| [710] | 1 | #include "fftservintf.h" | 
|---|
|  | 2 |  | 
|---|
|  | 3 |  | 
|---|
| [1371] | 4 | /*! | 
|---|
|  | 5 | \class SOPHYA::FFTServerInterface | 
|---|
|  | 6 | \ingroup NTools | 
|---|
|  | 7 | Defines the interface for FFT (Fast Fourier Transform) operations. | 
|---|
| [1405] | 8 | Definitions : | 
|---|
|  | 9 | - Sampling period \b T | 
|---|
|  | 10 | - Sampling frequency \b fs=1/T | 
|---|
|  | 11 | - Total number of samples \b N | 
|---|
|  | 12 | - Frequency step in Fourier space \b =fs/N=1/(N*T) | 
|---|
|  | 13 | - Component frequencies | 
|---|
|  | 14 | - k=0      ->  0 | 
|---|
|  | 15 | - k=1      ->  1/(N*T) | 
|---|
|  | 16 | - k        ->  k/(N*T) | 
|---|
|  | 17 | - k=N/2    ->  1/(2*T)   (Nyquist frequency) | 
|---|
|  | 18 | - k>N/2    ->  k/(N*T)   (or negative frequency -(N-k)/(N*T)) | 
|---|
|  | 19 |  | 
|---|
|  | 20 | For a sampling period T=1, the computed Fourier components correspond to : | 
|---|
|  | 21 | \verbatim | 
|---|
|  | 22 | 0  1/N  2/N  ... 1/2  1/2+1/N  1/2+2/N ... 1-2/N  1-1/N | 
|---|
|  | 23 | 0  1/N  2/N  ... 1/2                   ...  -2/N   -1/N | 
|---|
|  | 24 | \endverbatim | 
|---|
|  | 25 |  | 
|---|
|  | 26 | For complex one-dimensional transforms: | 
|---|
|  | 27 | \f[ | 
|---|
|  | 28 | out(i) = F_{norm} \Sigma_{j} \ e^{-2 \pi \sqrt{-1} \ i \  j} \ {\rm (forward)} | 
|---|
|  | 29 | \f] | 
|---|
|  | 30 | \f[ | 
|---|
|  | 31 | out(i) = F_{norm} \Sigma_{j} \ e^{2 \pi \sqrt{-1} \ i \  j} \ {\rm (backward)} | 
|---|
|  | 32 | \f] | 
|---|
|  | 33 | i,j= 0..N-1 , where N is the input or the output array size. | 
|---|
|  | 34 |  | 
|---|
|  | 35 | For complex multi-dimensional transforms: | 
|---|
|  | 36 | \f[ | 
|---|
|  | 37 | out(i1,i2,...,id) = F_{norm} \Sigma_{j1} \Sigma_{j2} ... \Sigma_{jd} \ | 
|---|
|  | 38 | e^{-2 \pi \sqrt{-1} \ i1 \ j1} ... e^{-2 \pi \sqrt{-1} \ id \ jd} \ {\rm (forward)} | 
|---|
|  | 39 | \f] | 
|---|
|  | 40 | \f[ | 
|---|
|  | 41 | out(i1,i2,...,id) = F_{norm} \Sigma_{j1} \Sigma_{j2} ... \Sigma_{jd} \ | 
|---|
|  | 42 | e^{2 \pi \sqrt{-1} \ i1 \ j1} ... e^{2 \pi \sqrt{-1} \ id \ jd} \ {\rm (backward)} | 
|---|
|  | 43 | \f] | 
|---|
|  | 44 |  | 
|---|
|  | 45 | For real forward transforms, the input array is real, and | 
|---|
|  | 46 | the output array complex, with Fourier components up to k=N/2. | 
|---|
|  | 47 | For real backward transforms, the input array is complex and | 
|---|
|  | 48 | the output array is real. | 
|---|
| [1371] | 49 | */ | 
|---|
| [710] | 50 |  | 
|---|
|  | 51 | /* --Methode-- */ | 
|---|
|  | 52 | FFTServerInterface::FFTServerInterface(string info) | 
|---|
|  | 53 | { | 
|---|
|  | 54 | _info = info; | 
|---|
| [717] | 55 | _fgnorm = true; | 
