source: Sophya/trunk/SophyaLib/NTools/fftservintf.cc@ 3384

Last change on this file since 3384 was 3384, checked in by ansari, 18 years ago

Ajout test sur Imag(Nyquist) pour calcul taille tableau reel de sortie pour FFT-multidim complexe->reel, Reza 21/11/2007

File size: 15.4 KB
RevLine 
[710]1#include "fftservintf.h"
2
[3235]3namespace SOPHYA {
4
[2540]5//// VOIR GRAND BLABLA EXPLICATIF A LA FIN DU FICHIER
[710]6
[1371]7/*!
[3235]8 \class FFTServerInterface
[1371]9 \ingroup NTools
10 Defines the interface for FFT (Fast Fourier Transform) operations.
[1405]11 Definitions :
12 - Sampling period \b T
13 - Sampling frequency \b fs=1/T
14 - Total number of samples \b N
15 - Frequency step in Fourier space \b =fs/N=1/(N*T)
16 - Component frequencies
17 - k=0 -> 0
18 - k=1 -> 1/(N*T)
19 - k -> k/(N*T)
20 - k=N/2 -> 1/(2*T) (Nyquist frequency)
21 - k>N/2 -> k/(N*T) (or negative frequency -(N-k)/(N*T))
22
23 For a sampling period T=1, the computed Fourier components correspond to :
24 \verbatim
25 0 1/N 2/N ... 1/2 1/2+1/N 1/2+2/N ... 1-2/N 1-1/N
26 0 1/N 2/N ... 1/2 ... -2/N -1/N
27 \endverbatim
28
29 For complex one-dimensional transforms:
30 \f[
31 out(i) = F_{norm} \Sigma_{j} \ e^{-2 \pi \sqrt{-1} \ i \ j} \ {\rm (forward)}
32 \f]
33 \f[
34 out(i) = F_{norm} \Sigma_{j} \ e^{2 \pi \sqrt{-1} \ i \ j} \ {\rm (backward)}
35 \f]
36 i,j= 0..N-1 , where N is the input or the output array size.
37
38 For complex multi-dimensional transforms:
39 \f[
40 out(i1,i2,...,id) = F_{norm} \Sigma_{j1} \Sigma_{j2} ... \Sigma_{jd} \
41 e^{-2 \pi \sqrt{-1} \ i1 \ j1} ... e^{-2 \pi \sqrt{-1} \ id \ jd} \ {\rm (forward)}
42 \f]
43 \f[
44 out(i1,i2,...,id) = F_{norm} \Sigma_{j1} \Sigma_{j2} ... \Sigma_{jd} \
45 e^{2 \pi \sqrt{-1} \ i1 \ j1} ... e^{2 \pi \sqrt{-1} \ id \ jd} \ {\rm (backward)}
46 \f]
47
48 For real forward transforms, the input array is real, and
49 the output array complex, with Fourier components up to k=N/2.
50 For real backward transforms, the input array is complex and
51 the output array is real.
[1371]52*/
[710]53
54/* --Methode-- */
55FFTServerInterface::FFTServerInterface(string info)
56{
57 _info = info;
[717]58 _fgnorm = true;
[710]59}
60
61/* --Methode-- */
62FFTServerInterface::~FFTServerInterface()
63{
64}
65
[1390]66// ----------------- Transforme pour les double -------------------
67
[710]68/* --Methode-- */
[1405]69//! Forward Fourier transform for double precision complex data
70/*!
71 \param in : Input complex array
72 \param out : Output complex array
73 */
[3002]74void FFTServerInterface::FFTForward(TArray< complex<r_8> > &, TArray< complex<r_8> > &)
[710]75{
[1390]76 throw NotAvailableOperation("FFTServer::FFTForward(TArray...) Unsupported operation !");
[710]77}
78
79/* --Methode-- */
[1405]80//! Backward (inverse) Fourier transform for double precision complex data
81/*!
82 \param in : Input complex array
83 \param out : Output complex array
84 */
[3002]85void FFTServerInterface::FFTBackward(TArray< complex<r_8> > &, TArray< complex<r_8> > &)
[710]86{
[1390]87 throw NotAvailableOperation("FFTServer::FFTBackward(TArray...) Unsupported operation !");
[710]88}
89
90/* --Methode-- */
[1405]91//! Forward Fourier transform for double precision real input data
92/*!
