| 1 | #include "fftservintf.h"
 | 
|---|
| 2 | 
 | 
|---|
| 3 | 
 | 
|---|
| 4 | /*!
 | 
|---|
| 5 |   \class SOPHYA::FFTServerInterface
 | 
|---|
| 6 |   \ingroup NTools
 | 
|---|
| 7 |   Defines the interface for FFT (Fast Fourier Transform) operations.
 | 
|---|
| 8 |   Definitions : 
 | 
|---|
| 9 |     - Sampling period \b T
 | 
|---|
| 10 |     - Sampling frequency \b fs=1/T
 | 
|---|
| 11 |     - Total number of samples \b N
 | 
|---|
| 12 |     - Frequency step in Fourier space \b =fs/N=1/(N*T)
 | 
|---|
| 13 |     - Component frequencies
 | 
|---|
| 14 |         - k=0      ->  0
 | 
|---|
| 15 |         - k=1      ->  1/(N*T)
 | 
|---|
| 16 |         - k        ->  k/(N*T)
 | 
|---|
| 17 |         - k=N/2    ->  1/(2*T)   (Nyquist frequency)
 | 
|---|
| 18 |         - k>N/2    ->  k/(N*T)   (or negative frequency -(N-k)/(N*T))
 | 
|---|
| 19 | 
 | 
|---|
| 20 |   For a sampling period T=1, the computed Fourier components correspond to :
 | 
|---|
| 21 |   \verbatim
 | 
|---|
| 22 |   0  1/N  2/N  ... 1/2  1/2+1/N  1/2+2/N ... 1-2/N  1-1/N
 | 
|---|
| 23 |   0  1/N  2/N  ... 1/2                   ...  -2/N   -1/N
 | 
|---|
| 24 |   \endverbatim
 | 
|---|
| 25 | 
 | 
|---|
| 26 |   For complex one-dimensional transforms:
 | 
|---|
| 27 |   \f[
 | 
|---|
| 28 |   out(i) = F_{norm} \Sigma_{j} \ e^{-2 \pi \sqrt{-1} \ i \  j} \ {\rm (forward)}
 | 
|---|
| 29 |   \f]
 | 
|---|
| 30 |   \f[
 | 
|---|
| 31 |   out(i) = F_{norm} \Sigma_{j} \ e^{2 \pi \sqrt{-1} \ i \  j} \ {\rm (backward)}
 | 
|---|
| 32 |   \f]
 | 
|---|
| 33 |   i,j= 0..N-1 , where N is the input or the output array size.
 | 
|---|
| 34 | 
 | 
|---|
| 35 |   For complex multi-dimensional transforms:
 | 
|---|
| 36 |   \f[
 | 
|---|
| 37 |   out(i1,i2,...,id) = F_{norm} \Sigma_{j1} \Sigma_{j2} ... \Sigma_{jd} \ 
 | 
|---|
| 38 |   e^{-2 \pi \sqrt{-1} \ i1 \ j1} ... e^{-2 \pi \sqrt{-1} \ id \ jd} \ {\rm (forward)}
 | 
|---|
| 39 |   \f]
 | 
|---|
| 40 |   \f[
 | 
|---|
| 41 |   out(i1,i2,...,id) = F_{norm} \Sigma_{j1} \Sigma_{j2} ... \Sigma_{jd} \ 
 | 
|---|
| 42 |   e^{2 \pi \sqrt{-1} \ i1 \ j1} ... e^{2 \pi \sqrt{-1} \ id \ jd} \ {\rm (backward)}
 | 
|---|
| 43 |   \f]
 | 
|---|
| 44 | 
 | 
|---|
| 45 |   For real forward transforms, the input array is real, and
 | 
|---|
| 46 |   the output array complex, with Fourier components up to k=N/2.
 | 
|---|
| 47 |   For real backward transforms, the input array is complex and
 | 
|---|
| 48 |   the output array is real. 