|---|
| [710] | 56 | } | 
|---|
|  | 57 |  | 
|---|
|  | 58 | /* --Methode-- */ | 
|---|
|  | 59 | FFTServerInterface::~FFTServerInterface() | 
|---|
|  | 60 | { | 
|---|
|  | 61 | } | 
|---|
|  | 62 |  | 
|---|
| [1390] | 63 | // ----------------- Transforme pour les double ------------------- | 
|---|
|  | 64 |  | 
|---|
| [710] | 65 | /* --Methode-- */ | 
|---|
| [1405] | 66 | //! Forward Fourier transform for double precision complex data | 
|---|
|  | 67 | /*! | 
|---|
|  | 68 | \param in : Input complex array | 
|---|
|  | 69 | \param out : Output complex array | 
|---|
|  | 70 | */ | 
|---|
| [1390] | 71 | void FFTServerInterface::FFTForward(TArray< complex<r_8> > const &, TArray< complex<r_8> > &) | 
|---|
| [710] | 72 | { | 
|---|
| [1390] | 73 | throw NotAvailableOperation("FFTServer::FFTForward(TArray...) Unsupported operation !"); | 
|---|
| [710] | 74 | } | 
|---|
|  | 75 |  | 
|---|
|  | 76 | /* --Methode-- */ | 
|---|
| [1405] | 77 | //! Backward (inverse) Fourier transform for double precision complex data | 
|---|
|  | 78 | /*! | 
|---|
|  | 79 | \param in : Input complex array | 
|---|
|  | 80 | \param out : Output complex array | 
|---|
|  | 81 | */ | 
|---|
| [1390] | 82 | void FFTServerInterface::FFTBackward(TArray< complex<r_8> > const &, TArray< complex<r_8> > &) | 
|---|
| [710] | 83 | { | 
|---|
| [1390] | 84 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray...) Unsupported operation !"); | 
|---|
| [710] | 85 | } | 
|---|
|  | 86 |  | 
|---|
|  | 87 | /* --Methode-- */ | 
|---|
| [1405] | 88 | //! Forward Fourier transform for double precision real input data | 
|---|
|  | 89 | /*! | 
|---|
|  | 90 | \param in : Input real array | 
|---|
|  | 91 | \param out : Output complex array | 
|---|
|  | 92 | */ | 
|---|
| [1390] | 93 | void FFTServerInterface::FFTForward(TArray< r_8 > const &, TArray< complex<r_8> > &) | 
|---|
| [710] | 94 | { | 
|---|
| [1390] | 95 | throw NotAvailableOperation("FFTServer::FFTForward(TArray...) Unsupported operation !"); | 
|---|
| [710] | 96 | } | 
|---|
|  | 97 |  | 
|---|
|  | 98 | /* --Methode-- */ | 
|---|
| [1405] | 99 | //! Backward (inverse) Fourier transform for double precision real output data | 
|---|
|  | 100 | /*! | 
|---|
|  | 101 | \param in : Input complex array | 
|---|
|  | 102 | \param out : Output real array | 
|---|
|  | 103 | \param usoutsz : if true, use the output array size for computing the inverse FFT. | 
|---|
|  | 104 | */ | 
|---|
| [1402] | 105 | void FFTServerInterface::FFTBackward(TArray< complex<r_8> > const &, TArray< r_8 > &, bool) | 
|---|
| [710] | 106 | { | 
|---|
| [1390] | 107 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray...) Unsupported operation !"); | 
|---|
