[710] | 1 | #include "fftservintf.h"
|
---|
| 2 |
|
---|
| 3 |
|
---|
[1371] | 4 | /*!
|
---|
| 5 | \class SOPHYA::FFTServerInterface
|
---|
| 6 | \ingroup NTools
|
---|
| 7 | Defines the interface for FFT (Fast Fourier Transform) operations.
|
---|
[1405] | 8 | Definitions :
|
---|
| 9 | - Sampling period \b T
|
---|
| 10 | - Sampling frequency \b fs=1/T
|
---|
| 11 | - Total number of samples \b N
|
---|
| 12 | - Frequency step in Fourier space \b =fs/N=1/(N*T)
|
---|
| 13 | - Component frequencies
|
---|
| 14 | - k=0 -> 0
|
---|
| 15 | - k=1 -> 1/(N*T)
|
---|
| 16 | - k -> k/(N*T)
|
---|
| 17 | - k=N/2 -> 1/(2*T) (Nyquist frequency)
|
---|
| 18 | - k>N/2 -> k/(N*T) (or negative frequency -(N-k)/(N*T))
|
---|
| 19 |
|
---|
| 20 | For a sampling period T=1, the computed Fourier components correspond to :
|
---|
| 21 | \verbatim
|
---|
| 22 | 0 1/N 2/N ... 1/2 1/2+1/N 1/2+2/N ... 1-2/N 1-1/N
|
---|
| 23 | 0 1/N 2/N ... 1/2 ... -2/N -1/N
|
---|
| 24 | \endverbatim
|
---|
| 25 |
|
---|
| 26 | For complex one-dimensional transforms:
|
---|
| 27 | \f[
|
---|
| 28 | out(i) = F_{norm} \Sigma_{j} \ e^{-2 \pi \sqrt{-1} \ i \ j} \ {\rm (forward)}
|
---|
| 29 | \f]
|
---|
| 30 | \f[
|
---|
| 31 | out(i) = F_{norm} \Sigma_{j} \ e^{2 \pi \sqrt{-1} \ i \ j} \ {\rm (backward)}
|
---|
| 32 | \f]
|
---|
| 33 | i,j= 0..N-1 , where N is the input or the output array size.
|
---|
| 34 |
|
---|
| 35 | For complex multi-dimensional transforms:
|
---|
| 36 | \f[
|
---|
| 37 | out(i1,i2,...,id) = F_{norm} \Sigma_{j1} \Sigma_{j2} ... \Sigma_{jd} \
|
---|
| 38 | e^{-2 \pi \sqrt{-1} \ i1 \ j1} ... e^{-2 \pi \sqrt{-1} \ id \ jd} \ {\rm (forward)}
|
---|
| 39 | \f]
|
---|
| 40 | \f[
|
---|
| 41 | out(i1,i2,...,id) = F_{norm} \Sigma_{j1} \Sigma_{j2} ... \Sigma_{jd} \
|
---|
| 42 | e^{2 \pi \sqrt{-1} \ i1 \ j1} ... e^{2 \pi \sqrt{-1} \ id \ jd} \ {\rm (backward)}
|
---|
| 43 | \f]
|
---|
| 44 |
|
---|
| 45 | For real forward transforms, the input array is real, and
|
---|
| 46 | the output array complex, with Fourier components up to k=N/2.
|
---|
| 47 | For real backward transforms, the input array is complex and
|
---|
| 48 | the output array is real.
|
---|
[1371] | 49 | */
|
---|
[710] | 50 |
|
---|
| 51 | /* --Methode-- */
|
---|
| 52 | FFTServerInterface::FFTServerInterface(string info)
|
---|
| 53 | {
|
---|
| 54 | _info = info;
|
---|
[717] | 55 | _fgnorm = true;
|
---|
[710] | 56 | }
|
---|
| 57 |
|
---|
| 58 | /* --Methode-- */
|
---|
| 59 | FFTServerInterface::~FFTServerInterface()
|
---|
| 60 | {
|
---|
| 61 | }
|
---|
| 62 |
|
---|
[1390] | 63 | // ----------------- Transforme pour les double -------------------
|
---|
| 64 |
|
---|
[710] | 65 | /* --Methode-- */
|
---|
[1405] | 66 | //! Forward Fourier transform for double precision complex data
|
---|
| 67 | /*!
