source: Sophya/trunk/SophyaLib/NTools/fftservintf.cc@ 2334

Last change on this file since 2334 was 2334, checked in by ansari, 23 years ago

Compil sur SGI-CC avec LANG:std - Reza 10/03/2003

File size: 12.1 KB
RevLine 
[710]1#include "fftservintf.h"
2
3
[1371]4/*!
5 \class SOPHYA::FFTServerInterface
6 \ingroup NTools
7 Defines the interface for FFT (Fast Fourier Transform) operations.
[1405]8 Definitions :
9 - Sampling period \b T
10 - Sampling frequency \b fs=1/T
11 - Total number of samples \b N
12 - Frequency step in Fourier space \b =fs/N=1/(N*T)
13 - Component frequencies
14 - k=0 -> 0
15 - k=1 -> 1/(N*T)
16 - k -> k/(N*T)
17 - k=N/2 -> 1/(2*T) (Nyquist frequency)
18 - k>N/2 -> k/(N*T) (or negative frequency -(N-k)/(N*T))
19
20 For a sampling period T=1, the computed Fourier components correspond to :
21 \verbatim
22 0 1/N 2/N ... 1/2 1/2+1/N 1/2+2/N ... 1-2/N 1-1/N
23 0 1/N 2/N ... 1/2 ... -2/N -1/N
24 \endverbatim
25
26 For complex one-dimensional transforms:
27 \f[
28 out(i) = F_{norm} \Sigma_{j} \ e^{-2 \pi \sqrt{-1} \ i \ j} \ {\rm (forward)}
29 \f]
30 \f[
31 out(i) = F_{norm} \Sigma_{j} \ e^{2 \pi \sqrt{-1} \ i \ j} \ {\rm (backward)}
32 \f]
33 i,j= 0..N-1 , where N is the input or the output array size.
34
35 For complex multi-dimensional transforms:
36 \f[
37 out(i1,i2,...,id) = F_{norm} \Sigma_{j1} \Sigma_{j2} ... \Sigma_{jd} \
38 e^{-2 \pi \sqrt{-1} \ i1 \ j1} ... e^{-2 \pi \sqrt{-1} \ id \ jd} \ {\rm (forward)}
39 \f]
40 \f[
41 out(i1,i2,...,id) = F_{norm} \Sigma_{j1} \Sigma_{j2} ... \Sigma_{jd} \
42 e^{2 \pi \sqrt{-1} \ i1 \ j1} ... e^{2 \pi \sqrt{-1} \ id \ jd} \ {\rm (backward)}
43 \f]
44
45 For real forward transforms, the input array is real, and
46 the output array complex, with Fourier components up to k=N/2.
47 For real backward transforms, the input array is complex and
48 the output array is real.
[1371]49*/
[710]50
51/* --Methode-- */
52FFTServerInterface::FFTServerInterface(string info)
53{
54 _info = info;
[717]55 _fgnorm = true;
[710]56}
57
58/* --Methode-- */
59FFTServerInterface::~FFTServerInterface()
60{
61}
62
[1390]63// ----------------- Transforme pour les double -------------------
64
[710]65/* --Methode-- */
[1405]66//! Forward Fourier transform for double precision complex data
67/*!
68 \param in : Input complex array
69 \param out : Output complex array
70 */
[1390]71void FFTServerInterface::FFTForward(TArray< complex<r_8> > const &, TArray< complex<r_8> > &)
[710]72{
[1390]73 throw NotAvailableOperation("FFTServer::FFTForward(TArray...) Unsupported operation !");
[710]74}
75
76/* --Methode-- */
[1405]77//! Backward (inverse) Fourier transform for double precision complex data
78/*!
79 \param in : Input complex array
80 \param out : Output complex array
81 */
[1390]82void FFTServerInterface::FFTBackward(TArray< complex<r_8> > const &, TArray< complex<r_8> > &)
[710]83{
[1390]84 throw NotAvailableOperation("FFTServer::FFTBackward(TArray...) Unsupported operation !");
[710]85}
86
87/* --Methode-- */
[1405]88//! Forward Fourier transform for double precision real input data
89/*!
90 \param in : Input real array
91 \param out : Output complex array
92 */
[1390]93void FFTServerInterface::FFTForward(TArray< r_8 > const &, TArray< complex<r_8> > &)
[710]94{
[1390]95 throw NotAvailableOperation("FFTServer::FFTForward(TArray...) Unsupported operation !");
[710]96}
97
98/* --Methode-- */
[1405]99//! Backward (inverse) Fourier transform for double precision real output data
100/*!
