| 1 | #include "fftservintf.h" | 
|---|
| 2 |  | 
|---|
| 3 |  | 
|---|
| 4 | /*! | 
|---|
| 5 | \class SOPHYA::FFTServerInterface | 
|---|
| 6 | \ingroup NTools | 
|---|
| 7 | Defines the interface for FFT (Fast Fourier Transform) operations. | 
|---|
| 8 | Definitions : | 
|---|
| 9 | - Sampling period \b T | 
|---|
| 10 | - Sampling frequency \b fs=1/T | 
|---|
| 11 | - Total number of samples \b N | 
|---|
| 12 | - Frequency step in Fourier space \b =fs/N=1/(N*T) | 
|---|
| 13 | - Component frequencies | 
|---|
| 14 | - k=0      ->  0 | 
|---|
| 15 | - k=1      ->  1/(N*T) | 
|---|
| 16 | - k        ->  k/(N*T) | 
|---|
| 17 | - k=N/2    ->  1/(2*T)   (Nyquist frequency) | 
|---|
| 18 | - k>N/2    ->  k/(N*T)   (or negative frequency -(N-k)/(N*T)) | 
|---|
| 19 |  | 
|---|
| 20 | For a sampling period T=1, the computed Fourier components correspond to : | 
|---|
| 21 | \verbatim | 
|---|
| 22 | 0  1/N  2/N  ... 1/2  1/2+1/N  1/2+2/N ... 1-2/N  1-1/N | 
|---|
| 23 | 0  1/N  2/N  ... 1/2                   ...  -2/N   -1/N | 
|---|
| 24 | \endverbatim | 
|---|
| 25 |  | 
|---|
| 26 | For complex one-dimensional transforms: | 
|---|
| 27 | \f[ | 
|---|
| 28 | out(i) = F_{norm} \Sigma_{j} \ e^{-2 \pi \sqrt{-1} \ i \  j} \ {\rm (forward)} | 
|---|
| 29 | \f] | 
|---|
| 30 | \f[ | 
|---|
| 31 | out(i) = F_{norm} \Sigma_{j} \ e^{2 \pi \sqrt{-1} \ i \  j} \ {\rm (backward)} | 
|---|
| 32 | \f] | 
|---|
| 33 | i,j= 0..N-1 , where N is the input or the output array size. | 
|---|
| 34 |  | 
|---|
| 35 | For complex multi-dimensional transforms: | 
|---|
| 36 | \f[ | 
|---|
| 37 | out(i1,i2,...,id) = F_{norm} \Sigma_{j1} \Sigma_{j2} ... \Sigma_{jd} \ | 
|---|
| 38 | e^{-2 \pi \sqrt{-1} \ i1 \ j1} ... e^{-2 \pi \sqrt{-1} \ id \ jd} \ {\rm (forward)} | 
|---|
| 39 | \f] | 
|---|
| 40 | \f[ | 
|---|
| 41 | out(i1,i2,...,id) = F_{norm} \Sigma_{j1} \Sigma_{j2} ... \Sigma_{jd} \ | 
|---|
| 42 | e^{2 \pi \sqrt{-1} \ i1 \ j1} ... e^{2 \pi \sqrt{-1} \ id \ jd} \ {\rm (backward)} | 
|---|
| 43 | \f] | 
|---|
| 44 |  | 
|---|
| 45 | For real forward transforms, the input array is real, and | 
|---|
| 46 | the output array complex, with Fourier components up to k=N/2. | 
|---|
| 47 | For real backward transforms, the input array is complex and | 
|---|
| 48 | the output array is real. | 
|---|
| 49 | */ | 
|---|
| 50 |  | 
|---|
| 51 | /* --Methode-- */ | 
|---|
| 52 | FFTServerInterface::FFTServerInterface(string info) | 
|---|
| 53 | { | 
|---|
| 54 | _info = info; | 
|---|
| 55 | _fgnorm = true; | 
|---|
| 56 | } | 
|---|
| 57 |  | 
|---|
| 58 | /* --Methode-- */ | 
|---|
| 59 | FFTServerInterface::~FFTServerInterface() | 
|---|
| 60 | { | 
|---|
| 61 | } | 
|---|
| 62 |  | 
|---|
| 63 | // ----------------- Transforme pour les double ------------------- | 
|---|
| 64 |  | 
|---|
| 65 | /* --Methode-- */ | 
|---|
| 66 | //! Forward Fourier transform for double precision complex data | 
|---|
| 67 | /*! | 
|---|