| [710] | 108 | } | 
|---|
|  | 109 |  | 
|---|
| [1390] | 110 |  | 
|---|
|  | 111 | // ----------------- Transforme pour les float ------------------- | 
|---|
|  | 112 |  | 
|---|
| [710] | 113 | /* --Methode-- */ | 
|---|
| [1405] | 114 | //! Forward Fourier transform for complex data | 
|---|
|  | 115 | /*! | 
|---|
|  | 116 | \param in : Input complex array | 
|---|
|  | 117 | \param out : Output complex array | 
|---|
|  | 118 | */ | 
|---|
| [1390] | 119 | void FFTServerInterface::FFTForward(TArray< complex<r_4> > const &, TArray< complex<r_4> > &) | 
|---|
| [710] | 120 | { | 
|---|
| [1390] | 121 | throw NotAvailableOperation("FFTServer::FFTForward(TArray r_4 ... ) Unsupported operation !"); | 
|---|
| [710] | 122 | } | 
|---|
|  | 123 |  | 
|---|
|  | 124 | /* --Methode-- */ | 
|---|
| [1405] | 125 | //! Backward (inverse) Fourier transform for complex data | 
|---|
|  | 126 | /*! | 
|---|
|  | 127 | \param in : Input complex array | 
|---|
|  | 128 | \param out : Output complex array | 
|---|
|  | 129 | */ | 
|---|
| [1390] | 130 | void FFTServerInterface::FFTBackward(TArray< complex<r_4> > const &, TArray< complex<r_4> > &) | 
|---|
| [710] | 131 | { | 
|---|
| [1390] | 132 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray r_4 ... ) Unsupported operation !"); | 
|---|
| [710] | 133 | } | 
|---|
|  | 134 |  | 
|---|
|  | 135 | /* --Methode-- */ | 
|---|
| [1405] | 136 | //! Forward Fourier transform for real input data | 
|---|
|  | 137 | /*! | 
|---|
|  | 138 | \param in : Input real array | 
|---|
|  | 139 | \param out : Output complex array | 
|---|
|  | 140 | */ | 
|---|
| [1390] | 141 | void FFTServerInterface::FFTForward(TArray< r_4 > const &, TArray< complex<r_4> > &) | 
|---|
| [710] | 142 | { | 
|---|
| [1390] | 143 | throw NotAvailableOperation("FFTServer::FFTForward(TArray r_4 ... ) Unsupported operation !"); | 
|---|
| [710] | 144 | } | 
|---|
|  | 145 |  | 
|---|
|  | 146 | /* --Methode-- */ | 
|---|
| [1405] | 147 | //! Backward (inverse) Fourier transform for real output data | 
|---|
|  | 148 | /*! | 
|---|
|  | 149 | \param in : Input complex array | 
|---|
|  | 150 | \param out : Output real array | 
|---|
|  | 151 | \param usoutsz : if true, use the output array size for computing the inverse FFT. | 
|---|
|  | 152 | */ | 
|---|
| [1402] | 153 | void FFTServerInterface::FFTBackward(TArray< complex<r_4> > const &, TArray< r_4 > &, bool) | 
|---|
| [710] | 154 | { | 
|---|
| [1390] | 155 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray r_4 ... ) Unsupported operation !"); | 
|---|
| [710] | 156 | } | 
|---|
|  | 157 |  | 
|---|
|  | 158 |  | 
|---|
|  | 159 |  | 
|---|
|  | 160 | /* --Methode-- */ | 
|---|
| [1405] | 161 | /*! | 