|
---|
| 68 | \param in : Input complex array
|
---|
| 69 | \param out : Output complex array
|
---|
| 70 | */
|
---|
[1390] | 71 | void FFTServerInterface::FFTForward(TArray< complex<r_8> > const &, TArray< complex<r_8> > &)
|
---|
[710] | 72 | {
|
---|
[1390] | 73 | throw NotAvailableOperation("FFTServer::FFTForward(TArray...) Unsupported operation !");
|
---|
[710] | 74 | }
|
---|
| 75 |
|
---|
| 76 | /* --Methode-- */
|
---|
[1405] | 77 | //! Backward (inverse) Fourier transform for double precision complex data
|
---|
| 78 | /*!
|
---|
| 79 | \param in : Input complex array
|
---|
| 80 | \param out : Output complex array
|
---|
| 81 | */
|
---|
[1390] | 82 | void FFTServerInterface::FFTBackward(TArray< complex<r_8> > const &, TArray< complex<r_8> > &)
|
---|
[710] | 83 | {
|
---|
[1390] | 84 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray...) Unsupported operation !");
|
---|
[710] | 85 | }
|
---|
| 86 |
|
---|
| 87 | /* --Methode-- */
|
---|
[1405] | 88 | //! Forward Fourier transform for double precision real input data
|
---|
| 89 | /*!
|
---|
| 90 | \param in : Input real array
|
---|
| 91 | \param out : Output complex array
|
---|
| 92 | */
|
---|
[1390] | 93 | void FFTServerInterface::FFTForward(TArray< r_8 > const &, TArray< complex<r_8> > &)
|
---|
[710] | 94 | {
|
---|
[1390] | 95 | throw NotAvailableOperation("FFTServer::FFTForward(TArray...) Unsupported operation !");
|
---|
[710] | 96 | }
|
---|
| 97 |
|
---|
| 98 | /* --Methode-- */
|
---|
[1405] | 99 | //! Backward (inverse) Fourier transform for double precision real output data
|
---|
| 100 | /*!
|
---|
| 101 | \param in : Input complex array
|
---|
| 102 | \param out : Output real array
|
---|
| 103 | \param usoutsz : if true, use the output array size for computing the inverse FFT.
|
---|
| 104 | */
|
---|
[1402] | 105 | void FFTServerInterface::FFTBackward(TArray< complex<r_8> > const &, TArray< r_8 > &, bool)
|
---|
[710] | 106 | {
|
---|
[1390] | 107 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray...) Unsupported operation !");
|
---|
[710] | 108 | }
|
---|
| 109 |
|
---|
[1390] | 110 |
|
---|
| 111 | // ----------------- Transforme pour les float -------------------
|
---|
| 112 |
|
---|
[710] | 113 | /* --Methode-- */
|
---|
[1405] | 114 | //! Forward Fourier transform for complex data
|
---|
| 115 | /*!
|
---|
| 116 | \param in : Input complex array
|
---|
| 117 | \param out : Output complex array
|
---|
| 118 | */
|
---|
[1390] | 119 | void FFTServerInterface::FFTForward(TArray< complex<r_4> > const &, TArray< complex<r_4> > &)
|
---|
[710] | 120 | {
|
---|
[1390] | 121 | throw NotAvailableOperation("FFTServer::FFTForward(TArray r_4 ... ) Unsupported operation !");
|
---|
[710] | 122 | }
|
---|
| 123 |
|
---|
| 124 | /* --Methode-- */
|
---|
[1405] | 125 | //! Backward (inverse) Fourier transform for complex data
|
---|
| 126 | /*!
|
---|
| 127 | \param in : Input complex array
|
---|
| 128 | \param out : Output complex array
|
---|
| 129 | */
|
---|
[1390] | 130 | void FFTServerInterface::FFTBackward(TArray< complex<r_4> > const &, TArray< complex<r_4> > &)
|
---|
[710] | 131 | {
|
---|
[1390] | 132 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray r_4 ... ) Unsupported operation !");
|
---|
[710] | 133 | }
|
---|
| 134 |
|
---|
| 135 | /* --Methode-- */
|
---|
[1405] | 136 | //! Forward Fourier transform for real input data
|
---|
| 137 | /*!
