[710] | 1 | #include "fftservintf.h"
|
---|
| 2 |
|
---|
[3235] | 3 | namespace SOPHYA {
|
---|
| 4 |
|
---|
[2540] | 5 | //// VOIR GRAND BLABLA EXPLICATIF A LA FIN DU FICHIER
|
---|
[710] | 6 |
|
---|
[1371] | 7 | /*!
|
---|
[3235] | 8 | \class FFTServerInterface
|
---|
[1371] | 9 | \ingroup NTools
|
---|
| 10 | Defines the interface for FFT (Fast Fourier Transform) operations.
|
---|
[1405] | 11 | Definitions :
|
---|
| 12 | - Sampling period \b T
|
---|
| 13 | - Sampling frequency \b fs=1/T
|
---|
| 14 | - Total number of samples \b N
|
---|
| 15 | - Frequency step in Fourier space \b =fs/N=1/(N*T)
|
---|
| 16 | - Component frequencies
|
---|
| 17 | - k=0 -> 0
|
---|
| 18 | - k=1 -> 1/(N*T)
|
---|
| 19 | - k -> k/(N*T)
|
---|
| 20 | - k=N/2 -> 1/(2*T) (Nyquist frequency)
|
---|
| 21 | - k>N/2 -> k/(N*T) (or negative frequency -(N-k)/(N*T))
|
---|
| 22 |
|
---|
| 23 | For a sampling period T=1, the computed Fourier components correspond to :
|
---|
| 24 | \verbatim
|
---|
| 25 | 0 1/N 2/N ... 1/2 1/2+1/N 1/2+2/N ... 1-2/N 1-1/N
|
---|
| 26 | 0 1/N 2/N ... 1/2 ... -2/N -1/N
|
---|
| 27 | \endverbatim
|
---|
| 28 |
|
---|
| 29 | For complex one-dimensional transforms:
|
---|
| 30 | \f[
|
---|
| 31 | out(i) = F_{norm} \Sigma_{j} \ e^{-2 \pi \sqrt{-1} \ i \ j} \ {\rm (forward)}
|
---|
| 32 | \f]
|
---|
| 33 | \f[
|
---|
| 34 | out(i) = F_{norm} \Sigma_{j} \ e^{2 \pi \sqrt{-1} \ i \ j} \ {\rm (backward)}
|
---|
| 35 | \f]
|
---|
| 36 | i,j= 0..N-1 , where N is the input or the output array size.
|
---|
| 37 |
|
---|
| 38 | For complex multi-dimensional transforms:
|
---|
| 39 | \f[
|
---|
| 40 | out(i1,i2,...,id) = F_{norm} \Sigma_{j1} \Sigma_{j2} ... \Sigma_{jd} \
|
---|
| 41 | e^{-2 \pi \sqrt{-1} \ i1 \ j1} ... e^{-2 \pi \sqrt{-1} \ id \ jd} \ {\rm (forward)}
|
---|
| 42 | \f]
|
---|
| 43 | \f[
|
---|
| 44 | out(i1,i2,...,id) = F_{norm} \Sigma_{j1} \Sigma_{j2} ... \Sigma_{jd} \
|
---|
| 45 | e^{2 \pi \sqrt{-1} \ i1 \ j1} ... e^{2 \pi \sqrt{-1} \ id \ jd} \ {\rm (backward)}
|
---|
| 46 | \f]
|
---|
| 47 |
|
---|
| 48 | For real forward transforms, the input array is real, and
|
---|
| 49 | the output array complex, with Fourier components up to k=N/2.
|
---|
| 50 | For real backward transforms, the input array is complex and
|
---|
| 51 | the output array is real.