101 \param in : Input complex array
102 \param out : Output real array
103 \param usoutsz : if true, use the output array size for computing the inverse FFT.
104 */
[1402]105void FFTServerInterface::FFTBackward(TArray< complex<r_8> > const &, TArray< r_8 > &, bool)
[710]106{
[1390]107 throw NotAvailableOperation("FFTServer::FFTBackward(TArray...) Unsupported operation !");
[710]108}
109
[1390]110
111// ----------------- Transforme pour les float -------------------
112
[710]113/* --Methode-- */
[1405]114//! Forward Fourier transform for complex data
115/*!
116 \param in : Input complex array
117 \param out : Output complex array
118 */
[1390]119void FFTServerInterface::FFTForward(TArray< complex<r_4> > const &, TArray< complex<r_4> > &)
[710]120{
[1390]121 throw NotAvailableOperation("FFTServer::FFTForward(TArray r_4 ... ) Unsupported operation !");
[710]122}
123
124/* --Methode-- */
[1405]125//! Backward (inverse) Fourier transform for complex data
126/*!
127 \param in : Input complex array
128 \param out : Output complex array
129 */
[1390]130void FFTServerInterface::FFTBackward(TArray< complex<r_4> > const &, TArray< complex<r_4> > &)
[710]131{
[1390]132 throw NotAvailableOperation("FFTServer::FFTBackward(TArray r_4 ... ) Unsupported operation !");
[710]133}
134
135/* --Methode-- */
[1405]136//! Forward Fourier transform for real input data
137/*!
138 \param in : Input real array
139 \param out : Output complex array
140 */
[1390]141void FFTServerInterface::FFTForward(TArray< r_4 > const &, TArray< complex<r_4> > &)
[710]142{
[1390]143 throw NotAvailableOperation("FFTServer::FFTForward(TArray r_4 ... ) Unsupported operation !");
[710]144}
145
146/* --Methode-- */
[1405]147//! Backward (inverse) Fourier transform for real output data
148/*!
149 \param in : Input complex array
150 \param out : Output real array
151 \param usoutsz : if true, use the output array size for computing the inverse FFT.
152 */
[1402]153void FFTServerInterface::FFTBackward(TArray< complex<r_4> > const &, TArray< r_4 > &, bool)
[710]154{
[1390]155 throw NotAvailableOperation("FFTServer::FFTBackward(TArray r_4 ... ) Unsupported operation !");
[710]156}
157
158
[1630]159// ----------------- Transformation de normalisation pour les energies -------------------
[710]160
161/* --Methode-- */
[1630]162//! Compute the transform to be applied to "fftx=FFT(x)" so that "x" and "FFT(x)" have the same energy
[1405]163/*!
[1630]164\return The factor to be applied to the FFT energy such that we get the same energy as for the x.
165\verbatim
166 fftx is computed by: FFTForward(x,fftx)
167 Energy of x : Ex = sum{|x(i)|^2} i=0,x.Size()-1
168 Energy of fftx : Efftx = sum{|fftx(i)^2|} i=0,fftx.Size()-1
169 ( usually x.Size() != fftx.Size() )
170 -------------------------------------------------------------------
171 | TransfEnergyFFT return A and B such that : Ex = A * Efftx + B |
172 | and Norm such that : Ex = Norm * Efftx |
173 -------------------------------------------------------------------
174 To normalize the fftx vector apply : "fftx *= sqrt(Norm)"
175\endverbatim
176*/
177r_8 FFTServerInterface::TransfEnergyFFT
178 (TVector< complex<r_8> > const& x, TVector< complex<r_8> > const& fftx, r_8& A, r_8& B)
179{
180 B=0.;
181 if(getNormalize()) A = x.Size(); else A = 1./x.Size();
182 r_8 norm = A;
183 return norm;
184}
185
186//! Compute the transform to be applied to "fftx=FFT(x)" so that "x" and "FFT(x)" have the same energy