93 \param in : Input real array
94 \param out : Output complex array
95 */
[3002]96void FFTServerInterface::FFTForward(TArray< r_8 > &, TArray< complex<r_8> > &)
[710]97{
[1390]98 throw NotAvailableOperation("FFTServer::FFTForward(TArray...) Unsupported operation !");
[710]99}
100
101/* --Methode-- */
[1405]102//! Backward (inverse) Fourier transform for double precision real output data
103/*!
104 \param in : Input complex array
105 \param out : Output real array
106 \param usoutsz : if true, use the output array size for computing the inverse FFT.
[2988]107
108 In all cases, the input/output array sizes compatibility is checked.
109 if usoutsz == false, the size of the real array is selected based on the
110 the imaginary part of the input complex array at the nyquist frequency.
111 size_out_real = 2*size_in_complex - ( 1 or 2)
[1405]112 */
[3002]113void FFTServerInterface::FFTBackward(TArray< complex<r_8> > &, TArray< r_8 > &, bool)
[710]114{
[1390]115 throw NotAvailableOperation("FFTServer::FFTBackward(TArray...) Unsupported operation !");
[710]116}
117
[1390]118
119// ----------------- Transforme pour les float -------------------
120
[710]121/* --Methode-- */
[1405]122//! Forward Fourier transform for complex data
123/*!
124 \param in : Input complex array
125 \param out : Output complex array
126 */
[3002]127void FFTServerInterface::FFTForward(TArray< complex<r_4> > &, TArray< complex<r_4> > &)
[710]128{
[1390]129 throw NotAvailableOperation("FFTServer::FFTForward(TArray r_4 ... ) Unsupported operation !");
[710]130}
131
132/* --Methode-- */
[1405]133//! Backward (inverse) Fourier transform for complex data
134/*!
135 \param in : Input complex array
136 \param out : Output complex array
137 */
[3002]138void FFTServerInterface::FFTBackward(TArray< complex<r_4> > &, TArray< complex<r_4> > &)
[710]139{
[1390]140 throw NotAvailableOperation("FFTServer::FFTBackward(TArray r_4 ... ) Unsupported operation !");
[710]141}
142
143/* --Methode-- */
[1405]144//! Forward Fourier transform for real input data
145/*!
146 \param in : Input real array
147 \param out : Output complex array
148 */
[3002]149void FFTServerInterface::FFTForward(TArray< r_4 > &, TArray< complex<r_4> > &)
[710]150{
[1390]151 throw NotAvailableOperation("FFTServer::FFTForward(TArray r_4 ... ) Unsupported operation !");
[710]152}
153
154/* --Methode-- */
[1405]155//! Backward (inverse) Fourier transform for real output data
156/*!
157 \param in : Input complex array
158 \param out : Output real array
159 \param usoutsz : if true, use the output array size for computing the inverse FFT.
[2988]160
161 In all cases, the input/output array sizes compatibility is checked.
162 if usoutsz == false, the size of the real array is selected based on the
163 the imaginary part of the input complex array at the nyquist frequency.
164 size_out_real = 2*size_in_complex - ( 1 or 2)
165*/
[3002]166void FFTServerInterface::FFTBackward(TArray< complex<r_4> > &, TArray< r_4 > &, bool)
[710]167{
[1390]168 throw NotAvailableOperation("FFTServer::FFTBackward(TArray r_4 ... ) Unsupported operation !");
[710]169}
170
171/* --Methode-- */
[1405]172/*!