|
---|
[1371] | 52 | */
|
---|
[710] | 53 |
|
---|
| 54 | /* --Methode-- */
|
---|
| 55 | FFTServerInterface::FFTServerInterface(string info)
|
---|
| 56 | {
|
---|
| 57 | _info = info;
|
---|
[717] | 58 | _fgnorm = true;
|
---|
[710] | 59 | }
|
---|
| 60 |
|
---|
| 61 | /* --Methode-- */
|
---|
| 62 | FFTServerInterface::~FFTServerInterface()
|
---|
| 63 | {
|
---|
| 64 | }
|
---|
| 65 |
|
---|
[1390] | 66 | // ----------------- Transforme pour les double -------------------
|
---|
| 67 |
|
---|
[710] | 68 | /* --Methode-- */
|
---|
[1405] | 69 | //! Forward Fourier transform for double precision complex data
|
---|
| 70 | /*!
|
---|
| 71 | \param in : Input complex array
|
---|
| 72 | \param out : Output complex array
|
---|
| 73 | */
|
---|
[3002] | 74 | void FFTServerInterface::FFTForward(TArray< complex<r_8> > &, TArray< complex<r_8> > &)
|
---|
[710] | 75 | {
|
---|
[1390] | 76 | throw NotAvailableOperation("FFTServer::FFTForward(TArray...) Unsupported operation !");
|
---|
[710] | 77 | }
|
---|
| 78 |
|
---|
| 79 | /* --Methode-- */
|
---|
[1405] | 80 | //! Backward (inverse) Fourier transform for double precision complex data
|
---|
| 81 | /*!
|
---|
| 82 | \param in : Input complex array
|
---|
| 83 | \param out : Output complex array
|
---|
| 84 | */
|
---|
[3002] | 85 | void FFTServerInterface::FFTBackward(TArray< complex<r_8> > &, TArray< complex<r_8> > &)
|
---|
[710] | 86 | {
|
---|
[1390] | 87 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray...) Unsupported operation !");
|
---|
[710] | 88 | }
|
---|
| 89 |
|
---|
| 90 | /* --Methode-- */
|
---|
[1405] | 91 | //! Forward Fourier transform for double precision real input data
|
---|
| 92 | /*!
|
---|
| 93 | \param in : Input real array
|
---|
| 94 | \param out : Output complex array
|
---|
| 95 | */
|
---|
[3002] | 96 | void FFTServerInterface::FFTForward(TArray< r_8 > &, TArray< complex<r_8> > &)
|
---|
[710] | 97 | {
|
---|
[1390] | 98 | throw NotAvailableOperation("FFTServer::FFTForward(TArray...) Unsupported operation !");
|
---|
[710] | 99 | }
|
---|
| 100 |
|
---|
| 101 | /* --Methode-- */
|
---|
[1405] | 102 | //! Backward (inverse) Fourier transform for double precision real output data
|
---|
| 103 | /*!
|
---|
| 104 | \param in : Input complex array
|
---|
| 105 | \param out : Output real array
|
---|
| 106 | \param usoutsz : if true, use the output array size for computing the inverse FFT.
|
---|
[2988] | 107 |
|
---|
| 108 | In all cases, the input/output array sizes compatibility is checked.
|
---|
| 109 | if usoutsz == false, the size of the real array is selected based on the
|
---|
| 110 | the imaginary part of the input complex array at the nyquist frequency.
|
---|
| 111 | size_out_real = 2*size_in_complex - ( 1 or 2)
|
---|
[1405] | 112 | */
|
---|
[3002] | 113 | void FFTServerInterface::FFTBackward(TArray< complex<r_8> > &, TArray< r_8 > &, bool)
|
---|
[710] | 114 | {
|
---|
[1390] | 115 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray...) Unsupported operation !");
|
---|
[710] | 116 | }
|
---|
| 117 |
|
---|
[1390] | 118 |
|
---|
| 119 | // ----------------- Transforme pour les float -------------------
|
---|
| 120 |
|
---|
[710] | 121 | /* --Methode-- */
|
---|
[1405] | 122 | //! Forward Fourier transform for complex data
|
---|
| 123 | /*!