| 68 | \param in : Input complex array | 
|---|
| 69 | \param out : Output complex array | 
|---|
| 70 | */ | 
|---|
| 71 | void FFTServerInterface::FFTForward(TArray< complex<r_8> > const &, TArray< complex<r_8> > &) | 
|---|
| 72 | { | 
|---|
| 73 | throw NotAvailableOperation("FFTServer::FFTForward(TArray...) Unsupported operation !"); | 
|---|
| 74 | } | 
|---|
| 75 |  | 
|---|
| 76 | /* --Methode-- */ | 
|---|
| 77 | //! Backward (inverse) Fourier transform for double precision complex data | 
|---|
| 78 | /*! | 
|---|
| 79 | \param in : Input complex array | 
|---|
| 80 | \param out : Output complex array | 
|---|
| 81 | */ | 
|---|
| 82 | void FFTServerInterface::FFTBackward(TArray< complex<r_8> > const &, TArray< complex<r_8> > &) | 
|---|
| 83 | { | 
|---|
| 84 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray...) Unsupported operation !"); | 
|---|
| 85 | } | 
|---|
| 86 |  | 
|---|
| 87 | /* --Methode-- */ | 
|---|
| 88 | //! Forward Fourier transform for double precision real input data | 
|---|
| 89 | /*! | 
|---|
| 90 | \param in : Input real array | 
|---|
| 91 | \param out : Output complex array | 
|---|
| 92 | */ | 
|---|
| 93 | void FFTServerInterface::FFTForward(TArray< r_8 > const &, TArray< complex<r_8> > &) | 
|---|
| 94 | { | 
|---|
| 95 | throw NotAvailableOperation("FFTServer::FFTForward(TArray...) Unsupported operation !"); | 
|---|
| 96 | } | 
|---|
| 97 |  | 
|---|
| 98 | /* --Methode-- */ | 
|---|
| 99 | //! Backward (inverse) Fourier transform for double precision real output data | 
|---|
| 100 | /*! | 
|---|
| 101 | \param in : Input complex array | 
|---|
| 102 | \param out : Output real array | 
|---|
| 103 | \param usoutsz : if true, use the output array size for computing the inverse FFT. | 
|---|
| 104 | */ | 
|---|
| 105 | void FFTServerInterface::FFTBackward(TArray< complex<r_8> > const &, TArray< r_8 > &, bool) | 
|---|
| 106 | { | 
|---|
| 107 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray...) Unsupported operation !"); | 
|---|
| 108 | } | 
|---|
| 109 |  | 
|---|
| 110 |  | 
|---|
| 111 | // ----------------- Transforme pour les float ------------------- | 
|---|
| 112 |  | 
|---|
| 113 | /* --Methode-- */ | 
|---|
| 114 | //! Forward Fourier transform for complex data | 
|---|
| 115 | /*! | 
|---|
| 116 | \param in : Input complex array | 
|---|
| 117 | \param out : Output complex array | 
|---|
| 118 | */ | 
|---|
| 119 | void FFTServerInterface::FFTForward(TArray< complex<r_4> > const &, TArray< complex<r_4> > &) | 
|---|
| 120 | { | 
|---|
| 121 | throw NotAvailableOperation("FFTServer::FFTForward(TArray r_4 ... ) Unsupported operation !"); | 
|---|
| 122 | } | 
|---|
| 123 |  | 
|---|
| 124 | /* --Methode-- */ | 
|---|
| 125 | //! Backward (inverse) Fourier transform for complex data | 
|---|
| 126 | /*! | 
|---|
| 127 | \param in : Input complex array | 
|---|
| 128 | \param out : Output complex array | 
|---|
| 129 | */ | 
|---|
