| 1 | #include "fftservintf.h"
|
|---|
| 2 |
|
|---|
| 3 |
|
|---|
| 4 | /*!
|
|---|
| 5 | \class SOPHYA::FFTServerInterface
|
|---|
| 6 | \ingroup NTools
|
|---|
| 7 | Defines the interface for FFT (Fast Fourier Transform) operations.
|
|---|
| 8 | Definitions :
|
|---|
| 9 | - Sampling period \b T
|
|---|
| 10 | - Sampling frequency \b fs=1/T
|
|---|
| 11 | - Total number of samples \b N
|
|---|
| 12 | - Frequency step in Fourier space \b =fs/N=1/(N*T)
|
|---|
| 13 | - Component frequencies
|
|---|
| 14 | - k=0 -> 0
|
|---|
| 15 | - k=1 -> 1/(N*T)
|
|---|
| 16 | - k -> k/(N*T)
|
|---|
| 17 | - k=N/2 -> 1/(2*T) (Nyquist frequency)
|
|---|
| 18 | - k>N/2 -> k/(N*T) (or negative frequency -(N-k)/(N*T))
|
|---|
| 19 |
|
|---|
| 20 | For a sampling period T=1, the computed Fourier components correspond to :
|
|---|
| 21 | \verbatim
|
|---|
| 22 | 0 1/N 2/N ... 1/2 1/2+1/N 1/2+2/N ... 1-2/N 1-1/N
|
|---|
| 23 | 0 1/N 2/N ... 1/2 ... -2/N -1/N
|
|---|
| 24 | \endverbatim
|
|---|
| 25 |
|
|---|
| 26 | For complex one-dimensional transforms:
|
|---|
| 27 | \f[
|
|---|
| 28 | out(i) = F_{norm} \Sigma_{j} \ e^{-2 \pi \sqrt{-1} \ i \ j} \ {\rm (forward)}
|
|---|
| 29 | \f]
|
|---|
| 30 | \f[
|
|---|
| 31 | out(i) = F_{norm} \Sigma_{j} \ e^{2 \pi \sqrt{-1} \ i \ j} \ {\rm (backward)}
|
|---|
| 32 | \f]
|
|---|
| 33 | i,j= 0..N-1 , where N is the input or the output array size.
|
|---|
| 34 |
|
|---|
| 35 | For complex multi-dimensional transforms:
|
|---|
| 36 | \f[
|
|---|
| 37 | out(i1,i2,...,id) = F_{norm} \Sigma_{j1} \Sigma_{j2} ... \Sigma_{jd} \
|
|---|
| 38 | e^{-2 \pi \sqrt{-1} \ i1 \ j1} ... e^{-2 \pi \sqrt{-1} \ id \ jd} \ {\rm (forward)}
|
|---|
| 39 | \f]
|
|---|
| 40 | \f[
|
|---|
| 41 | out(i1,i2,...,id) = F_{norm} \Sigma_{j1} \Sigma_{j2} ... \Sigma_{jd} \
|
|---|
| 42 | e^{2 \pi \sqrt{-1} \ i1 \ j1} ... e^{2 \pi \sqrt{-1} \ id \ jd} \ {\rm (backward)}
|
|---|
| 43 | \f]
|
|---|
| 44 |
|
|---|
| 45 | For real forward transforms, the input array is real, and
|
|---|
| 46 | the output array complex, with Fourier components up to k=N/2.
|
|---|
| 47 | For real backward transforms, the input array is complex and
|
|---|
| 48 | the output array is real.
|
|---|
| 49 | */
|
|---|
| 50 |
|
|---|
| 51 | /* --Methode-- */
|
|---|
| 52 | FFTServerInterface::FFTServerInterface(string info)
|
|---|
| 53 | {
|
|---|
| 54 | _info = info;
|
|---|
| 55 | _fgnorm = true;
|
|---|
| 56 | }
|
|---|
| 57 |
|
|---|
| 58 | /* --Methode-- */
|
|---|
| 59 | FFTServerInterface::~FFTServerInterface()
|
|---|
| 60 | {
|
|---|
| 61 | }
|
|---|
| 62 |
|
|---|
| 63 | // ----------------- Transforme pour les double -------------------
|
|---|
| 64 |
|
|---|
| 65 | /* --Methode-- */
|
|---|
| 66 | //! Forward Fourier transform for double precision complex data
|
|---|
| 67 | /*!