 | 
|---|
| 49 | */
 | 
|---|
| 50 | 
 | 
|---|
| 51 | /* --Methode-- */
 | 
|---|
| 52 | FFTServerInterface::FFTServerInterface(string info)
 | 
|---|
| 53 | {
 | 
|---|
| 54 |   _info = info;
 | 
|---|
| 55 |   _fgnorm = true;
 | 
|---|
| 56 | }
 | 
|---|
| 57 | 
 | 
|---|
| 58 | /* --Methode-- */
 | 
|---|
| 59 | FFTServerInterface::~FFTServerInterface()
 | 
|---|
| 60 | {
 | 
|---|
| 61 | }
 | 
|---|
| 62 | 
 | 
|---|
| 63 | // ----------------- Transforme pour les double -------------------
 | 
|---|
| 64 | 
 | 
|---|
| 65 | /* --Methode-- */
 | 
|---|
| 66 | //! Forward Fourier transform for double precision complex data 
 | 
|---|
| 67 | /*!
 | 
|---|
| 68 |   \param in : Input complex array
 | 
|---|
| 69 |   \param out : Output complex array
 | 
|---|
| 70 |  */
 | 
|---|
| 71 | void FFTServerInterface::FFTForward(TArray< complex<r_8> > const &, TArray< complex<r_8> > &)
 | 
|---|
| 72 | {
 | 
|---|
| 73 |   throw NotAvailableOperation("FFTServer::FFTForward(TArray...) Unsupported operation !");
 | 
|---|
| 74 | }
 | 
|---|
| 75 | 
 | 
|---|
| 76 | /* --Methode-- */
 | 
|---|
| 77 | //! Backward (inverse) Fourier transform for double precision complex data 
 | 
|---|
| 78 | /*!
 | 
|---|
| 79 |   \param in : Input complex array
 | 
|---|
| 80 |   \param out : Output complex array
 | 
|---|
| 81 |  */
 | 
|---|
| 82 | void FFTServerInterface::FFTBackward(TArray< complex<r_8> > const &, TArray< complex<r_8> > &)
 | 
|---|
| 83 | {
 | 
|---|
| 84 |   throw NotAvailableOperation("FFTServer::FFTBackward(TArray...) Unsupported operation !");
 | 
|---|
| 85 | }
 | 
|---|
| 86 | 
 | 
|---|
| 87 | /* --Methode-- */
 | 
|---|
| 88 | //! Forward Fourier transform for double precision real input data
 | 
|---|
| 89 | /*!
 | 
|---|
| 90 |   \param in : Input real array
 | 
|---|
| 91 |   \param out : Output complex array
 | 
|---|
| 92 |  */
 | 
|---|
| 93 | void FFTServerInterface::FFTForward(TArray< r_8 > const &, TArray< complex<r_8> > &)
 | 
|---|
| 94 | {
 | 
|---|
| 95 |   throw NotAvailableOperation("FFTServer::FFTForward(TArray...) Unsupported operation !");
 | 
|---|
| 96 | }
 | 
|---|
| 97 | 
 | 
|---|
| 98 | /* --Methode-- */
 | 
|---|
| 99 | //! Backward (inverse) Fourier transform for double precision real output data 
 | 
|---|
| 100 | /*!
 | 
|---|
| 101 |   \param in : Input complex array
 | 
|---|
| 102 |   \param out : Output real array
 | 
|---|
| 103 |   \param usoutsz : if true, use the output array size for computing the inverse FFT.
 | 
|---|
| 104 |  */
 | 
|---|
| 105 | void FFTServerInterface::FFTBackward(TArray< complex<r_8> > const &, TArray< r_8 > &, bool)
 | 
|---|
| 106 | {
 | 
|---|
| 107 |   throw NotAvailableOperation("FFTServer::FFTBackward(TArray...) Unsupported operation !");
 | 
|---|
| 108 | }
 | 
|---|
| 109 | 
 | 
|---|
| 110 | 
 | 
|---|
| 111 | // ----------------- Transforme pour les float -------------------
 | 
|---|
| 112 | 
 | 
|---|
| 113 | /* --Methode-- */
 | 
|---|
| 114 | //! Forward Fourier transform for complex data 
 | 
|---|
| 115 | /*!