|
---|
| 138 | \param in : Input real array
|
---|
| 139 | \param out : Output complex array
|
---|
| 140 | */
|
---|
[1390] | 141 | void FFTServerInterface::FFTForward(TArray< r_4 > const &, TArray< complex<r_4> > &)
|
---|
[710] | 142 | {
|
---|
[1390] | 143 | throw NotAvailableOperation("FFTServer::FFTForward(TArray r_4 ... ) Unsupported operation !");
|
---|
[710] | 144 | }
|
---|
| 145 |
|
---|
| 146 | /* --Methode-- */
|
---|
[1405] | 147 | //! Backward (inverse) Fourier transform for real output data
|
---|
| 148 | /*!
|
---|
| 149 | \param in : Input complex array
|
---|
| 150 | \param out : Output real array
|
---|
| 151 | \param usoutsz : if true, use the output array size for computing the inverse FFT.
|
---|
| 152 | */
|
---|
[1402] | 153 | void FFTServerInterface::FFTBackward(TArray< complex<r_4> > const &, TArray< r_4 > &, bool)
|
---|
[710] | 154 | {
|
---|
[1390] | 155 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray r_4 ... ) Unsupported operation !");
|
---|
[710] | 156 | }
|
---|
| 157 |
|
---|
| 158 |
|
---|
[1630] | 159 | // ----------------- Transformation de normalisation pour les energies -------------------
|
---|
[710] | 160 |
|
---|
| 161 | /* --Methode-- */
|
---|
[1630] | 162 | //! Compute the transform to be applied to "fftx=FFT(x)" so that "x" and "FFT(x)" have the same energy
|
---|
[1405] | 163 | /*!
|
---|
[1630] | 164 | \return The factor to be applied to the FFT energy such that we get the same energy as for the x.
|
---|
| 165 | \verbatim
|
---|
| 166 | fftx is computed by: FFTForward(x,fftx)
|
---|
| 167 | Energy of x : Ex = sum{|x(i)|^2} i=0,x.Size()-1
|
---|
| 168 | Energy of fftx : Efftx = sum{|fftx(i)^2|} i=0,fftx.Size()-1
|
---|
| 169 | ( usually x.Size() != fftx.Size() )
|
---|
| 170 | -------------------------------------------------------------------
|
---|
| 171 | | TransfEnergyFFT return A and B such that : Ex = A * Efftx + B |
|
---|
| 172 | | and Norm such that : Ex = Norm * Efftx |
|
---|
| 173 | -------------------------------------------------------------------
|
---|
| 174 | To normalize the fftx vector apply : "fftx *= sqrt(Norm)"
|
---|
| 175 | \endverbatim
|
---|
| 176 | */
|
---|
| 177 | r_8 FFTServerInterface::TransfEnergyFFT
|
---|
| 178 | (TVector< complex<r_8> > const& x, TVector< complex<r_8> > const& fftx, r_8& A, r_8& B)
|
---|
| 179 | {
|
---|
| 180 | B=0.;
|
---|
| 181 | if(getNormalize()) A = x.Size(); else A = 1./x.Size();
|
---|
| 182 | r_8 norm = A;
|
---|
| 183 | return norm;
|
---|
| 184 | }
|
---|
| 185 |
|
---|
| 186 | //! Compute the transform to be applied to "fftx=FFT(x)" so that "x" and "FFT(x)" have the same energy
|
---|
| 187 | r_8 FFTServerInterface::TransfEnergyFFT
|
---|
| 188 | (TVector< complex<r_4> > const & x, TVector< complex<r_4> > const & fftx, r_8& A, r_8& B)
|
---|
| 189 | {
|
---|
| 190 | B=0.;
|
---|
| 191 | if(getNormalize()) A = x.Size(); else A = 1./x.Size();
|
---|
| 192 | r_8 norm = A;
|
---|
| 193 | return norm;