|
---|
| 124 | \param in : Input complex array
|
---|
| 125 | \param out : Output complex array
|
---|
| 126 | */
|
---|
[3002] | 127 | void FFTServerInterface::FFTForward(TArray< complex<r_4> > &, TArray< complex<r_4> > &)
|
---|
[710] | 128 | {
|
---|
[1390] | 129 | throw NotAvailableOperation("FFTServer::FFTForward(TArray r_4 ... ) Unsupported operation !");
|
---|
[710] | 130 | }
|
---|
| 131 |
|
---|
| 132 | /* --Methode-- */
|
---|
[1405] | 133 | //! Backward (inverse) Fourier transform for complex data
|
---|
| 134 | /*!
|
---|
| 135 | \param in : Input complex array
|
---|
| 136 | \param out : Output complex array
|
---|
| 137 | */
|
---|
[3002] | 138 | void FFTServerInterface::FFTBackward(TArray< complex<r_4> > &, TArray< complex<r_4> > &)
|
---|
[710] | 139 | {
|
---|
[1390] | 140 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray r_4 ... ) Unsupported operation !");
|
---|
[710] | 141 | }
|
---|
| 142 |
|
---|
| 143 | /* --Methode-- */
|
---|
[1405] | 144 | //! Forward Fourier transform for real input data
|
---|
| 145 | /*!
|
---|
| 146 | \param in : Input real array
|
---|
| 147 | \param out : Output complex array
|
---|
| 148 | */
|
---|
[3002] | 149 | void FFTServerInterface::FFTForward(TArray< r_4 > &, TArray< complex<r_4> > &)
|
---|
[710] | 150 | {
|
---|
[1390] | 151 | throw NotAvailableOperation("FFTServer::FFTForward(TArray r_4 ... ) Unsupported operation !");
|
---|
[710] | 152 | }
|
---|
| 153 |
|
---|
| 154 | /* --Methode-- */
|
---|
[1405] | 155 | //! Backward (inverse) Fourier transform for real output data
|
---|
| 156 | /*!
|
---|
| 157 | \param in : Input complex array
|
---|
| 158 | \param out : Output real array
|
---|
| 159 | \param usoutsz : if true, use the output array size for computing the inverse FFT.
|
---|
[2988] | 160 |
|
---|
| 161 | In all cases, the input/output array sizes compatibility is checked.
|
---|
| 162 | if usoutsz == false, the size of the real array is selected based on the
|
---|
| 163 | the imaginary part of the input complex array at the nyquist frequency.
|
---|
| 164 | size_out_real = 2*size_in_complex - ( 1 or 2)
|
---|
| 165 | */
|
---|
[3002] | 166 | void FFTServerInterface::FFTBackward(TArray< complex<r_4> > &, TArray< r_4 > &, bool)
|
---|
[710] | 167 | {
|
---|
[1390] | 168 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray r_4 ... ) Unsupported operation !");
|
---|
[710] | 169 | }
|
---|
| 170 |
|
---|
| 171 | /* --Methode-- */
|
---|
[1405] | 172 | /*!