 | 
|---|
| 116 |   \param in : Input complex array
 | 
|---|
| 117 |   \param out : Output complex array
 | 
|---|
| 118 |  */
 | 
|---|
| 119 | void FFTServerInterface::FFTForward(TArray< complex<r_4> > const &, TArray< complex<r_4> > &)
 | 
|---|
| 120 | {
 | 
|---|
| 121 |   throw NotAvailableOperation("FFTServer::FFTForward(TArray r_4 ... ) Unsupported operation !");
 | 
|---|
| 122 | }
 | 
|---|
| 123 | 
 | 
|---|
| 124 | /* --Methode-- */
 | 
|---|
| 125 | //! Backward (inverse) Fourier transform for complex data 
 | 
|---|
| 126 | /*!
 | 
|---|
| 127 |   \param in : Input complex array
 | 
|---|
| 128 |   \param out : Output complex array
 | 
|---|
| 129 |  */
 | 
|---|
| 130 | void FFTServerInterface::FFTBackward(TArray< complex<r_4> > const &, TArray< complex<r_4> > &)
 | 
|---|
| 131 | {
 | 
|---|
| 132 |   throw NotAvailableOperation("FFTServer::FFTBackward(TArray r_4 ... ) Unsupported operation !");
 | 
|---|
| 133 | }
 | 
|---|
| 134 | 
 | 
|---|
| 135 | /* --Methode-- */
 | 
|---|
| 136 | //! Forward Fourier transform for real input data
 | 
|---|
| 137 | /*!
 | 
|---|
| 138 |   \param in : Input real array
 | 
|---|
| 139 |   \param out : Output complex array
 | 
|---|
| 140 |  */
 | 
|---|
| 141 | void FFTServerInterface::FFTForward(TArray< r_4 > const &, TArray< complex<r_4> > &)
 | 
|---|
| 142 | {
 | 
|---|
| 143 |   throw NotAvailableOperation("FFTServer::FFTForward(TArray r_4 ... ) Unsupported operation !");
 | 
|---|
| 144 | }
 | 
|---|
| 145 | 
 | 
|---|
| 146 | /* --Methode-- */
 | 
|---|
| 147 | //! Backward (inverse) Fourier transform for real output data 
 | 
|---|
| 148 | /*!
 | 
|---|
| 149 |   \param in : Input complex array
 | 
|---|
| 150 |   \param out : Output real array
 | 
|---|
| 151 |   \param usoutsz : if true, use the output array size for computing the inverse FFT.
 | 
|---|
| 152 |  */
 | 
|---|
| 153 | void FFTServerInterface::FFTBackward(TArray< complex<r_4> > const &, TArray< r_4 > &, bool)
 | 
|---|
| 154 | {
 | 
|---|
| 155 |   throw NotAvailableOperation("FFTServer::FFTBackward(TArray r_4 ... ) Unsupported operation !");
 | 
|---|
| 156 | }
 | 
|---|
| 157 | 
 | 
|---|
| 158 | 
 | 
|---|
| 159 | 
 | 
|---|
| 160 | /* --Methode-- */
 | 
|---|
| 161 | /*!