|
---|
| 194 | }
|
---|
| 195 |
|
---|
| 196 | //! Compute the transform to be applied to "fftx=FFT(x)" so that "x" and "FFT(x)" have the same energy
|
---|
| 197 | r_8 FFTServerInterface::TransfEnergyFFT
|
---|
| 198 | (TVector< r_8 > const & x, TVector< complex<r_8> > const & fftx, r_8& A, r_8& B)
|
---|
| 199 | {
|
---|
| 200 | A= 2.;
|
---|
| 201 | B= - abs(fftx(0)*fftx(0));
|
---|
| 202 | if(x.Size()%2 == 0) B -= abs(fftx(fftx.Size()-1)*fftx(fftx.Size()-1));
|
---|
| 203 | if(getNormalize()) {A *= x.Size(); B *= x.Size();}
|
---|
| 204 | else {A /= x.Size(); B /= x.Size();}
|
---|
| 205 | r_8 norm = 0.;
|
---|
| 206 | for(int_4 i=0;i<fftx.Size();i++) norm += abs(fftx(i)*fftx(i));
|
---|
| 207 | if(norm>0.) norm = (A*norm+B)/norm;
|
---|
| 208 | return norm;
|
---|
| 209 | }
|
---|
| 210 |
|
---|
| 211 | //! Compute the transform to be applied to "fftx=FFT(x)" so that "x" and "FFT(x)" have the same energy
|
---|
| 212 | r_8 FFTServerInterface::TransfEnergyFFT
|
---|
| 213 | (TVector< r_4 > const & x, TVector< complex<r_4> > const & fftx, r_8& A, r_8& B)
|
---|
| 214 | {
|
---|
| 215 | A= 2.;
|
---|
| 216 | B= - abs(fftx(0)*fftx(0));
|
---|
| 217 | if(x.Size()%2 == 0) B -= abs(fftx(fftx.Size()-1)*fftx(fftx.Size()-1));
|
---|
| 218 | if(getNormalize()) {A *= x.Size(); B *= x.Size();}
|
---|
| 219 | else {A /= x.Size(); B /= x.Size();}
|
---|
| 220 | r_8 norm = 0.;
|
---|
| 221 | for(int_4 i=0;i<fftx.Size();i++) norm += abs(fftx(i)*fftx(i));
|
---|
| 222 | if(norm>0.) norm = (A*norm+B)/norm;
|
---|
| 223 | return norm;
|
---|
| 224 | }
|
---|
| 225 |
|
---|
| 226 |
|
---|
| 227 | /* --Methode-- */
|
---|
| 228 | /*!
|
---|
[1405] | 229 | \class SOPHYA::FFTArrayChecker
|
---|
| 230 | \ingroup NTools
|
---|
| 231 | Service class for checking array size and resizing output arrays,
|
---|
| 232 | to be used by FFTServer classes
|
---|
| 233 | */
|
---|
| 234 |
|
---|
[1390] | 235 | template <class T>
|
---|
[1394] | 236 | FFTArrayChecker<T>::FFTArrayChecker(string msg, bool checkpack, bool onedonly)
|
---|
[710] | 237 | {
|
---|
[1394] | 238 | _msg = msg + " FFTArrayChecker::";
|
---|
[1390] | 239 | _checkpack = checkpack;
|
---|
| 240 | _onedonly = onedonly;
|
---|
[710] | 241 | }
|
---|
| 242 |
|
---|
| 243 | /* --Methode-- */
|
---|
[1390] | 244 | template <class T>
|
---|
| 245 | FFTArrayChecker<T>::~FFTArrayChecker()
|
---|
[710] | 246 | {
|
---|
| 247 | }
|
---|
| 248 |
|
---|
[1394] | 249 | template <class T>
|
---|
| 250 | T FFTArrayChecker<T>::ZeroThreshold()
|
---|
| 251 | {
|
---|
| 252 | return(0);
|
---|
| 253 | }
|
---|
| 254 |
|
---|
| 255 | r_8 FFTArrayChecker< r_8 >::ZeroThreshold()
|
---|
| 256 | {
|
---|
| 257 | return(1.e-18);
|
---|
| 258 | }
|
---|
| 259 |
|
---|
| 260 | r_4 FFTArrayChecker< r_4 >::ZeroThreshold()
|
---|
| 261 | {
|
---|
| 262 | return(1.e-9);
|
---|
| 263 | }
|
---|
| 264 |
|
---|
[710] | 265 | /* --Methode-- */
|
---|
[1390] | 266 | template <class T>
|
---|