| 130 | void FFTServerInterface::FFTBackward(TArray< complex<r_4> > const &, TArray< complex<r_4> > &) | 
|---|
| 131 | { | 
|---|
| 132 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray r_4 ... ) Unsupported operation !"); | 
|---|
| 133 | } | 
|---|
| 134 |  | 
|---|
| 135 | /* --Methode-- */ | 
|---|
| 136 | //! Forward Fourier transform for real input data | 
|---|
| 137 | /*! | 
|---|
| 138 | \param in : Input real array | 
|---|
| 139 | \param out : Output complex array | 
|---|
| 140 | */ | 
|---|
| 141 | void FFTServerInterface::FFTForward(TArray< r_4 > const &, TArray< complex<r_4> > &) | 
|---|
| 142 | { | 
|---|
| 143 | throw NotAvailableOperation("FFTServer::FFTForward(TArray r_4 ... ) Unsupported operation !"); | 
|---|
| 144 | } | 
|---|
| 145 |  | 
|---|
| 146 | /* --Methode-- */ | 
|---|
| 147 | //! Backward (inverse) Fourier transform for real output data | 
|---|
| 148 | /*! | 
|---|
| 149 | \param in : Input complex array | 
|---|
| 150 | \param out : Output real array | 
|---|
| 151 | \param usoutsz : if true, use the output array size for computing the inverse FFT. | 
|---|
| 152 | */ | 
|---|
| 153 | void FFTServerInterface::FFTBackward(TArray< complex<r_4> > const &, TArray< r_4 > &, bool) | 
|---|
| 154 | { | 
|---|
| 155 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray r_4 ... ) Unsupported operation !"); | 
|---|
| 156 | } | 
|---|
| 157 |  | 
|---|
| 158 |  | 
|---|
| 159 |  | 
|---|
| 160 | /* --Methode-- */ | 
|---|
| 161 | /*! | 
|---|
| 162 | \class SOPHYA::FFTArrayChecker | 
|---|
| 163 | \ingroup NTools | 
|---|
| 164 | Service class for checking array size and resizing output arrays, | 
|---|
| 165 | to be used by FFTServer classes | 
|---|
| 166 | */ | 
|---|
| 167 |  | 
|---|
| 168 | template <class T> | 
|---|
| 169 | FFTArrayChecker<T>::FFTArrayChecker(string msg, bool checkpack, bool onedonly) | 
|---|
| 170 | { | 
|---|
| 171 | _msg = msg + " FFTArrayChecker::"; | 
|---|
| 172 | _checkpack = checkpack; | 
|---|
| 173 | _onedonly = onedonly; | 
|---|
| 174 | } | 
|---|
| 175 |  | 
|---|
| 176 | /* --Methode-- */ | 
|---|
| 177 | template <class T> | 
|---|
| 178 | FFTArrayChecker<T>::~FFTArrayChecker() | 
|---|
| 179 | { | 
|---|
| 180 | } | 
|---|
| 181 |  | 
|---|
| 182 | template <class T> | 
|---|
| 183 | T FFTArrayChecker<T>::ZeroThreshold() | 
|---|
| 184 | { | 
|---|
| 185 | return(0); | 
|---|
| 186 | } | 
|---|
| 187 |  | 
|---|
| 188 | r_8 FFTArrayChecker< r_8 >::ZeroThreshold() | 
|---|
| 189 | { | 
|---|
| 190 | return(1.e-18); | 
|---|
| 191 | } | 
|---|
| 192 |  | 
|---|
| 193 | r_4 FFTArrayChecker< r_4 >::ZeroThreshold() | 
|---|
| 194 | { | 
|---|
| 195 | return(1.e-9); | 
|---|
| 196 | } | 
|---|
| 197 |  | 
|---|
| 198 |  | 
|---|
| 199 |  | 
|---|
| 200 | /* --Methode-- */ | 
|---|
| 201 | template <class T> | 
|---|
| 202 | int FFTArrayChecker<T>::CheckResize(TArray< complex<T> > const & in, TArray< complex<T> > & out) | 
|---|