|---|
|  | 162 | \class SOPHYA::FFTArrayChecker | 
|---|
|  | 163 | \ingroup NTools | 
|---|
|  | 164 | Service class for checking array size and resizing output arrays, | 
|---|
|  | 165 | to be used by FFTServer classes | 
|---|
|  | 166 | */ | 
|---|
|  | 167 |  | 
|---|
| [1390] | 168 | template <class T> | 
|---|
| [1394] | 169 | FFTArrayChecker<T>::FFTArrayChecker(string msg, bool checkpack, bool onedonly) | 
|---|
| [710] | 170 | { | 
|---|
| [1394] | 171 | _msg = msg + " FFTArrayChecker::"; | 
|---|
| [1390] | 172 | _checkpack = checkpack; | 
|---|
|  | 173 | _onedonly = onedonly; | 
|---|
| [710] | 174 | } | 
|---|
|  | 175 |  | 
|---|
|  | 176 | /* --Methode-- */ | 
|---|
| [1390] | 177 | template <class T> | 
|---|
|  | 178 | FFTArrayChecker<T>::~FFTArrayChecker() | 
|---|
| [710] | 179 | { | 
|---|
|  | 180 | } | 
|---|
|  | 181 |  | 
|---|
| [1394] | 182 | template <class T> | 
|---|
|  | 183 | T FFTArrayChecker<T>::ZeroThreshold() | 
|---|
|  | 184 | { | 
|---|
|  | 185 | return(0); | 
|---|
|  | 186 | } | 
|---|
|  | 187 |  | 
|---|
|  | 188 | r_8 FFTArrayChecker< r_8 >::ZeroThreshold() | 
|---|
|  | 189 | { | 
|---|
|  | 190 | return(1.e-18); | 
|---|
|  | 191 | } | 
|---|
|  | 192 |  | 
|---|
|  | 193 | r_4 FFTArrayChecker< r_4 >::ZeroThreshold() | 
|---|
|  | 194 | { | 
|---|
|  | 195 | return(1.e-9); | 
|---|
|  | 196 | } | 
|---|
|  | 197 |  | 
|---|
|  | 198 |  | 
|---|
|  | 199 |  | 
|---|
| [710] | 200 | /* --Methode-- */ | 
|---|
| [1390] | 201 | template <class T> | 
|---|
|  | 202 | int FFTArrayChecker<T>::CheckResize(TArray< complex<T> > const & in, TArray< complex<T> > & out) | 
|---|
| [710] | 203 | { | 
|---|
| [1390] | 204 | int k; | 
|---|
| [1394] | 205 | string msg; | 
|---|
|  | 206 | if (in.Size() < 1) { | 
|---|
|  | 207 | msg = _msg + "CheckResize(complex in, complex out) - Unallocated input array !"; | 
|---|
|  | 208 | throw(SzMismatchError(msg)); | 
|---|
|  | 209 | } | 
|---|
| [1390] | 210 | if (_checkpack) | 
|---|
| [1394] | 211 | if ( !in.IsPacked() ) { | 
|---|
|  | 212 | msg = _msg + "CheckResize(complex in, complex out) - Not packed input array !"; | 
|---|
|  | 213 | throw(SzMismatchError(msg)); | 
|---|
|  | 214 | } | 
|---|
| [1390] | 215 | int ndg1 = 0; | 
|---|
|  | 216 | for(k=0; k<in.NbDimensions(); k++) | 
|---|
|  | 217 | if (in.Size(k) > 1)  ndg1++; | 
|---|
|  | 218 | if (_onedonly) | 
|---|
| [1394] | 219 | if (ndg1 > 1) { | 
|---|
|  | 220 | msg = _msg + "CheckResize(complex in, complex out) - Only 1-D array accepted !"; | 
|---|
|  | 221 | throw(SzMismatchError(msg)); | 
|---|
|  | 222 | } | 
|---|
|  | 223 | out.ReSize(in); | 
|---|
|  | 224 | //  sa_size_t sz[BASEARRAY_MAXNDIMS]; | 
|---|