 | 
|---|
| 162 |   \class SOPHYA::FFTArrayChecker
 | 
|---|
| 163 |   \ingroup NTools
 | 
|---|
| 164 |   Service class for checking array size and resizing output arrays,
 | 
|---|
| 165 |   to be used by FFTServer classes
 | 
|---|
| 166 | */
 | 
|---|
| 167 | 
 | 
|---|
| 168 | template <class T>
 | 
|---|
| 169 | FFTArrayChecker<T>::FFTArrayChecker(string msg, bool checkpack, bool onedonly)
 | 
|---|
| 170 | {
 | 
|---|
| 171 |   _msg = msg + " FFTArrayChecker::";
 | 
|---|
| 172 |   _checkpack = checkpack;
 | 
|---|
| 173 |   _onedonly = onedonly;
 | 
|---|
| 174 | }
 | 
|---|
| 175 | 
 | 
|---|
| 176 | /* --Methode-- */
 | 
|---|
| 177 | template <class T>
 | 
|---|
| 178 | FFTArrayChecker<T>::~FFTArrayChecker()
 | 
|---|
| 179 | {
 | 
|---|
| 180 | }
 | 
|---|
| 181 | 
 | 
|---|
| 182 | template <class T>
 | 
|---|
| 183 | T FFTArrayChecker<T>::ZeroThreshold()
 | 
|---|
| 184 | {
 | 
|---|
| 185 |   return(0);
 | 
|---|
| 186 | }
 | 
|---|
| 187 | 
 | 
|---|
| 188 | r_8 FFTArrayChecker< r_8 >::ZeroThreshold()
 | 
|---|
| 189 | {
 | 
|---|
| 190 |   return(1.e-18);
 | 
|---|
| 191 | }
 | 
|---|
| 192 | 
 | 
|---|
| 193 | r_4 FFTArrayChecker< r_4 >::ZeroThreshold()
 | 
|---|
| 194 | {
 | 
|---|
| 195 |   return(1.e-9);
 | 
|---|
| 196 | }
 | 
|---|
| 197 | 
 | 
|---|
| 198 | 
 | 
|---|
| 199 | 
 | 
|---|
| 200 | /* --Methode-- */
 | 
|---|
| 201 | template <class T>
 | 
|---|
| 202 | int FFTArrayChecker<T>::CheckResize(TArray< complex<T> > const & in, TArray< complex<T> > & out)
 | 
|---|
| 203 | {
 | 
|---|
| 204 |   int k;
 | 
|---|
| 205 |   string msg;
 | 
|---|
| 206 |   if (in.Size() < 1) {
 | 
|---|
| 207 |     msg = _msg + "CheckResize(complex in, complex out) - Unallocated input array !";
 | 
|---|
| 208 |     throw(SzMismatchError(msg));
 | 
|---|
| 209 |   }
 | 
|---|
| 210 |   if (_checkpack) 
 | 
|---|
| 211 |     if ( !in.IsPacked() ) {
 | 
|---|
| 212 |       msg = _msg + "CheckResize(complex in, complex out) - Not packed input array !";
 | 
|---|
| 213 |       throw(SzMismatchError(msg));
 | 
|---|
| 214 |     }
 | 
|---|
| 215 |   int ndg1 = 0;
 | 
|---|
| 216 |   for(k=0; k<in.NbDimensions(); k++) 
 | 
|---|
| 217 |     if (in.Size(k) > 1)  ndg1++;
 | 
|---|
| 218 |   if (_onedonly) 
 | 
|---|
| 219 |     if (ndg1 > 1) {
 | 
|---|
| 220 |       msg = _msg + "CheckResize(complex in, complex out) - Only 1-D array accepted !";
 | 
|---|
| 221 |       throw(SzMismatchError(msg));
 | 
|---|
| 222 |     }
 | 
|---|
| 223 |   out.ReSize(in);
 | 
|---|
| 224 |   //  sa_size_t sz[BASEARRAY_MAXNDIMS];
 | 
|---|
| 225 |   //  for(k=0; k<in.NbDimensions(); k++) 
 | 
|---|
| 226 |   //    sz[k] = in.Size(k);
 | 
|---|