|
|---|
| 68 | \param in : Input complex array
|
|---|
| 69 | \param out : Output complex array
|
|---|
| 70 | */
|
|---|
| 71 | void FFTServerInterface::FFTForward(TArray< complex<r_8> > const &, TArray< complex<r_8> > &)
|
|---|
| 72 | {
|
|---|
| 73 | throw NotAvailableOperation("FFTServer::FFTForward(TArray...) Unsupported operation !");
|
|---|
| 74 | }
|
|---|
| 75 |
|
|---|
| 76 | /* --Methode-- */
|
|---|
| 77 | //! Backward (inverse) Fourier transform for double precision complex data
|
|---|
| 78 | /*!
|
|---|
| 79 | \param in : Input complex array
|
|---|
| 80 | \param out : Output complex array
|
|---|
| 81 | */
|
|---|
| 82 | void FFTServerInterface::FFTBackward(TArray< complex<r_8> > const &, TArray< complex<r_8> > &)
|
|---|
| 83 | {
|
|---|
| 84 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray...) Unsupported operation !");
|
|---|
| 85 | }
|
|---|
| 86 |
|
|---|
| 87 | /* --Methode-- */
|
|---|
| 88 | //! Forward Fourier transform for double precision real input data
|
|---|
| 89 | /*!
|
|---|
| 90 | \param in : Input real array
|
|---|
| 91 | \param out : Output complex array
|
|---|
| 92 | */
|
|---|
| 93 | void FFTServerInterface::FFTForward(TArray< r_8 > const &, TArray< complex<r_8> > &)
|
|---|
| 94 | {
|
|---|
| 95 | throw NotAvailableOperation("FFTServer::FFTForward(TArray...) Unsupported operation !");
|
|---|
| 96 | }
|
|---|
| 97 |
|
|---|
| 98 | /* --Methode-- */
|
|---|
| 99 | //! Backward (inverse) Fourier transform for double precision real output data
|
|---|
| 100 | /*!
|
|---|
| 101 | \param in : Input complex array
|
|---|
| 102 | \param out : Output real array
|
|---|
| 103 | \param usoutsz : if true, use the output array size for computing the inverse FFT.
|
|---|
| 104 | */
|
|---|
| 105 | void FFTServerInterface::FFTBackward(TArray< complex<r_8> > const &, TArray< r_8 > &, bool)
|
|---|
| 106 | {
|
|---|
| 107 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray...) Unsupported operation !");
|
|---|
| 108 | }
|
|---|
| 109 |
|
|---|
| 110 |
|
|---|
| 111 | // ----------------- Transforme pour les float -------------------
|
|---|
| 112 |
|
|---|
| 113 | /* --Methode-- */
|
|---|
| 114 | //! Forward Fourier transform for complex data
|
|---|
| 115 | /*!
|
|---|
| 116 | \param in : Input complex array
|
|---|
| 117 | \param out : Output complex array
|
|---|
| 118 | */
|
|---|
| 119 | void FFTServerInterface::FFTForward(TArray< complex<r_4> > const &, TArray< complex<r_4> > &)
|
|---|
| 120 | {
|
|---|
| 121 | throw NotAvailableOperation("FFTServer::FFTForward(TArray r_4 ... ) Unsupported operation !");
|
|---|
| 122 | }
|
|---|
| 123 |
|
|---|
| 124 | /* --Methode-- */
|
|---|
| 125 | //! Backward (inverse) Fourier transform for complex data
|
|---|
| 126 | /*!
|
|---|
| 127 | \param in : Input complex array
|
|---|
| 128 | \param out : Output complex array
|
|---|
| 129 | */
|
|---|
| 130 | void FFTServerInterface::FFTBackward(TArray< complex<r_4> > const &, TArray< complex<r_4> > &)
|
|---|
| 131 | {
|
|---|
| 132 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray r_4 ... ) Unsupported operation !");
|
|---|
| 133 | }
|
|---|
| 134 |
|
|---|
| 135 | /* --Methode-- */
|
|---|
| 136 | //! Forward Fourier transform for real input data
|
|---|
| 137 | /*!
|
|---|
| 138 | \param in : Input real array
|
|---|
| 139 | \param out : Output complex array
|
|---|
| 140 | */
|
|---|
| 141 | void FFTServerInterface::FFTForward(TArray< r_4 > const &, TArray< complex<r_4> > &)
|
|---|
| 142 | {
|
|---|
| 143 | throw NotAvailableOperation("FFTServer::FFTForward(TArray r_4 ... ) Unsupported operation !");
|
|---|
| 144 | }
|
|---|
| 145 |
|
|---|
| 146 | /* --Methode-- */
|
|---|
| 147 | //! Backward (inverse) Fourier transform for real output data
|
|---|
| 148 | /*!
