|
16 | ** up in the first half of the array and the imaginary part of the
|
---|
17 | ** transform ends up in the second half of the array.
|
---|
18 | ** realifft(n,real)
|
---|
19 | ** The inverse of the realfft() routine above.
|
---|
20 | **
|
---|
21 | **
|
---|
22 | ** NOTE: This routine uses at least 2 patented algorithms, and may be
|
---|
23 | ** under the restrictions of a bunch of different organizations.
|
---|
24 | ** Although I wrote it completely myself; it is kind of a derivative
|
---|
25 | ** of a routine I once authored and released under the GPL, so it
|
---|
26 | ** may fall under the free software foundation's restrictions;
|
---|
27 | ** it was worked on as a Stanford Univ project, so they claim
|
---|
28 | ** some rights to it; it was further optimized at work here, so
|
---|
29 | ** I think this company claims parts of it. The patents are
|
---|
30 | ** held by R. Bracewell (the FHT algorithm) and O. Buneman (the
|
---|
31 | ** trig generator), both at Stanford Univ.
|
---|
32 | ** If it were up to me, I'd say go do whatever you want with it;
|
---|
33 | ** but it would be polite to give credit to the following people
|
---|
34 | ** if you use this anywhere:
|
---|
35 | ** Euler - probable inventor of the fourier transform.
|
---|
36 | ** Gauss - probable inventor of the FFT.
|
---|
37 | ** Hartley - probable inventor of the hartley transform.
|
---|
38 | ** Buneman - for a really cool trig generator
|
---|
39 | ** Mayer(me) - for authoring this particular version and
|
---|
40 | ** including all the optimizations in one package.
|
---|
41 | ** Thanks,
|
---|
42 | ** Ron Mayer; mayer@acuson.com
|
---|
43 | **
|
---|
44 | */
|
---|
45 |
|
---|
46 | #include "fftmayer.h"
|
---|
47 |
|
---|
48 | #define GOOD_TRIG
|
---|
49 | #define REAL r_8
|
---|
50 | #include "trigtbl.h"
|
---|
51 |
|
---|
52 | char fht_r8_version[] = "Brcwl-Hrtly-Ron-dbld";
|
---|
53 |
|
---|
54 | #define SQRT2_2 0.70710678118654752440084436210484
|
---|
55 | #define SQRT2 2*0.70710678118654752440084436210484
|
---|
56 |
|
---|
57 | void fht_r8(r_8 *fz,int n)
|
---|
58 | {
|
---|
59 | r_8 a,b;
|
---|
60 | r_8 c1,s1,s2,c2,s3,c3,s4,c4;
|
---|
61 | r_8 f0,g0,f1,g1,f2,g2,f3,g3;
|
---|
62 | int i,k,k1,k2,k3,k4,kx;
|
---|
63 | r_8 *fi,*fn,*gi;
|
---|
64 | TRIG_VARS;
|
---|
65 |
|
---|
66 | for (k1=1,k2=0;k1<n;k1++)
|
---|
67 | {
|
---|
68 | r_8 a;
|
---|
69 | for (k=n>>1; (!((k2^=k)&k)); k>>=1);
|
---|
70 | if (k1>k2)
|
---|
71 | {
|
---|
72 | a=fz[k1];fz[k1]=fz[k2];fz[k2]=a;
|
---|
73 | }
|
---|
74 | }
|
---|
75 | for ( k=0 ; (1<<k)<n ; k++ );
|
---|
76 | k &= 1;
|
---|
77 | if (k==0)
|
---|
78 | {
|
---|
79 | for (fi=fz,fn=fz+n;fi<fn;fi+=4)