|
---|
[3235] | 173 | \class FFTArrayChecker
|
---|
[1405] | 174 | \ingroup NTools
|
---|
| 175 | Service class for checking array size and resizing output arrays,
|
---|
| 176 | to be used by FFTServer classes
|
---|
| 177 | */
|
---|
| 178 |
|
---|
[1390] | 179 | template <class T>
|
---|
[1394] | 180 | FFTArrayChecker<T>::FFTArrayChecker(string msg, bool checkpack, bool onedonly)
|
---|
[710] | 181 | {
|
---|
[1394] | 182 | _msg = msg + " FFTArrayChecker::";
|
---|
[1390] | 183 | _checkpack = checkpack;
|
---|
| 184 | _onedonly = onedonly;
|
---|
[710] | 185 | }
|
---|
| 186 |
|
---|
| 187 | /* --Methode-- */
|
---|
[1390] | 188 | template <class T>
|
---|
| 189 | FFTArrayChecker<T>::~FFTArrayChecker()
|
---|
[710] | 190 | {
|
---|
| 191 | }
|
---|
| 192 |
|
---|
[1394] | 193 | template <class T>
|
---|
| 194 | T FFTArrayChecker<T>::ZeroThreshold()
|
---|
| 195 | {
|
---|
| 196 | return(0);
|
---|
| 197 | }
|
---|
| 198 |
|
---|
[2344] | 199 | DECL_TEMP_SPEC /* equivalent a template <> , pour SGI-CC en particulier */
|
---|
[1394] | 200 | r_8 FFTArrayChecker< r_8 >::ZeroThreshold()
|
---|
| 201 | {
|
---|
[2334] | 202 | return(1.e-39);
|
---|
[1394] | 203 | }
|
---|
| 204 |
|
---|
[2344] | 205 | DECL_TEMP_SPEC /* equivalent a template <> , pour SGI-CC en particulier */
|
---|
[1394] | 206 | r_4 FFTArrayChecker< r_4 >::ZeroThreshold()
|
---|
| 207 | {
|
---|
[2334] | 208 | return(1.e-19);
|
---|
[1394] | 209 | }
|
---|
| 210 |
|
---|
[710] | 211 | /* --Methode-- */
|
---|
[1390] | 212 | template <class T>
|
---|
| 213 | int FFTArrayChecker<T>::CheckResize(TArray< complex<T> > const & in, TArray< complex<T> > & out)
|
---|
[710] | 214 | {
|
---|
[1390] | 215 | int k;
|
---|
[1394] | 216 | string msg;
|
---|
| 217 | if (in.Size() < 1) {
|
---|
| 218 | msg = _msg + "CheckResize(complex in, complex out) - Unallocated input array !";
|
---|
| 219 | throw(SzMismatchError(msg));
|
---|
| 220 | }
|
---|
[1390] | 221 | if (_checkpack)
|
---|
[1394] | 222 | if ( !in.IsPacked() ) {
|
---|
| 223 | msg = _msg + "CheckResize(complex in, complex out) - Not packed input array !";
|
---|
| 224 | throw(SzMismatchError(msg));
|
---|
| 225 | }
|
---|
[1390] | 226 | int ndg1 = 0;
|
---|
| 227 | for(k=0; k<in.NbDimensions(); k++)
|
---|
| 228 | if (in.Size(k) > 1) ndg1++;
|
---|
| 229 | if (_onedonly)
|
---|
[1394] | 230 | if (ndg1 > 1) {
|
---|
| 231 | msg = _msg + "CheckResize(complex in, complex out) - Only 1-D array accepted !";
|
---|
| 232 | throw(SzMismatchError(msg));
|
---|
| 233 | }
|
---|
| 234 | out.ReSize(in);
|
---|
| 235 | // sa_size_t sz[BASEARRAY_MAXNDIMS];
|
---|
| 236 | // for(k=0; k<in.NbDimensions(); k++)
|
---|
| 237 | // sz[k] = in.Size(k);
|
---|
| 238 | // out.ReSize(in.NbDimensions(), sz);
|
---|
[1390] | 239 |
|
---|
| 240 | return(ndg1);
|
---|
[710] | 241 | }
|
---|
| 242 |
|
---|
| 243 | /* --Methode-- */
|
---|