| 203 | { | 
|---|
| 204 | int k; | 
|---|
| 205 | string msg; | 
|---|
| 206 | if (in.Size() < 1) { | 
|---|
| 207 | msg = _msg + "CheckResize(complex in, complex out) - Unallocated input array !"; | 
|---|
| 208 | throw(SzMismatchError(msg)); | 
|---|
| 209 | } | 
|---|
| 210 | if (_checkpack) | 
|---|
| 211 | if ( !in.IsPacked() ) { | 
|---|
| 212 | msg = _msg + "CheckResize(complex in, complex out) - Not packed input array !"; | 
|---|
| 213 | throw(SzMismatchError(msg)); | 
|---|
| 214 | } | 
|---|
| 215 | int ndg1 = 0; | 
|---|
| 216 | for(k=0; k<in.NbDimensions(); k++) | 
|---|
| 217 | if (in.Size(k) > 1)  ndg1++; | 
|---|
| 218 | if (_onedonly) | 
|---|
| 219 | if (ndg1 > 1) { | 
|---|
| 220 | msg = _msg + "CheckResize(complex in, complex out) - Only 1-D array accepted !"; | 
|---|
| 221 | throw(SzMismatchError(msg)); | 
|---|
| 222 | } | 
|---|
| 223 | out.ReSize(in); | 
|---|
| 224 | //  sa_size_t sz[BASEARRAY_MAXNDIMS]; | 
|---|
| 225 | //  for(k=0; k<in.NbDimensions(); k++) | 
|---|
| 226 | //    sz[k] = in.Size(k); | 
|---|
| 227 | //  out.ReSize(in.NbDimensions(), sz); | 
|---|
| 228 |  | 
|---|
| 229 | return(ndg1); | 
|---|
| 230 | } | 
|---|
| 231 |  | 
|---|
| 232 | /* --Methode-- */ | 
|---|
| 233 | template <class T> | 
|---|
| 234 | int FFTArrayChecker<T>::CheckResize(TArray< T > const & in, TArray< complex<T> > & out) | 
|---|
| 235 | { | 
|---|
| 236 | int k; | 
|---|
| 237 | string msg; | 
|---|
| 238 | if (in.Size() < 1) { | 
|---|
| 239 | msg = _msg + "CheckResize(real in, complex out) - Unallocated input array !"; | 
|---|
| 240 | throw(SzMismatchError(msg)); | 
|---|
| 241 | } | 
|---|
| 242 | if (_checkpack) | 
|---|
| 243 | if ( !in.IsPacked() ) { | 
|---|
| 244 | msg = _msg + "CheckResize(real in, complex out) - Not packed input array !"; | 
|---|
| 245 | throw(SzMismatchError(msg)); | 
|---|
| 246 | } | 
|---|
| 247 | int ndg1 = 0; | 
|---|
| 248 | for(k=0; k<in.NbDimensions(); k++) | 
|---|
| 249 | if (in.Size(k) > 1)  ndg1++; | 
|---|
| 250 | if (_onedonly) | 
|---|
| 251 | if (ndg1 > 1) { | 
|---|
| 252 | msg = _msg + "CheckResize(real in, complex out) - Only 1-D array accepted !"; | 
|---|
| 253 | throw(SzMismatchError(msg)); | 
|---|
| 254 | } | 
|---|
| 255 | sa_size_t sz[BASEARRAY_MAXNDIMS]; | 
|---|
| 256 | // | 
|---|
| 257 | if (ndg1 > 1) { | 
|---|
| 258 | sz[0] = in.Size(0)/2+1; | 
|---|
| 259 | for(k=1; k<in.NbDimensions(); k++) | 
|---|
| 260 | sz[k] = in.Size(k); | 
|---|
| 261 | } | 
|---|
| 262 | else { | 
|---|
| 263 | for(k=0; k<BASEARRAY_MAXNDIMS; k++)  sz[k] = 1; | 
|---|
| 264 | sz[in.MaxSizeKA()] = in.Size(in.MaxSizeKA())/2+1; | 
|---|
| 265 | //    sz[k] = in.Size(k)/2+1; | 
|---|
| 266 | //    sz[k] = (in.Size(k)%2 != 0) ? in.Size(k)/2+1 : in.Size(k)/2; | 
|---|
| 267 | } | 
|---|
| 268 | out.ReSize(in.NbDimensions(), sz); | 
|---|
| 269 |  | 
|---|
| 270 | return(ndg1); | 
|---|
| 271 | } | 
|---|
| 272 |  | 
|---|
| 273 | /* --Methode-- */ | 