|
---|
80 | {
|
---|
81 | r_8 f0,f1,f2,f3;
|
---|
82 | f1 = fi[0 ]-fi[1 ];
|
---|
83 | f0 = fi[0 ]+fi[1 ];
|
---|
84 | f3 = fi[2 ]-fi[3 ];
|
---|
85 | f2 = fi[2 ]+fi[3 ];
|
---|
86 | fi[2 ] = (f0-f2);
|
---|
87 | fi[0 ] = (f0+f2);
|
---|
88 | fi[3 ] = (f1-f3);
|
---|
89 | fi[1 ] = (f1+f3);
|
---|
90 | }
|
---|
91 | }
|
---|
92 | else
|
---|
93 | {
|
---|
94 | for (fi=fz,fn=fz+n,gi=fi+1;fi<fn;fi+=8,gi+=8)
|
---|
95 | {
|
---|
96 | r_8 s1,c1,s2,c2,s3,c3,s4,c4,g0,f0,f1,g1,f2,g2,f3,g3;
|
---|
97 | c1 = fi[0 ] - gi[0 ];
|
---|
98 | s1 = fi[0 ] + gi[0 ];
|
---|
99 | c2 = fi[2 ] - gi[2 ];
|
---|
100 | s2 = fi[2 ] + gi[2 ];
|
---|
101 | c3 = fi[4 ] - gi[4 ];
|
---|
102 | s3 = fi[4 ] + gi[4 ];
|
---|
103 | c4 = fi[6 ] - gi[6 ];
|
---|
104 | s4 = fi[6 ] + gi[6 ];
|
---|
105 | f1 = (s1 - s2);
|
---|
106 | f0 = (s1 + s2);
|
---|
107 | g1 = (c1 - c2);
|
---|
108 | g0 = (c1 + c2);
|
---|
109 | f3 = (s3 - s4);
|
---|
110 | f2 = (s3 + s4);
|
---|
111 | g3 = SQRT2*c4;
|
---|
112 | g2 = SQRT2*c3;
|
---|
113 | fi[4 ] = f0 - f2;
|
---|
114 | fi[0 ] = f0 + f2;
|
---|
115 | fi[6 ] = f1 - f3;
|
---|
116 | fi[2 ] = f1 + f3;
|
---|
117 | gi[4 ] = g0 - g2;
|
---|
118 | gi[0 ] = g0 + g2;
|
---|
119 | gi[6 ] = g1 - g3;
|
---|
120 | gi[2 ] = g1 + g3;
|
---|
121 | }
|
---|
122 | }
|
---|
123 | if (n<16) return;
|
---|
124 |
|
---|
125 | do
|
---|
126 | {
|
---|
127 | r_8 s1,c1;
|
---|
128 | k += 2;
|
---|
129 | k1 = 1 << k;
|
---|
130 | k2 = k1 << 1;
|
---|
131 | k4 = k2 << 1;
|
---|
132 | k3 = k2 + k1;
|
---|
133 | kx = k1 >> 1;
|
---|
134 | fi = fz;
|
---|
135 | gi = fi + kx;
|
---|
136 | fn = fz + n;
|
---|
137 | do
|
---|
138 | {
|
---|
139 | r_8 g0,f0,f1,g1,f2,g2,f3,g3;
|
---|
140 | f1 = fi[0 ] - fi[k1];
|
---|
141 | f0 = fi[0 ] + fi[k1];
|
---|
142 | f3 = fi[k2] - fi[k3];
|
---|
143 | f2 = fi[k2] + fi[k3];
|
---|
144 | fi[k2] = f0 - f2;
|
---|
145 | fi[0 ] = f0 + f2;
|
---|
146 | fi[k3] = f1 - f3;
|
---|
147 | fi[k1] = f1 + f3;
|
---|
148 | g1 = gi[0 ] - gi[k1];
|
---|
149 | g0 = gi[0 ] + gi[k1];
|
---|
150 | g3 = SQRT2 * gi[k3];
|
---|
151 | g2 = SQRT2 * gi[k2];
|
---|
152 | gi[k2] = g0 - g2;
|
---|
153 | gi[0 ] = g0 + g2;
|
---|
154 | gi[k3] = g1 - g3;
|
---|
155 | gi[k1] = g1 + g3;
|
---|
156 | gi += k4;
|
---|
157 | fi += k4;
|
---|
158 | } while (fi<fn);
|
---|
159 | TRIG_INIT(k,c1,s1);
|
---|
160 | for (i=1;i<kx;i++)
|
---|
161 | {
|
---|
162 | r_8 c2,s2;
|
---|
163 | TRIG_NEXT(k,c1,s1);
|
---|
164 | c2 = c1*c1 - s1*s1;
|
---|
165 | s2 = 2*(c1*s1);
|
---|
166 | fn = fz + n;
|
---|
167 | fi = fz +i;
|
---|
168 | gi = fz +k1-i;
|
---|
169 | do
|
---|
170 | {
|
---|
171 | r_8 a,b,g0,f0,f1,g1,f2,g2,f3,g3;
|
---|