[3235]173 \class FFTArrayChecker
[1405]174 \ingroup NTools
175 Service class for checking array size and resizing output arrays,
176 to be used by FFTServer classes
177*/
178
[1390]179template <class T>
[1394]180FFTArrayChecker<T>::FFTArrayChecker(string msg, bool checkpack, bool onedonly)
[710]181{
[1394]182 _msg = msg + " FFTArrayChecker::";
[1390]183 _checkpack = checkpack;
184 _onedonly = onedonly;
[710]185}
186
187/* --Methode-- */
[1390]188template <class T>
189FFTArrayChecker<T>::~FFTArrayChecker()
[710]190{
191}
192
[1394]193template <class T>
194T FFTArrayChecker<T>::ZeroThreshold()
195{
196 return(0);
197}
198
[2344]199DECL_TEMP_SPEC /* equivalent a template <> , pour SGI-CC en particulier */
[1394]200r_8 FFTArrayChecker< r_8 >::ZeroThreshold()
201{
[2334]202 return(1.e-39);
[1394]203}
204
[2344]205DECL_TEMP_SPEC /* equivalent a template <> , pour SGI-CC en particulier */
[1394]206r_4 FFTArrayChecker< r_4 >::ZeroThreshold()
207{
[2334]208 return(1.e-19);
[1394]209}
210
[710]211/* --Methode-- */
[1390]212template <class T>
213int FFTArrayChecker<T>::CheckResize(TArray< complex<T> > const & in, TArray< complex<T> > & out)
[710]214{
[1390]215 int k;
[1394]216 string msg;
217 if (in.Size() < 1) {
218 msg = _msg + "CheckResize(complex in, complex out) - Unallocated input array !";
219 throw(SzMismatchError(msg));
220 }
[1390]221 if (_checkpack)
[1394]222 if ( !in.IsPacked() ) {
223 msg = _msg + "CheckResize(complex in, complex out) - Not packed input array !";
224 throw(SzMismatchError(msg));
225 }
[1390]226 int ndg1 = 0;
227 for(k=0; k<in.NbDimensions(); k++)
228 if (in.Size(k) > 1) ndg1++;
229 if (_onedonly)
[1394]230 if (ndg1 > 1) {
231 msg = _msg + "CheckResize(complex in, complex out) - Only 1-D array accepted !";
232 throw(SzMismatchError(msg));
233 }
234 out.ReSize(in);
235 // sa_size_t sz[BASEARRAY_MAXNDIMS];
236 // for(k=0; k<in.NbDimensions(); k++)
237 // sz[k] = in.Size(k);
238 // out.ReSize(in.NbDimensions(), sz);
[1390]239
240 return(ndg1);
[710]241}
242
243/* --Methode-- */
[1390]244template <class T>
245int FFTArrayChecker<T>::CheckResize(TArray< T > const & in, TArray< complex<T> > & out)
[710]246{
[1390]247 int k;
[1394]248 string msg;
249 if (in.Size() < 1) {
250 msg = _msg + "CheckResize(real in, complex out) - Unallocated input array !";
251 throw(SzMismatchError(msg));
252 }
[1390]253 if (_checkpack)
[1394]254 if ( !in.IsPacked() ) {
255 msg = _msg + "CheckResize(real in, complex out) - Not packed input array !";
256 throw(SzMismatchError(msg));
257 }
[1390]258 int ndg1 = 0;
259 for(k=0; k<in.NbDimensions(); k++)
260 if (in.Size(k) > 1) ndg1++;
261 if (_onedonly)
[1394]262 if (ndg1 > 1) {
263 msg = _msg + "CheckResize(real in, complex out) - Only 1-D array accepted !";
264 throw(SzMismatchError(msg));
265 }
[1390]266 sa_size_t sz[BASEARRAY_MAXNDIMS];
[1400]267 //
268 if (ndg1 > 1) {
269 sz[0] = in.Size(0)/2+1;
270 for(k=1; k<in.NbDimensions(); k++)
271 sz[k] = in.Size(k);
272 }
273 else {
274 for(k=0; k<BASEARRAY_MAXNDIMS; k++) sz[k] = 1;
275 sz[in.MaxSizeKA()] = in.Size(in.MaxSizeKA())/2+1;
276 // sz[k] = in.Size(k)/2+1;
277 // sz[k] = (in.Size(k)%2 != 0) ? in.Size(k)/2+1 : in.Size(k)/2;
278 }
[1390]279 out.ReSize(in.NbDimensions(), sz);
280
281 return(ndg1);
[710]282}
283
284/* --Methode-- */
[1390]285template <class T>
[1402]286int FFTArrayChecker<T>::CheckResize(TArray< complex<T> > const & in, TArray< T > & out,
287 bool usoutsz)
[710]288{
[1390]289 int k;
[1394]290 string msg;
291 if (in.Size() < 1) {
292 msg = _msg + "CheckResize(complex in, real out) - Unallocated input array !";