[1390] | 244 | template <class T>
|
---|
| 245 | int FFTArrayChecker<T>::CheckResize(TArray< T > const & in, TArray< complex<T> > & out)
|
---|
[710] | 246 | {
|
---|
[1390] | 247 | int k;
|
---|
[1394] | 248 | string msg;
|
---|
| 249 | if (in.Size() < 1) {
|
---|
| 250 | msg = _msg + "CheckResize(real in, complex out) - Unallocated input array !";
|
---|
| 251 | throw(SzMismatchError(msg));
|
---|
| 252 | }
|
---|
[1390] | 253 | if (_checkpack)
|
---|
[1394] | 254 | if ( !in.IsPacked() ) {
|
---|
| 255 | msg = _msg + "CheckResize(real in, complex out) - Not packed input array !";
|
---|
| 256 | throw(SzMismatchError(msg));
|
---|
| 257 | }
|
---|
[1390] | 258 | int ndg1 = 0;
|
---|
| 259 | for(k=0; k<in.NbDimensions(); k++)
|
---|
| 260 | if (in.Size(k) > 1) ndg1++;
|
---|
| 261 | if (_onedonly)
|
---|
[1394] | 262 | if (ndg1 > 1) {
|
---|
| 263 | msg = _msg + "CheckResize(real in, complex out) - Only 1-D array accepted !";
|
---|
| 264 | throw(SzMismatchError(msg));
|
---|
| 265 | }
|
---|
[1390] | 266 | sa_size_t sz[BASEARRAY_MAXNDIMS];
|
---|
[1400] | 267 | //
|
---|
| 268 | if (ndg1 > 1) {
|
---|
| 269 | sz[0] = in.Size(0)/2+1;
|
---|
| 270 | for(k=1; k<in.NbDimensions(); k++)
|
---|
| 271 | sz[k] = in.Size(k);
|
---|
| 272 | }
|
---|
| 273 | else {
|
---|
| 274 | for(k=0; k<BASEARRAY_MAXNDIMS; k++) sz[k] = 1;
|
---|
| 275 | sz[in.MaxSizeKA()] = in.Size(in.MaxSizeKA())/2+1;
|
---|
| 276 | // sz[k] = in.Size(k)/2+1;
|
---|
| 277 | // sz[k] = (in.Size(k)%2 != 0) ? in.Size(k)/2+1 : in.Size(k)/2;
|
---|
| 278 | }
|
---|
[1390] | 279 | out.ReSize(in.NbDimensions(), sz);
|
---|
| 280 |
|
---|
| 281 | return(ndg1);
|
---|
[710] | 282 | }
|
---|
| 283 |
|
---|
| 284 | /* --Methode-- */
|
---|
[1390] | 285 | template <class T>
|
---|
[1402] | 286 | int FFTArrayChecker<T>::CheckResize(TArray< complex<T> > const & in, TArray< T > & out,
|
---|
| 287 | bool usoutsz)
|
---|
[710] | 288 | {
|
---|
[1390] | 289 | int k;
|
---|
[1394] | 290 | string msg;
|
---|
| 291 | if (in.Size() < 1) {
|
---|
| 292 | msg = _msg + "CheckResize(complex in, real out) - Unallocated input array !";
|
---|
| 293 | throw(SzMismatchError(msg));
|
---|
| 294 | }
|
---|
[1390] | 295 | if (_checkpack)
|
---|
[1394] | 296 | if ( !in.IsPacked() ) {
|
---|
| 297 | msg = _msg + "CheckResize(complex in, real out) - Not packed input array !";
|
---|
| 298 | throw(SzMismatchError(msg));
|
---|
| 299 | }
|
---|
[1390] | 300 | int ndg1 = 0;
|
---|
| 301 | for(k=0; k<in.NbDimensions(); k++)
|
---|
| 302 | if (in.Size(k) > 1) ndg1++;
|
---|
| 303 | if (_onedonly)
|
---|
[1394] | 304 | if (ndg1 > 1) {
|
---|
| 305 | msg = _msg + "CheckResize(complex in, real out) - Only 1-D array accepted !";
|
---|
| 306 | throw(SzMismatchError(msg));
|
---|
| 307 | }
|
---|
[1402] | 308 | if (usoutsz) { // We have to use output array size
|
---|
| 309 | bool fgerr = false;
|
---|