172 | b = s2*fi[k1] - c2*gi[k1];
|
---|
173 | a = c2*fi[k1] + s2*gi[k1];
|
---|
174 | f1 = fi[0 ] - a;
|
---|
175 | f0 = fi[0 ] + a;
|
---|
176 | g1 = gi[0 ] - b;
|
---|
177 | g0 = gi[0 ] + b;
|
---|
178 | b = s2*fi[k3] - c2*gi[k3];
|
---|
179 | a = c2*fi[k3] + s2*gi[k3];
|
---|
180 | f3 = fi[k2] - a;
|
---|
181 | f2 = fi[k2] + a;
|
---|
182 | g3 = gi[k2] - b;
|
---|
183 | g2 = gi[k2] + b;
|
---|
184 | b = s1*f2 - c1*g3;
|
---|
185 | a = c1*f2 + s1*g3;
|
---|
186 | fi[k2] = f0 - a;
|
---|
187 | fi[0 ] = f0 + a;
|
---|
188 | gi[k3] = g1 - b;
|
---|
189 | gi[k1] = g1 + b;
|
---|
190 | b = c1*g2 - s1*f3;
|
---|
191 | a = s1*g2 + c1*f3;
|
---|
192 | gi[k2] = g0 - a;
|
---|
193 | gi[0 ] = g0 + a;
|
---|
194 | fi[k3] = f1 - b;
|
---|
195 | fi[k1] = f1 + b;
|
---|
196 | gi += k4;
|
---|
197 | fi += k4;
|
---|
198 | } while (fi<fn);
|
---|
199 | }
|
---|
200 | TRIG_RESET(k,c1,s1);
|
---|
201 | } while (k4<n);
|
---|
202 | }
|
---|
203 |
|
---|
204 |
|
---|
205 | void ifft_r8(int n, r_8 *real, r_8 *imag)
|
---|
206 | {
|
---|
207 | r_8 a,b,c,d;
|
---|
208 | r_8 q,r,s,t;
|
---|
209 | int i,j,k;
|
---|
210 | fht_r8(real,n);
|
---|
211 | fht_r8(imag,n);
|
---|
212 | for (i=1,j=n-1,k=n/2;i<k;i++,j--) {
|
---|
213 | a = real[i]; b = real[j]; q=a+b; r=a-b;
|
---|
214 | c = imag[i]; d = imag[j]; s=c+d; t=c-d;
|
---|
215 | imag[i] = (s+r)*0.5; imag[j] = (s-r)*0.5;
|
---|
216 | real[i] = (q-t)*0.5; real[j] = (q+t)*0.5;
|
---|
217 | }
|
---|
218 | }
|
---|
219 |
|
---|
220 | void realfft_r8(int n, r_8 *real)
|
---|
221 | {
|
---|
222 | r_8 a,b,c,d;
|
---|
223 | int i,j,k;
|
---|
224 | fht_r8(real,n);
|
---|
225 | for (i=1,j=n-1,k=n/2;i<k;i++,j--) {
|
---|
226 | a = real[i];
|
---|
227 | b = real[j];
|
---|
228 | real[j] = (a-b)*0.5;
|
---|
229 | real[i] = (a+b)*0.5;
|
---|
230 | }
|
---|
231 | }
|
---|
232 |
|
---|
233 | void fft_r8(int n, r_8 *real,r_8 *imag)
|
---|
234 | {
|
---|
235 | r_8 a,b,c,d;
|
---|
236 | r_8 q,r,s,t;
|
---|
237 | int i,j,k;
|
---|
238 | for (i=1,j=n-1,k=n/2;i<k;i++,j--) {
|
---|
239 | a = real[i]; b = real[j]; q=a+b; r=a-b;
|
---|
240 | c = imag[i]; d = imag[j]; s=c+d; t=c-d;
|
---|
241 | real[i] = (q+t)*.5; real[j] = (q-t)*.5;
|
---|
242 | imag[i] = (s-r)*.5; imag[j] = (s+r)*.5;
|
---|
243 | }
|
---|
244 | fht_r8(real,n);
|
---|
245 | fht_r8(imag,n);
|
---|
246 | }
|
---|
247 |
|
---|
248 | void realifft_r8(int n,r_8 *real)
|
---|
249 | {
|
---|
250 | r_8 a,b,c,d;
|
---|
251 | int i,j,k;
|
---|
252 | for (i=1,j=n-1,k=n/2;i<k;i++,j--) {
|
---|
253 | a = real[i];
|
---|
254 | b = real[j];
|
---|
255 | real[j] = (a-b);
|
---|
256 | real[i] = (a+b);
|
---|
257 | }
|
---|
258 | fht_r8(real,n);
|
---|
259 | }
|
---|