187r_8 FFTServerInterface::TransfEnergyFFT
188 (TVector< complex<r_4> > const & x, TVector< complex<r_4> > const & fftx, r_8& A, r_8& B)
189{
190 B=0.;
191 if(getNormalize()) A = x.Size(); else A = 1./x.Size();
192 r_8 norm = A;
193 return norm;
194}
195
196//! Compute the transform to be applied to "fftx=FFT(x)" so that "x" and "FFT(x)" have the same energy
197r_8 FFTServerInterface::TransfEnergyFFT
198 (TVector< r_8 > const & x, TVector< complex<r_8> > const & fftx, r_8& A, r_8& B)
199{
200 A= 2.;
201 B= - abs(fftx(0)*fftx(0));
202 if(x.Size()%2 == 0) B -= abs(fftx(fftx.Size()-1)*fftx(fftx.Size()-1));
203 if(getNormalize()) {A *= x.Size(); B *= x.Size();}
204 else {A /= x.Size(); B /= x.Size();}
205 r_8 norm = 0.;
206 for(int_4 i=0;i<fftx.Size();i++) norm += abs(fftx(i)*fftx(i));
207 if(norm>0.) norm = (A*norm+B)/norm;
208 return norm;
209}
210
211//! Compute the transform to be applied to "fftx=FFT(x)" so that "x" and "FFT(x)" have the same energy
212r_8 FFTServerInterface::TransfEnergyFFT
213 (TVector< r_4 > const & x, TVector< complex<r_4> > const & fftx, r_8& A, r_8& B)
214{
215 A= 2.;
216 B= - abs(fftx(0)*fftx(0));
217 if(x.Size()%2 == 0) B -= abs(fftx(fftx.Size()-1)*fftx(fftx.Size()-1));
218 if(getNormalize()) {A *= x.Size(); B *= x.Size();}
219 else {A /= x.Size(); B /= x.Size();}
220 r_8 norm = 0.;
221 for(int_4 i=0;i<fftx.Size();i++) norm += abs(fftx(i)*fftx(i));
222 if(norm>0.) norm = (A*norm+B)/norm;
223 return norm;
224}
225
226
227/* --Methode-- */
228/*!
[1405]229 \class SOPHYA::FFTArrayChecker
230 \ingroup NTools
231 Service class for checking array size and resizing output arrays,
232 to be used by FFTServer classes
233*/
234
[1390]235template <class T>
[1394]236FFTArrayChecker<T>::FFTArrayChecker(string msg, bool checkpack, bool onedonly)
[710]237{
[1394]238 _msg = msg + " FFTArrayChecker::";
[1390]239 _checkpack = checkpack;
240 _onedonly = onedonly;
[710]241}
242
243/* --Methode-- */
[1390]244template <class T>
245FFTArrayChecker<T>::~FFTArrayChecker()
[710]246{
247}
248
[1394]249template <class T>
250T FFTArrayChecker<T>::ZeroThreshold()
251{
252 return(0);
253}
254
[2334]255#if defined(__SGICC__)
256template <>
257#endif
[1394]258r_8 FFTArrayChecker< r_8 >::ZeroThreshold()
259{
[2334]260 return(1.e-39);
[1394]261}
262
[2334]263#if defined(__SGICC__)
264template <>
265#endif
[1394]266r_4 FFTArrayChecker< r_4 >::ZeroThreshold()
267{
[2334]268 return(1.e-19);
[1394]269}
270
[710]271/* --Methode-- */
[1390]272template <class T>
273int FFTArrayChecker<T>::CheckResize(TArray< complex<T> > const & in, TArray< complex<T> > & out)
[710]274{
[1390]275 int k;
[1394]276 string msg;
277 if (in.Size() < 1) {
278 msg = _msg + "CheckResize(complex in, complex out) - Unallocated input array !";
279 throw(SzMismatchError(msg));
280 }
[1390]281 if (_checkpack)
[1394]282 if ( !in.IsPacked() ) {
283 msg = _msg + "CheckResize(complex in, complex out) - Not packed input array !";
284 throw(SzMismatchError(msg));
285 }
[1390]286 int ndg1 = 0;
287 for(k=0; k<in.NbDimensions(); k++)
288 if (in.Size(k) > 1) ndg1++;
289 if (_onedonly)
[1394]290 if (ndg1 > 1) {
291 msg = _msg + "CheckResize(complex in, complex out) - Only 1-D array accepted !";
292 throw(SzMismatchError(msg));
293 }
294 out.ReSize(in);
295 // sa_size_t sz[BASEARRAY_MAXNDIMS];
296 // for(k=0; k<in.NbDimensions(); k++)
297 // sz[k] = in.Size(k);
298 // out.ReSize(in.NbDimensions(), sz);
[1390]299
300 return(ndg1);
[710]301}