| 310 | if (ndg1 > 1) {
|
---|
| 311 | if (in.Size(0) != out.Size(0)/2+1) fgerr = true;
|
---|
| 312 | }
|
---|
| 313 | else {
|
---|
| 314 | if (in.Size(in.MaxSizeKA()) != out.Size(in.MaxSizeKA())/2+1) fgerr = true;
|
---|
| 315 | }
|
---|
| 316 | if (fgerr) {
|
---|
| 317 | msg = _msg + "CheckResize(complex in, real out) - Incompatible in-out sizes !";
|
---|
| 318 | throw(SzMismatchError(msg));
|
---|
| 319 | }
|
---|
| 320 | }
|
---|
| 321 | else { // We have to resize the output array
|
---|
[3384] | 322 | T thr = ZeroThreshold(); // Seuil pour tester Imag(Nyquist) == 0
|
---|
[1402] | 323 | sa_size_t sz[BASEARRAY_MAXNDIMS];
|
---|
| 324 | if (ndg1 > 1) {
|
---|
[3384] | 325 | T imnyq = in(in.Size(0)-1,0,0).imag();
|
---|
| 326 | // Rz+cmc/Nov07 :
|
---|
| 327 | // Calcul de la taille SizeX/Sz[0] paire/impaire en fonction de Imag(Nyquist)
|
---|
| 328 | sz[0] = ((imnyq < -thr)||(imnyq > thr)) ? 2*in.Size(0)-1 : 2*in.Size(0)-2;
|
---|
[3411] | 329 | if (sz[0] < 1) sz[0] = 1;
|
---|
[1402] | 330 | for(k=1; k<in.NbDimensions(); k++)
|
---|
| 331 | sz[k] = in.Size(k);
|
---|
[1400] | 332 | // sz[k] = in.Size(k)*2-1;
|
---|
[1402] | 333 | }
|
---|
| 334 | else {
|
---|
| 335 | for(k=0; k<BASEARRAY_MAXNDIMS; k++) sz[k] = 1;
|
---|
| 336 | sa_size_t n = in.Size(in.MaxSizeKA());
|
---|
[1652] | 337 | sa_size_t ncs = ( (in[n-1].imag() < -thr) || (in[n-1].imag() > thr) )
|
---|
| 338 | ? 2*n-1 : 2*n-2;
|
---|
[3411] | 339 | if (ncs < 1) ncs = 1;
|
---|
[1402] | 340 | sz[in.MaxSizeKA()] = ncs;
|
---|
| 341 | }
|
---|
| 342 | out.ReSize(in.NbDimensions(), sz);
|
---|
[1394] | 343 | }
|
---|
| 344 |
|
---|
[1390] | 345 | return(ndg1);
|
---|
| 346 |
|
---|
[710] | 347 | }
|
---|
| 348 |
|
---|
| 349 |
|
---|
[1390] | 350 | #ifdef __CXX_PRAGMA_TEMPLATES__
|
---|
| 351 | #pragma define_template FFTArrayChecker<r_4>
|
---|
| 352 | #pragma define_template FFTArrayChecker<r_8>
|
---|
| 353 | #endif
|
---|
| 354 |
|
---|
| 355 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
|
---|
| 356 | template class FFTArrayChecker<r_4>;
|
---|
| 357 | template class FFTArrayChecker<r_8>;
|
---|
| 358 | #endif
|
---|
[2540] | 359 |
|
---|
[3235] | 360 | } // FIN namespace SOPHYA
|
---|
[2540] | 361 |
|
---|
| 362 |
|
---|
| 363 |
|
---|
| 364 | /**********************************************************************
|
---|
| 365 |
|
---|
| 366 | Memo uniquement destine aux programmeurs: (cmv 03/05/04)
|
---|
| 367 | -- cf programme de tests explicatif: cmvtfft.cc
|
---|
| 368 |
|
---|
| 369 | =====================================================================
|
---|
| 370 | =====================================================================
|
---|
| 371 | ============== Transformees de Fourier et setNormalize ==============
|
---|
| 372 | =====================================================================
|
---|
| 373 | =====================================================================