|  | 225 | //  for(k=0; k<in.NbDimensions(); k++) | 
|---|
|  | 226 | //    sz[k] = in.Size(k); | 
|---|
|  | 227 | //  out.ReSize(in.NbDimensions(), sz); | 
|---|
| [1390] | 228 |  | 
|---|
|  | 229 | return(ndg1); | 
|---|
| [710] | 230 | } | 
|---|
|  | 231 |  | 
|---|
|  | 232 | /* --Methode-- */ | 
|---|
| [1390] | 233 | template <class T> | 
|---|
|  | 234 | int FFTArrayChecker<T>::CheckResize(TArray< T > const & in, TArray< complex<T> > & out) | 
|---|
| [710] | 235 | { | 
|---|
| [1390] | 236 | int k; | 
|---|
| [1394] | 237 | string msg; | 
|---|
|  | 238 | if (in.Size() < 1) { | 
|---|
|  | 239 | msg = _msg + "CheckResize(real in, complex out) - Unallocated input array !"; | 
|---|
|  | 240 | throw(SzMismatchError(msg)); | 
|---|
|  | 241 | } | 
|---|
| [1390] | 242 | if (_checkpack) | 
|---|
| [1394] | 243 | if ( !in.IsPacked() ) { | 
|---|
|  | 244 | msg = _msg + "CheckResize(real in, complex out) - Not packed input array !"; | 
|---|
|  | 245 | throw(SzMismatchError(msg)); | 
|---|
|  | 246 | } | 
|---|
| [1390] | 247 | int ndg1 = 0; | 
|---|
|  | 248 | for(k=0; k<in.NbDimensions(); k++) | 
|---|
|  | 249 | if (in.Size(k) > 1)  ndg1++; | 
|---|
|  | 250 | if (_onedonly) | 
|---|
| [1394] | 251 | if (ndg1 > 1) { | 
|---|
|  | 252 | msg = _msg + "CheckResize(real in, complex out) - Only 1-D array accepted !"; | 
|---|
|  | 253 | throw(SzMismatchError(msg)); | 
|---|
|  | 254 | } | 
|---|
| [1390] | 255 | sa_size_t sz[BASEARRAY_MAXNDIMS]; | 
|---|
| [1400] | 256 | // | 
|---|
|  | 257 | if (ndg1 > 1) { | 
|---|
|  | 258 | sz[0] = in.Size(0)/2+1; | 
|---|
|  | 259 | for(k=1; k<in.NbDimensions(); k++) | 
|---|
|  | 260 | sz[k] = in.Size(k); | 
|---|
|  | 261 | } | 
|---|
|  | 262 | else { | 
|---|
|  | 263 | for(k=0; k<BASEARRAY_MAXNDIMS; k++)  sz[k] = 1; | 
|---|
|  | 264 | sz[in.MaxSizeKA()] = in.Size(in.MaxSizeKA())/2+1; | 
|---|
|  | 265 | //    sz[k] = in.Size(k)/2+1; | 
|---|
|  | 266 | //    sz[k] = (in.Size(k)%2 != 0) ? in.Size(k)/2+1 : in.Size(k)/2; | 
|---|
|  | 267 | } | 
|---|
| [1390] | 268 | out.ReSize(in.NbDimensions(), sz); | 
|---|
|  | 269 |  | 
|---|
|  | 270 | return(ndg1); | 
|---|
| [710] | 271 | } | 
|---|
|  | 272 |  | 
|---|
|  | 273 | /* --Methode-- */ | 
|---|
| [1390] | 274 | template <class T> | 
|---|
| [1402] | 275 | int FFTArrayChecker<T>::CheckResize(TArray< complex<T> > const & in, TArray< T > & out, | 
|---|
|  | 276 | bool usoutsz) | 
|---|
| [710] | 277 | { | 
|---|
| [1390] | 278 | int k; | 
|---|
| [1394] | 279 | string msg; | 
|---|
|  | 280 | if (in.Size() < 1) { | 
|---|
|  | 281 | msg = _msg + "CheckResize(complex in, real out) - Unallocated input array !"; | 
|---|
|  | 282 | throw(SzMismatchError(msg)); | 
|---|
|  | 283 | } | 
|---|