302
303/* --Methode-- */
[1390]304template <class T>
305int FFTArrayChecker<T>::CheckResize(TArray< T > const & in, TArray< complex<T> > & out)
[710]306{
[1390]307 int k;
[1394]308 string msg;
309 if (in.Size() < 1) {
310 msg = _msg + "CheckResize(real in, complex out) - Unallocated input array !";
311 throw(SzMismatchError(msg));
312 }
[1390]313 if (_checkpack)
[1394]314 if ( !in.IsPacked() ) {
315 msg = _msg + "CheckResize(real in, complex out) - Not packed input array !";
316 throw(SzMismatchError(msg));
317 }
[1390]318 int ndg1 = 0;
319 for(k=0; k<in.NbDimensions(); k++)
320 if (in.Size(k) > 1) ndg1++;
321 if (_onedonly)
[1394]322 if (ndg1 > 1) {
323 msg = _msg + "CheckResize(real in, complex out) - Only 1-D array accepted !";
324 throw(SzMismatchError(msg));
325 }
[1390]326 sa_size_t sz[BASEARRAY_MAXNDIMS];
[1400]327 //
328 if (ndg1 > 1) {
329 sz[0] = in.Size(0)/2+1;
330 for(k=1; k<in.NbDimensions(); k++)
331 sz[k] = in.Size(k);
332 }
333 else {
334 for(k=0; k<BASEARRAY_MAXNDIMS; k++) sz[k] = 1;
335 sz[in.MaxSizeKA()] = in.Size(in.MaxSizeKA())/2+1;
336 // sz[k] = in.Size(k)/2+1;
337 // sz[k] = (in.Size(k)%2 != 0) ? in.Size(k)/2+1 : in.Size(k)/2;
338 }
[1390]339 out.ReSize(in.NbDimensions(), sz);
340
341 return(ndg1);
[710]342}
343
344/* --Methode-- */
[1390]345template <class T>
[1402]346int FFTArrayChecker<T>::CheckResize(TArray< complex<T> > const & in, TArray< T > & out,
347 bool usoutsz)
[710]348{
[1390]349 int k;
[1394]350 string msg;
351 if (in.Size() < 1) {
352 msg = _msg + "CheckResize(complex in, real out) - Unallocated input array !";
353 throw(SzMismatchError(msg));
354 }
[1390]355 if (_checkpack)
[1394]356 if ( !in.IsPacked() ) {
357 msg = _msg + "CheckResize(complex in, real out) - Not packed input array !";
358 throw(SzMismatchError(msg));
359 }
[1390]360 int ndg1 = 0;
361 for(k=0; k<in.NbDimensions(); k++)
362 if (in.Size(k) > 1) ndg1++;
363 if (_onedonly)
[1394]364 if (ndg1 > 1) {
365 msg = _msg + "CheckResize(complex in, real out) - Only 1-D array accepted !";
366 throw(SzMismatchError(msg));
367 }
[1402]368 if (usoutsz) { // We have to use output array size
369 bool fgerr = false;
370 if (ndg1 > 1) {
371 if (in.Size(0) != out.Size(0)/2+1) fgerr = true;
372 }
373 else {
374 if (in.Size(in.MaxSizeKA()) != out.Size(in.MaxSizeKA())/2+1) fgerr = true;
375 }
376 if (fgerr) {
377 msg = _msg + "CheckResize(complex in, real out) - Incompatible in-out sizes !";
378 throw(SzMismatchError(msg));
379 }
380 }
381 else { // We have to resize the output array
382 sa_size_t sz[BASEARRAY_MAXNDIMS];
383 if (ndg1 > 1) {
384 sz[0] = 2*in.Size(0)-1;
385 for(k=1; k<in.NbDimensions(); k++)
386 sz[k] = in.Size(k);
[1400]387 // sz[k] = in.Size(k)*2-1;
[1402]388 }
389 else {
390 for(k=0; k<BASEARRAY_MAXNDIMS; k++) sz[k] = 1;
391 T thr = ZeroThreshold();
392 sa_size_t n = in.Size(in.MaxSizeKA());
[1652]393 sa_size_t ncs = ( (in[n-1].imag() < -thr) || (in[n-1].imag() > thr) )
394 ? 2*n-1 : 2*n-2;
[1402]395 sz[in.MaxSizeKA()] = ncs;
396 }
397 out.ReSize(in.NbDimensions(), sz);
[1394]398 }
399
[1390]400 return(ndg1);
401
[710]402}
403
404
[1390]405#ifdef __CXX_PRAGMA_TEMPLATES__
406#pragma define_template FFTArrayChecker<r_4>
407#pragma define_template FFTArrayChecker<r_8>
408#endif
409
410#if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
411template class FFTArrayChecker<r_4>;
412template class FFTArrayChecker<r_8>;
413#endif
Note: See TracBrowser for help on using the repository browser.