| 227 |   //  out.ReSize(in.NbDimensions(), sz);
 | 
|---|
| 228 | 
 | 
|---|
| 229 |   return(ndg1);
 | 
|---|
| 230 | }
 | 
|---|
| 231 | 
 | 
|---|
| 232 | /* --Methode-- */
 | 
|---|
| 233 | template <class T>
 | 
|---|
| 234 | int FFTArrayChecker<T>::CheckResize(TArray< T > const & in, TArray< complex<T> > & out)
 | 
|---|
| 235 | {
 | 
|---|
| 236 |   int k;
 | 
|---|
| 237 |   string msg;
 | 
|---|
| 238 |   if (in.Size() < 1) {
 | 
|---|
| 239 |     msg = _msg + "CheckResize(real in, complex out) - Unallocated input array !";
 | 
|---|
| 240 |     throw(SzMismatchError(msg));
 | 
|---|
| 241 |   }
 | 
|---|
| 242 |   if (_checkpack) 
 | 
|---|
| 243 |     if ( !in.IsPacked() ) {
 | 
|---|
| 244 |       msg = _msg + "CheckResize(real in, complex out) - Not packed input array !";
 | 
|---|
| 245 |       throw(SzMismatchError(msg));
 | 
|---|
| 246 |     }
 | 
|---|
| 247 |   int ndg1 = 0;
 | 
|---|
| 248 |   for(k=0; k<in.NbDimensions(); k++) 
 | 
|---|
| 249 |     if (in.Size(k) > 1)  ndg1++;
 | 
|---|
| 250 |   if (_onedonly) 
 | 
|---|
| 251 |     if (ndg1 > 1) {
 | 
|---|
| 252 |       msg = _msg + "CheckResize(real in, complex out) - Only 1-D array accepted !";
 | 
|---|
| 253 |       throw(SzMismatchError(msg));
 | 
|---|
| 254 |     }
 | 
|---|
| 255 |   sa_size_t sz[BASEARRAY_MAXNDIMS];
 | 
|---|
| 256 |   // 
 | 
|---|
| 257 |   if (ndg1 > 1) {
 | 
|---|
| 258 |     sz[0] = in.Size(0)/2+1; 
 | 
|---|
| 259 |     for(k=1; k<in.NbDimensions(); k++) 
 | 
|---|
| 260 |       sz[k] = in.Size(k); 
 | 
|---|
| 261 |   }
 | 
|---|
| 262 |   else {
 | 
|---|
| 263 |     for(k=0; k<BASEARRAY_MAXNDIMS; k++)  sz[k] = 1; 
 | 
|---|
| 264 |     sz[in.MaxSizeKA()] = in.Size(in.MaxSizeKA())/2+1;
 | 
|---|
| 265 |     //    sz[k] = in.Size(k)/2+1; 
 | 
|---|
| 266 |     //    sz[k] = (in.Size(k)%2 != 0) ? in.Size(k)/2+1 : in.Size(k)/2;
 | 
|---|
| 267 |   }
 | 
|---|
| 268 |   out.ReSize(in.NbDimensions(), sz);
 | 
|---|
| 269 | 
 | 
|---|
| 270 |   return(ndg1);
 | 
|---|
| 271 | }
 | 
|---|
| 272 | 
 | 
|---|
| 273 | /* --Methode-- */
 | 
|---|
| 274 | template <class T>
 | 
|---|
| 275 | int FFTArrayChecker<T>::CheckResize(TArray< complex<T> > const & in, TArray< T > & out, 
 | 
|---|
| 276 |                                     bool usoutsz)
 | 
|---|
| 277 | {
 | 
|---|
| 278 |   int k;
 | 
|---|
| 279 |   string msg;
 | 
|---|
| 280 |   if (in.Size() < 1) {
 | 
|---|
| 281 |     msg = _msg + "CheckResize(complex in, real out) - Unallocated input array !";
 | 
|---|
| 282 |     throw(SzMismatchError(msg));
 | 
|---|
| 283 |   }
 | 
|---|
| 284 |   if (_checkpack) 
 | 
|---|
| 285 |     if ( !in.IsPacked() ) {
 | 
|---|