293 throw(SzMismatchError(msg));
294 }
[1390]295 if (_checkpack)
[1394]296 if ( !in.IsPacked() ) {
297 msg = _msg + "CheckResize(complex in, real out) - Not packed input array !";
298 throw(SzMismatchError(msg));
299 }
[1390]300 int ndg1 = 0;
301 for(k=0; k<in.NbDimensions(); k++)
302 if (in.Size(k) > 1) ndg1++;
303 if (_onedonly)
[1394]304 if (ndg1 > 1) {
305 msg = _msg + "CheckResize(complex in, real out) - Only 1-D array accepted !";
306 throw(SzMismatchError(msg));
307 }
[1402]308 if (usoutsz) { // We have to use output array size
309 bool fgerr = false;
310 if (ndg1 > 1) {
311 if (in.Size(0) != out.Size(0)/2+1) fgerr = true;
312 }
313 else {
314 if (in.Size(in.MaxSizeKA()) != out.Size(in.MaxSizeKA())/2+1) fgerr = true;
315 }
316 if (fgerr) {
317 msg = _msg + "CheckResize(complex in, real out) - Incompatible in-out sizes !";
318 throw(SzMismatchError(msg));
319 }
320 }
321 else { // We have to resize the output array
[3384]322 T thr = ZeroThreshold(); // Seuil pour tester Imag(Nyquist) == 0
[1402]323 sa_size_t sz[BASEARRAY_MAXNDIMS];
324 if (ndg1 > 1) {
[3384]325 T imnyq = in(in.Size(0)-1,0,0).imag();
326 // Rz+cmc/Nov07 :
327 // Calcul de la taille SizeX/Sz[0] paire/impaire en fonction de Imag(Nyquist)
328 sz[0] = ((imnyq < -thr)||(imnyq > thr)) ? 2*in.Size(0)-1 : 2*in.Size(0)-2;
[1402]329 for(k=1; k<in.NbDimensions(); k++)
330 sz[k] = in.Size(k);
[1400]331 // sz[k] = in.Size(k)*2-1;
[1402]332 }
333 else {
334 for(k=0; k<BASEARRAY_MAXNDIMS; k++) sz[k] = 1;
335 sa_size_t n = in.Size(in.MaxSizeKA());
[1652]336 sa_size_t ncs = ( (in[n-1].imag() < -thr) || (in[n-1].imag() > thr) )
337 ? 2*n-1 : 2*n-2;
[1402]338 sz[in.MaxSizeKA()] = ncs;
339 }
340 out.ReSize(in.NbDimensions(), sz);
[1394]341 }
342
[1390]343 return(ndg1);
344
[710]345}
346
347
[1390]348#ifdef __CXX_PRAGMA_TEMPLATES__
349#pragma define_template FFTArrayChecker<r_4>
350#pragma define_template FFTArrayChecker<r_8>
351#endif
352
353#if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
354template class FFTArrayChecker<r_4>;
355template class FFTArrayChecker<r_8>;
356#endif
[2540]357
[3235]358} // FIN namespace SOPHYA
[2540]359
360
361
362/**********************************************************************
363
364Memo uniquement destine aux programmeurs: (cmv 03/05/04)
365-- cf programme de tests explicatif: cmvtfft.cc
366
367=====================================================================
368=====================================================================
369============== Transformees de Fourier et setNormalize ==============
370=====================================================================
371=====================================================================
372
373- si setNormalize(true): invTF{TF{S}} = S
374- si setNormalize(false): invTF{TF{S}} = N * S
375
376=====================================================================
377=====================================================================
378============== Transformees de Fourier de signaux REELS =============
379=====================================================================
380=====================================================================
381
382-------
383--- FFT d'un signal REEL S ayant un nombre pair d'elements N=2p
384-------
385 taille de la FFT: Nfft = N/2 + 1 = p + 1
386 abscisses de la fft: | 0 | 1/N | 2/N | ..... | p/N=1/2 |
387 ^continu ^frequence de Nyquist
388
389 ... Ex: N=6 -> Nfft = 6/3+1 = 4
390
391 le signal a N elements reels, la fft a Nfft elements complexes
392 cad 2*Nfft reels = 2*(p+1) reels = 2p + 2 reels = N + 2 reels