| 267 | int FFTArrayChecker<T>::CheckResize(TArray< complex<T> > const & in, TArray< complex<T> > & out)
|
---|
[710] | 268 | {
|
---|
[1390] | 269 | int k;
|
---|
[1394] | 270 | string msg;
|
---|
| 271 | if (in.Size() < 1) {
|
---|
| 272 | msg = _msg + "CheckResize(complex in, complex out) - Unallocated input array !";
|
---|
| 273 | throw(SzMismatchError(msg));
|
---|
| 274 | }
|
---|
[1390] | 275 | if (_checkpack)
|
---|
[1394] | 276 | if ( !in.IsPacked() ) {
|
---|
| 277 | msg = _msg + "CheckResize(complex in, complex out) - Not packed input array !";
|
---|
| 278 | throw(SzMismatchError(msg));
|
---|
| 279 | }
|
---|
[1390] | 280 | int ndg1 = 0;
|
---|
| 281 | for(k=0; k<in.NbDimensions(); k++)
|
---|
| 282 | if (in.Size(k) > 1) ndg1++;
|
---|
| 283 | if (_onedonly)
|
---|
[1394] | 284 | if (ndg1 > 1) {
|
---|
| 285 | msg = _msg + "CheckResize(complex in, complex out) - Only 1-D array accepted !";
|
---|
| 286 | throw(SzMismatchError(msg));
|
---|
| 287 | }
|
---|
| 288 | out.ReSize(in);
|
---|
| 289 | // sa_size_t sz[BASEARRAY_MAXNDIMS];
|
---|
| 290 | // for(k=0; k<in.NbDimensions(); k++)
|
---|
| 291 | // sz[k] = in.Size(k);
|
---|
| 292 | // out.ReSize(in.NbDimensions(), sz);
|
---|
[1390] | 293 |
|
---|
| 294 | return(ndg1);
|
---|
[710] | 295 | }
|
---|
| 296 |
|
---|
| 297 | /* --Methode-- */
|
---|
[1390] | 298 | template <class T>
|
---|
| 299 | int FFTArrayChecker<T>::CheckResize(TArray< T > const & in, TArray< complex<T> > & out)
|
---|
[710] | 300 | {
|
---|
[1390] | 301 | int k;
|
---|
[1394] | 302 | string msg;
|
---|
| 303 | if (in.Size() < 1) {
|
---|
| 304 | msg = _msg + "CheckResize(real in, complex out) - Unallocated input array !";
|
---|
| 305 | throw(SzMismatchError(msg));
|
---|
| 306 | }
|
---|
[1390] | 307 | if (_checkpack)
|
---|
[1394] | 308 | if ( !in.IsPacked() ) {
|
---|
| 309 | msg = _msg + "CheckResize(real in, complex out) - Not packed input array !";
|
---|
| 310 | throw(SzMismatchError(msg));
|
---|
| 311 | }
|
---|
[1390] | 312 | int ndg1 = 0;
|
---|
| 313 | for(k=0; k<in.NbDimensions(); k++)
|
---|
| 314 | if (in.Size(k) > 1) ndg1++;
|
---|
| 315 | if (_onedonly)
|
---|
[1394] | 316 | if (ndg1 > 1) {
|
---|
| 317 | msg = _msg + "CheckResize(real in, complex out) - Only 1-D array accepted !";
|
---|
| 318 | throw(SzMismatchError(msg));
|
---|
| 319 | }
|
---|
[1390] | 320 | sa_size_t sz[BASEARRAY_MAXNDIMS];
|
---|
[1400] | 321 | //
|
---|
| 322 | if (ndg1 > 1) {
|
---|
| 323 | sz[0] = in.Size(0)/2+1;
|
---|
| 324 | for(k=1; k<in.NbDimensions(); k++)
|
---|
| 325 | sz[k] = in.Size(k);
|
---|
| 326 | }
|
---|
| 327 | else {
|
---|
| 328 | for(k=0; k<BASEARRAY_MAXNDIMS; k++) sz[k] = 1;
|
---|
| 329 | sz[in.MaxSizeKA()] = in.Size(in.MaxSizeKA())/2+1;
|
---|
| 330 | // sz[k] = in.Size(k)/2+1;
|
---|
| 331 | // sz[k] = (in.Size(k)%2 != 0) ? in.Size(k)/2+1 : in.Size(k)/2;
|
---|
| 332 | }
|
---|
[1390] | 333 | out.ReSize(in.NbDimensions(), sz);
|
---|
| 334 |
|
---|
| 335 | return(ndg1);
|