| [1390] | 284 | if (_checkpack) | 
|---|
| [1394] | 285 | if ( !in.IsPacked() ) { | 
|---|
|  | 286 | msg = _msg + "CheckResize(complex in, real out) - Not packed input array !"; | 
|---|
|  | 287 | throw(SzMismatchError(msg)); | 
|---|
|  | 288 | } | 
|---|
| [1390] | 289 | int ndg1 = 0; | 
|---|
|  | 290 | for(k=0; k<in.NbDimensions(); k++) | 
|---|
|  | 291 | if (in.Size(k) > 1)  ndg1++; | 
|---|
|  | 292 | if (_onedonly) | 
|---|
| [1394] | 293 | if (ndg1 > 1) { | 
|---|
|  | 294 | msg = _msg + "CheckResize(complex in, real out) - Only 1-D array accepted !"; | 
|---|
|  | 295 | throw(SzMismatchError(msg)); | 
|---|
|  | 296 | } | 
|---|
| [1402] | 297 | if (usoutsz) { // We have to use output array size | 
|---|
|  | 298 | bool fgerr = false; | 
|---|
|  | 299 | if (ndg1 > 1) { | 
|---|
|  | 300 | if (in.Size(0) != out.Size(0)/2+1) fgerr = true; | 
|---|
|  | 301 | } | 
|---|
|  | 302 | else { | 
|---|
|  | 303 | if (in.Size(in.MaxSizeKA()) != out.Size(in.MaxSizeKA())/2+1) fgerr = true; | 
|---|
|  | 304 | } | 
|---|
|  | 305 | if (fgerr) { | 
|---|
|  | 306 | msg = _msg + "CheckResize(complex in, real out) - Incompatible in-out sizes !"; | 
|---|
|  | 307 | throw(SzMismatchError(msg)); | 
|---|
|  | 308 | } | 
|---|
|  | 309 | } | 
|---|
|  | 310 | else {  // We have to resize the output array | 
|---|
|  | 311 | sa_size_t sz[BASEARRAY_MAXNDIMS]; | 
|---|
|  | 312 | if (ndg1 > 1) { | 
|---|
|  | 313 | sz[0] = 2*in.Size(0)-1; | 
|---|
|  | 314 | for(k=1; k<in.NbDimensions(); k++) | 
|---|
|  | 315 | sz[k] = in.Size(k); | 
|---|
| [1400] | 316 | //      sz[k] = in.Size(k)*2-1; | 
|---|
| [1402] | 317 | } | 
|---|
|  | 318 | else { | 
|---|
|  | 319 | for(k=0; k<BASEARRAY_MAXNDIMS; k++)  sz[k] = 1; | 
|---|
|  | 320 | T thr = ZeroThreshold(); | 
|---|
|  | 321 | sa_size_t n = in.Size(in.MaxSizeKA()); | 
|---|
|  | 322 | sa_size_t ncs = ( (in[n-1].imag() < -thr) || (in[n-1].imag() > thr) ) ? | 
|---|
|  | 323 | ncs = 2*n-1 : ncs = 2*n-2; | 
|---|
|  | 324 | sz[in.MaxSizeKA()] = ncs; | 
|---|
|  | 325 | } | 
|---|
|  | 326 | out.ReSize(in.NbDimensions(), sz); | 
|---|
| [1394] | 327 | } | 
|---|
|  | 328 |  | 
|---|
| [1390] | 329 | return(ndg1); | 
|---|
|  | 330 |  | 
|---|
| [710] | 331 | } | 
|---|
|  | 332 |  | 
|---|
|  | 333 |  | 
|---|
| [1390] | 334 | #ifdef __CXX_PRAGMA_TEMPLATES__ | 
|---|
|  | 335 | #pragma define_template FFTArrayChecker<r_4> | 
|---|
|  | 336 | #pragma define_template FFTArrayChecker<r_8> | 
|---|
|  | 337 | #endif | 
|---|
|  | 338 |  | 
|---|
|  | 339 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES) | 
|---|
|  | 340 | template class FFTArrayChecker<r_4>; | 
|---|
|  | 341 | template class FFTArrayChecker<r_8>; | 
|---|
|  | 342 | #endif | 
|---|