|
---|
| 374 |
|
---|
| 375 | - si setNormalize(true): invTF{TF{S}} = S
|
---|
| 376 | - si setNormalize(false): invTF{TF{S}} = N * S
|
---|
| 377 |
|
---|
| 378 | =====================================================================
|
---|
| 379 | =====================================================================
|
---|
| 380 | ============== Transformees de Fourier de signaux REELS =============
|
---|
| 381 | =====================================================================
|
---|
| 382 | =====================================================================
|
---|
| 383 |
|
---|
| 384 | -------
|
---|
| 385 | --- FFT d'un signal REEL S ayant un nombre pair d'elements N=2p
|
---|
| 386 | -------
|
---|
| 387 | taille de la FFT: Nfft = N/2 + 1 = p + 1
|
---|
| 388 | abscisses de la fft: | 0 | 1/N | 2/N | ..... | p/N=1/2 |
|
---|
| 389 | ^continu ^frequence de Nyquist
|
---|
| 390 |
|
---|
| 391 | ... Ex: N=6 -> Nfft = 6/3+1 = 4
|
---|
| 392 |
|
---|
| 393 | le signal a N elements reels, la fft a Nfft elements complexes
|
---|
| 394 | cad 2*Nfft reels = 2*(p+1) reels = 2p + 2 reels = N + 2 reels
|
---|
| 395 | soit 2 reels en trop:
|
---|
| 396 | ce sont les phases du continu et de la frequence de Nyquist
|
---|
| 397 |
|
---|
| 398 | relations:
|
---|
| 399 | - si setNormalize(true) : fac = N
|
---|
| 400 | setNormalize(false) : fac = 1/N
|
---|
| 401 | sum(i=0,N-1){S(i)^2}
|
---|
| 402 | = fac* [[ 2* sum(j=0,Nfft-1){|TF{S}(j)|^2}
|
---|
| 403 | - |TF{S}(0)|^2 - |TF{S}(Nfft-1)|^2 ]]
|
---|
| 404 | (On ne compte pas deux fois le continu et la freq de Nyquist)
|
---|
| 405 |
|
---|
| 406 |
|
---|
| 407 | -------
|
---|
| 408 | --- FFT d'un signal REEL ayant un nombre impair d'elements N=2p+1
|
---|
| 409 | -------
|
---|
| 410 | taille de la FFT: Nfft = N/2 + 1 = p + 1
|
---|
| 411 | abscisses de la fft: | 0 | 1/N | 2/N | ..... | p/N |
|
---|
| 412 | ^continu
|
---|
| 413 | (la frequence de Nyquist n'y est pas)
|
---|
| 414 |
|
---|
| 415 | ... Ex: N=7 -> Nfft = 7/3+1 = 4
|
---|
| 416 |
|
---|
| 417 | le signal a N elements reels, la fft a Nfft elements complexes
|
---|
| 418 | cad 2*Nfft reels = 2*(p+1) reels = 2p + 2 reels = N + 1 reels
|
---|
| 419 | soit 1 reel en trop: c'est la phase du continu
|
---|
| 420 |
|
---|
| 421 | relations:
|
---|
| 422 | - si setNormalize(true) : fac = N
|
---|
| 423 | setNormalize(false) : fac = 1/N
|
---|
| 424 | sum(i=0,N-1){S(i)^2}
|
---|
| 425 | = fac* [[ 2* sum(j=0,Nfft-1){|TF{S}(j)|^2}
|
---|
| 426 | - |TF{S}(0)|^2 ]]
|
---|
| 427 | (On ne compte pas deux fois le continu)
|
---|
| 428 |
|
---|
| 429 |
|
---|
| 430 | ------------
|
---|
| 431 | --- FFT-BACK d'un signal F=TF{S} ayant un nombre d'elements Nfft
|
---|
| 432 | ------------
|
---|
| 433 | Sback = invTF{TF{S}}
|
---|
| 434 |
|
---|
| 435 | Remarque: Nfft a la meme valeur pour N=2p et N=2p+1