---|
[710] | 336 | }
|
---|
| 337 |
|
---|
| 338 | /* --Methode-- */
|
---|
[1390] | 339 | template <class T>
|
---|
[1402] | 340 | int FFTArrayChecker<T>::CheckResize(TArray< complex<T> > const & in, TArray< T > & out,
|
---|
| 341 | bool usoutsz)
|
---|
[710] | 342 | {
|
---|
[1390] | 343 | int k;
|
---|
[1394] | 344 | string msg;
|
---|
| 345 | if (in.Size() < 1) {
|
---|
| 346 | msg = _msg + "CheckResize(complex in, real out) - Unallocated input array !";
|
---|
| 347 | throw(SzMismatchError(msg));
|
---|
| 348 | }
|
---|
[1390] | 349 | if (_checkpack)
|
---|
[1394] | 350 | if ( !in.IsPacked() ) {
|
---|
| 351 | msg = _msg + "CheckResize(complex in, real out) - Not packed input array !";
|
---|
| 352 | throw(SzMismatchError(msg));
|
---|
| 353 | }
|
---|
[1390] | 354 | int ndg1 = 0;
|
---|
| 355 | for(k=0; k<in.NbDimensions(); k++)
|
---|
| 356 | if (in.Size(k) > 1) ndg1++;
|
---|
| 357 | if (_onedonly)
|
---|
[1394] | 358 | if (ndg1 > 1) {
|
---|
| 359 | msg = _msg + "CheckResize(complex in, real out) - Only 1-D array accepted !";
|
---|
| 360 | throw(SzMismatchError(msg));
|
---|
| 361 | }
|
---|
[1402] | 362 | if (usoutsz) { // We have to use output array size
|
---|
| 363 | bool fgerr = false;
|
---|
| 364 | if (ndg1 > 1) {
|
---|
| 365 | if (in.Size(0) != out.Size(0)/2+1) fgerr = true;
|
---|
| 366 | }
|
---|
| 367 | else {
|
---|
| 368 | if (in.Size(in.MaxSizeKA()) != out.Size(in.MaxSizeKA())/2+1) fgerr = true;
|
---|
| 369 | }
|
---|
| 370 | if (fgerr) {
|
---|
| 371 | msg = _msg + "CheckResize(complex in, real out) - Incompatible in-out sizes !";
|
---|
| 372 | throw(SzMismatchError(msg));
|
---|
| 373 | }
|
---|
| 374 | }
|
---|
| 375 | else { // We have to resize the output array
|
---|
| 376 | sa_size_t sz[BASEARRAY_MAXNDIMS];
|
---|
| 377 | if (ndg1 > 1) {
|
---|
| 378 | sz[0] = 2*in.Size(0)-1;
|
---|
| 379 | for(k=1; k<in.NbDimensions(); k++)
|
---|
| 380 | sz[k] = in.Size(k);
|
---|
[1400] | 381 | // sz[k] = in.Size(k)*2-1;
|
---|
[1402] | 382 | }
|
---|
| 383 | else {
|
---|
| 384 | for(k=0; k<BASEARRAY_MAXNDIMS; k++) sz[k] = 1;
|
---|
| 385 | T thr = ZeroThreshold();
|
---|
| 386 | sa_size_t n = in.Size(in.MaxSizeKA());
|
---|
[1652] | 387 | sa_size_t ncs = ( (in[n-1].imag() < -thr) || (in[n-1].imag() > thr) )
|
---|
| 388 | ? 2*n-1 : 2*n-2;
|
---|
[1402] | 389 | sz[in.MaxSizeKA()] = ncs;
|
---|
| 390 | }
|
---|
| 391 | out.ReSize(in.NbDimensions(), sz);
|
---|
[1394] | 392 | }
|
---|
| 393 |
|
---|
[1390] | 394 | return(ndg1);
|
---|
| 395 |
|
---|
[710] | 396 | }
|
---|
| 397 |
|
---|
| 398 |
|
---|
[1390] | 399 | #ifdef __CXX_PRAGMA_TEMPLATES__
|
---|
| 400 | #pragma define_template FFTArrayChecker<r_4>
|
---|
| 401 | #pragma define_template FFTArrayChecker<r_8>
|
---|
| 402 | #endif
|
---|
| 403 |
|
---|
| 404 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
|
---|
| 405 | template class FFTArrayChecker<r_4>;
|
---|
| 406 | template class FFTArrayChecker<r_8>;
|
---|
| 407 | #endif
|
---|