393 soit 2 reels en trop:
394 ce sont les phases du continu et de la frequence de Nyquist
395
396 relations:
397 - si setNormalize(true) : fac = N
398 setNormalize(false) : fac = 1/N
399 sum(i=0,N-1){S(i)^2}
400 = fac* [[ 2* sum(j=0,Nfft-1){|TF{S}(j)|^2}
401 - |TF{S}(0)|^2 - |TF{S}(Nfft-1)|^2 ]]
402 (On ne compte pas deux fois le continu et la freq de Nyquist)
403
404
405-------
406--- FFT d'un signal REEL ayant un nombre impair d'elements N=2p+1
407-------
408 taille de la FFT: Nfft = N/2 + 1 = p + 1
409 abscisses de la fft: | 0 | 1/N | 2/N | ..... | p/N |
410 ^continu
411 (la frequence de Nyquist n'y est pas)
412
413 ... Ex: N=7 -> Nfft = 7/3+1 = 4
414
415 le signal a N elements reels, la fft a Nfft elements complexes
416 cad 2*Nfft reels = 2*(p+1) reels = 2p + 2 reels = N + 1 reels
417 soit 1 reel en trop: c'est la phase du continu
418
419 relations:
420 - si setNormalize(true) : fac = N
421 setNormalize(false) : fac = 1/N
422 sum(i=0,N-1){S(i)^2}
423 = fac* [[ 2* sum(j=0,Nfft-1){|TF{S}(j)|^2}
424 - |TF{S}(0)|^2 ]]
425 (On ne compte pas deux fois le continu)
426
427
428------------
429--- FFT-BACK d'un signal F=TF{S} ayant un nombre d'elements Nfft
430------------
431 Sback = invTF{TF{S}}
432
433 Remarque: Nfft a la meme valeur pour N=2p et N=2p+1
434 donc Nfft conduit a 2 possibilites:
435 { N = 2*(Nfft-1) signal back avec nombre pair d'elements
436 { N = 2*Nfft-1 signal back avec nombre impair d'elements
437
438 Pour savoir quel est la longueur N du signal TF^(-1){F} on regarde
439 si F(Nfft-1) est reel ou complexe
440 (la frequence de Nyquist d'un signal reel est reelle)
441
442 - Si F(Nfft-1) reel cad Im{F(Nfft-1)}=0: N = 2*(Nfft-1)
443 - Si F(Nfft-1) complexe cad Im{F(Nfft-1)}#0: N = 2*Nfft-1
444
445 Si setNormalize(true): invTF{TF{S}} = S
446 setNormalize(false): invTF{TF{S}} = N * S
447
448=========================================================================
449=========================================================================
450============== Transformees de Fourier de signaux COMPLEXES =============
451=========================================================================
452=========================================================================
453
454-------
455--- FFT d'un signal COMPLEXE S ayant un nombre d'elements N
456-------
457 taille de la FFT: Nfft = N
458 abscisses de la fft: | 0 | 1/N | 2/N | ..... | (N-1)/N |
459 ^continu
460
461 Frequence de Nyquist:
462 si N est pair: la frequence de Nyquist est l'absicce d'un des bins
463 abscisses de TF{S}: Nfft = N = 2p
464 | 0 | 1/N | 2/N | ... | (N/2)/N=p/N=0.5 | ... | (N-1)/N |
465 ^frequence de Nyquist
466 si N est impair: la frequence de Nyquist N'est PAS l'absicce d'un des bins
467 abscisses de TF{S}: Nfft = N = 2p+1
468 | 0 | 1/N | 2/N | ... | (N/2)/N=p/N | ((N+1)/2)/N=(p+1)/N | ... | (N-1)/N |
469
470 ... Ex: N = 2p =6 -> Nfft = 2p = 6
471 abscisses de TF{S}: | 0 | 1/6 | 2/6 | 3/6=0.5 | 4/6 | 5/6 |
472 ... Ex: N = 2p+1 = 7 -> Nfft = 2p+1 = 7
473 abscisses de TF{S}: | 0 | 1/7 | 2/7 | 3/7 | 4/7 | 5/7 | 6/7 |
474
475 relations:
476 - si setNormalize(true) : fac = N
477 setNormalize(false) : fac = 1/N
478 sum(i=0,N-1){S(i)^2} = fac* [[ sum(j=0,Nfft-1){|TF{S}(j)|^2} ]]
479
480------------
481--- FFT-BACK d'un signal F=TF{S} ayant un nombre d'elements Nfft
482------------
483 taille du signal: N = Nfft
484
485 Si setNormalize(true): invTF{TF{S}} = S
486 setNormalize(false): invTF{TF{S}} = N * S
487
488**********************************************************************/
Note: See TracBrowser for help on using the repository browser.