|
---|
| 436 | donc Nfft conduit a 2 possibilites:
|
---|
| 437 | { N = 2*(Nfft-1) signal back avec nombre pair d'elements
|
---|
| 438 | { N = 2*Nfft-1 signal back avec nombre impair d'elements
|
---|
| 439 |
|
---|
| 440 | Pour savoir quel est la longueur N du signal TF^(-1){F} on regarde
|
---|
| 441 | si F(Nfft-1) est reel ou complexe
|
---|
| 442 | (la frequence de Nyquist d'un signal reel est reelle)
|
---|
| 443 |
|
---|
| 444 | - Si F(Nfft-1) reel cad Im{F(Nfft-1)}=0: N = 2*(Nfft-1)
|
---|
| 445 | - Si F(Nfft-1) complexe cad Im{F(Nfft-1)}#0: N = 2*Nfft-1
|
---|
| 446 |
|
---|
| 447 | Si setNormalize(true): invTF{TF{S}} = S
|
---|
| 448 | setNormalize(false): invTF{TF{S}} = N * S
|
---|
| 449 |
|
---|
| 450 | =========================================================================
|
---|
| 451 | =========================================================================
|
---|
| 452 | ============== Transformees de Fourier de signaux COMPLEXES =============
|
---|
| 453 | =========================================================================
|
---|
| 454 | =========================================================================
|
---|
| 455 |
|
---|
| 456 | -------
|
---|
| 457 | --- FFT d'un signal COMPLEXE S ayant un nombre d'elements N
|
---|
| 458 | -------
|
---|
| 459 | taille de la FFT: Nfft = N
|
---|
| 460 | abscisses de la fft: | 0 | 1/N | 2/N | ..... | (N-1)/N |
|
---|
| 461 | ^continu
|
---|
| 462 |
|
---|
| 463 | Frequence de Nyquist:
|
---|
| 464 | si N est pair: la frequence de Nyquist est l'absicce d'un des bins
|
---|
| 465 | abscisses de TF{S}: Nfft = N = 2p
|
---|
| 466 | | 0 | 1/N | 2/N | ... | (N/2)/N=p/N=0.5 | ... | (N-1)/N |
|
---|
| 467 | ^frequence de Nyquist
|
---|
| 468 | si N est impair: la frequence de Nyquist N'est PAS l'absicce d'un des bins
|
---|
| 469 | abscisses de TF{S}: Nfft = N = 2p+1
|
---|
| 470 | | 0 | 1/N | 2/N | ... | (N/2)/N=p/N | ((N+1)/2)/N=(p+1)/N | ... | (N-1)/N |
|
---|
| 471 |
|
---|
| 472 | ... Ex: N = 2p =6 -> Nfft = 2p = 6
|
---|
| 473 | abscisses de TF{S}: | 0 | 1/6 | 2/6 | 3/6=0.5 | 4/6 | 5/6 |
|
---|
| 474 | ... Ex: N = 2p+1 = 7 -> Nfft = 2p+1 = 7
|
---|
| 475 | abscisses de TF{S}: | 0 | 1/7 | 2/7 | 3/7 | 4/7 | 5/7 | 6/7 |
|
---|
| 476 |
|
---|
| 477 | relations:
|
---|
| 478 | - si setNormalize(true) : fac = N
|
---|
| 479 | setNormalize(false) : fac = 1/N
|
---|
| 480 | sum(i=0,N-1){S(i)^2} = fac* [[ sum(j=0,Nfft-1){|TF{S}(j)|^2} ]]
|
---|
| 481 |
|
---|
| 482 | ------------
|
---|
| 483 | --- FFT-BACK d'un signal F=TF{S} ayant un nombre d'elements Nfft
|
---|
| 484 | ------------
|
---|
| 485 | taille du signal: N = Nfft
|
---|
| 486 |
|
---|
| 487 | Si setNormalize(true): invTF{TF{S}} = S
|
---|
| 488 | setNormalize(false): invTF{TF{S}} = N * S
|
---|
| 489 |
|
---|
| 490 | **********************************************************************/
|
---|