| 286 |       msg = _msg + "CheckResize(complex in, real out) - Not packed input array !";
 | 
|---|
| 287 |       throw(SzMismatchError(msg));
 | 
|---|
| 288 |     }
 | 
|---|
| 289 |   int ndg1 = 0;
 | 
|---|
| 290 |   for(k=0; k<in.NbDimensions(); k++) 
 | 
|---|
| 291 |     if (in.Size(k) > 1)  ndg1++;
 | 
|---|
| 292 |   if (_onedonly) 
 | 
|---|
| 293 |     if (ndg1 > 1) {
 | 
|---|
| 294 |       msg = _msg + "CheckResize(complex in, real out) - Only 1-D array accepted !";
 | 
|---|
| 295 |       throw(SzMismatchError(msg));
 | 
|---|
| 296 |     }
 | 
|---|
| 297 |   if (usoutsz) { // We have to use output array size 
 | 
|---|
| 298 |     bool fgerr = false;
 | 
|---|
| 299 |     if (ndg1 > 1) {
 | 
|---|
| 300 |       if (in.Size(0) != out.Size(0)/2+1) fgerr = true;
 | 
|---|
| 301 |     }      
 | 
|---|
| 302 |     else {
 | 
|---|
| 303 |       if (in.Size(in.MaxSizeKA()) != out.Size(in.MaxSizeKA())/2+1) fgerr = true;
 | 
|---|
| 304 |     }
 | 
|---|
| 305 |     if (fgerr) {
 | 
|---|
| 306 |         msg = _msg + "CheckResize(complex in, real out) - Incompatible in-out sizes !";
 | 
|---|
| 307 |         throw(SzMismatchError(msg));
 | 
|---|
| 308 |     }
 | 
|---|
| 309 |   }
 | 
|---|
| 310 |   else {  // We have to resize the output array 
 | 
|---|
| 311 |     sa_size_t sz[BASEARRAY_MAXNDIMS];
 | 
|---|
| 312 |     if (ndg1 > 1) {
 | 
|---|
| 313 |       sz[0] = 2*in.Size(0)-1;
 | 
|---|
| 314 |       for(k=1; k<in.NbDimensions(); k++) 
 | 
|---|
| 315 |         sz[k] = in.Size(k);
 | 
|---|
| 316 |     //      sz[k] = in.Size(k)*2-1;
 | 
|---|
| 317 |     }
 | 
|---|
| 318 |     else {
 | 
|---|
| 319 |       for(k=0; k<BASEARRAY_MAXNDIMS; k++)  sz[k] = 1; 
 | 
|---|
| 320 |       T thr = ZeroThreshold();
 | 
|---|
| 321 |       sa_size_t n = in.Size(in.MaxSizeKA());
 | 
|---|
| 322 |       sa_size_t ncs = ( (in[n-1].imag() < -thr) || (in[n-1].imag() > thr) ) ?
 | 
|---|
| 323 |         ncs = 2*n-1 : ncs = 2*n-2;
 | 
|---|
| 324 |       sz[in.MaxSizeKA()] = ncs;
 | 
|---|
| 325 |     }
 | 
|---|
| 326 |   out.ReSize(in.NbDimensions(), sz);
 | 
|---|
| 327 |   }
 | 
|---|
| 328 | 
 | 
|---|
| 329 |   return(ndg1);
 | 
|---|
| 330 | 
 | 
|---|
| 331 | }
 | 
|---|
| 332 | 
 | 
|---|
| 333 | 
 | 
|---|
| 334 | #ifdef __CXX_PRAGMA_TEMPLATES__
 | 
|---|
| 335 | #pragma define_template FFTArrayChecker<r_4>
 | 
|---|
| 336 | #pragma define_template FFTArrayChecker<r_8>
 | 
|---|
| 337 | #endif
 | 
|---|
| 338 | 
 | 
|---|
| 339 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
 | 
|---|
| 340 | template class FFTArrayChecker<r_4>;
 | 
|---|
| 341 | template class FFTArrayChecker<r_8>;
 | 
|---|
| 342 | #endif
 | 
|---|