|---|
| 274 | template <class T> | 
|---|
| 275 | int FFTArrayChecker<T>::CheckResize(TArray< complex<T> > const & in, TArray< T > & out, | 
|---|
| 276 | bool usoutsz) | 
|---|
| 277 | { | 
|---|
| 278 | int k; | 
|---|
| 279 | string msg; | 
|---|
| 280 | if (in.Size() < 1) { | 
|---|
| 281 | msg = _msg + "CheckResize(complex in, real out) - Unallocated input array !"; | 
|---|
| 282 | throw(SzMismatchError(msg)); | 
|---|
| 283 | } | 
|---|
| 284 | if (_checkpack) | 
|---|
| 285 | if ( !in.IsPacked() ) { | 
|---|
| 286 | msg = _msg + "CheckResize(complex in, real out) - Not packed input array !"; | 
|---|
| 287 | throw(SzMismatchError(msg)); | 
|---|
| 288 | } | 
|---|
| 289 | int ndg1 = 0; | 
|---|
| 290 | for(k=0; k<in.NbDimensions(); k++) | 
|---|
| 291 | if (in.Size(k) > 1)  ndg1++; | 
|---|
| 292 | if (_onedonly) | 
|---|
| 293 | if (ndg1 > 1) { | 
|---|
| 294 | msg = _msg + "CheckResize(complex in, real out) - Only 1-D array accepted !"; | 
|---|
| 295 | throw(SzMismatchError(msg)); | 
|---|
| 296 | } | 
|---|
| 297 | if (usoutsz) { // We have to use output array size | 
|---|
| 298 | bool fgerr = false; | 
|---|
| 299 | if (ndg1 > 1) { | 
|---|
| 300 | if (in.Size(0) != out.Size(0)/2+1) fgerr = true; | 
|---|
| 301 | } | 
|---|
| 302 | else { | 
|---|
| 303 | if (in.Size(in.MaxSizeKA()) != out.Size(in.MaxSizeKA())/2+1) fgerr = true; | 
|---|
| 304 | } | 
|---|
| 305 | if (fgerr) { | 
|---|
| 306 | msg = _msg + "CheckResize(complex in, real out) - Incompatible in-out sizes !"; | 
|---|
| 307 | throw(SzMismatchError(msg)); | 
|---|
| 308 | } | 
|---|
| 309 | } | 
|---|
| 310 | else {  // We have to resize the output array | 
|---|
| 311 | sa_size_t sz[BASEARRAY_MAXNDIMS]; | 
|---|
| 312 | if (ndg1 > 1) { | 
|---|
| 313 | sz[0] = 2*in.Size(0)-1; | 
|---|
| 314 | for(k=1; k<in.NbDimensions(); k++) | 
|---|
| 315 | sz[k] = in.Size(k); | 
|---|
| 316 | //      sz[k] = in.Size(k)*2-1; | 
|---|
| 317 | } | 
|---|
| 318 | else { | 
|---|
| 319 | for(k=0; k<BASEARRAY_MAXNDIMS; k++)  sz[k] = 1; | 
|---|
| 320 | T thr = ZeroThreshold(); | 
|---|
| 321 | sa_size_t n = in.Size(in.MaxSizeKA()); | 
|---|
| 322 | sa_size_t ncs = ( (in[n-1].imag() < -thr) || (in[n-1].imag() > thr) ) ? | 
|---|
| 323 | ncs = 2*n-1 : ncs = 2*n-2; | 
|---|
| 324 | sz[in.MaxSizeKA()] = ncs; | 
|---|
| 325 | } | 
|---|
| 326 | out.ReSize(in.NbDimensions(), sz); | 
|---|
| 327 | } | 
|---|
| 328 |  | 
|---|
| 329 | return(ndg1); | 
|---|
| 330 |  | 
|---|
| 331 | } | 
|---|
| 332 |  | 
|---|
| 333 |  | 
|---|
| 334 | #ifdef __CXX_PRAGMA_TEMPLATES__ | 
|---|
| 335 | #pragma define_template FFTArrayChecker<r_4> | 
|---|
| 336 | #pragma define_template FFTArrayChecker<r_8> | 
|---|
| 337 | #endif | 
|---|
| 338 |  | 
|---|
| 339 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES) | 
|---|
| 340 | template class FFTArrayChecker<r_4>; | 
|---|
| 341 | template class FFTArrayChecker<r_8>; | 
|---|
| 342 | #endif | 
|---|