|
|---|
| 149 | \param in : Input complex array
|
|---|
| 150 | \param out : Output real array
|
|---|
| 151 | \param usoutsz : if true, use the output array size for computing the inverse FFT.
|
|---|
| 152 | */
|
|---|
| 153 | void FFTServerInterface::FFTBackward(TArray< complex<r_4> > const &, TArray< r_4 > &, bool)
|
|---|
| 154 | {
|
|---|
| 155 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray r_4 ... ) Unsupported operation !");
|
|---|
| 156 | }
|
|---|
| 157 |
|
|---|
| 158 |
|
|---|
| 159 | // ----------------- Transformation de normalisation pour les energies -------------------
|
|---|
| 160 |
|
|---|
| 161 | /* --Methode-- */
|
|---|
| 162 | //! Compute the transform to be applied to "fftx=FFT(x)" so that "x" and "FFT(x)" have the same energy
|
|---|
| 163 | /*!
|
|---|
| 164 | \return The factor to be applied to the FFT energy such that we get the same energy as for the x.
|
|---|
| 165 | \verbatim
|
|---|
| 166 | fftx is computed by: FFTForward(x,fftx)
|
|---|
| 167 | Energy of x : Ex = sum{|x(i)|^2} i=0,x.Size()-1
|
|---|
| 168 | Energy of fftx : Efftx = sum{|fftx(i)^2|} i=0,fftx.Size()-1
|
|---|
| 169 | ( usually x.Size() != fftx.Size() )
|
|---|
| 170 | -------------------------------------------------------------------
|
|---|
| 171 | | TransfEnergyFFT return A and B such that : Ex = A * Efftx + B |
|
|---|
| 172 | | and Norm such that : Ex = Norm * Efftx |
|
|---|
| 173 | -------------------------------------------------------------------
|
|---|
| 174 | To normalize the fftx vector apply : "fftx *= sqrt(Norm)"
|
|---|
| 175 | \endverbatim
|
|---|
| 176 | */
|
|---|
| 177 | r_8 FFTServerInterface::TransfEnergyFFT
|
|---|
| 178 | (TVector< complex<r_8> > const& x, TVector< complex<r_8> > const& fftx, r_8& A, r_8& B)
|
|---|
| 179 | {
|
|---|
| 180 | B=0.;
|
|---|
| 181 | if(getNormalize()) A = x.Size(); else A = 1./x.Size();
|
|---|
| 182 | r_8 norm = A;
|
|---|
| 183 | return norm;
|
|---|
| 184 | }
|
|---|
| 185 |
|
|---|
| 186 | //! Compute the transform to be applied to "fftx=FFT(x)" so that "x" and "FFT(x)" have the same energy
|
|---|
| 187 | r_8 FFTServerInterface::TransfEnergyFFT
|
|---|
| 188 | (TVector< complex<r_4> > const & x, TVector< complex<r_4> > const & fftx, r_8& A, r_8& B)
|
|---|
| 189 | {
|
|---|
| 190 | B=0.;
|
|---|
| 191 | if(getNormalize()) A = x.Size(); else A = 1./x.Size();
|
|---|
| 192 | r_8 norm = A;
|
|---|
| 193 | return norm;
|
|---|
| 194 | }
|
|---|
| 195 |
|
|---|
| 196 | //! Compute the transform to be applied to "fftx=FFT(x)" so that "x" and "FFT(x)" have the same energy
|
|---|
| 197 | r_8 FFTServerInterface::TransfEnergyFFT
|
|---|
| 198 | (TVector< r_8 > const & x, TVector< complex<r_8> > const & fftx, r_8& A, r_8& B)
|
|---|
| 199 | {
|
|---|
| 200 | A= 2.;
|
|---|
| 201 | B= - abs(fftx(0)*fftx(0));
|
|---|
| 202 | if(x.Size()%2 == 0) B -= abs(fftx(fftx.Size()-1)*fftx(fftx.Size()-1));
|
|---|
| 203 | if(getNormalize()) {A *= x.Size(); B *= x.Size();}
|
|---|
| 204 | else {A /= x.Size(); B /= x.Size();}
|
|---|
| 205 | r_8 norm = 0.;
|
|---|
| 206 | for(int_4 i=0;i<fftx.Size();i++) norm += abs(fftx(i)*fftx(i));
|
|---|
| 207 | if(norm>0.) norm = (A*norm+B)/norm;
|
|---|
| 208 | return norm;
|
|---|
| 209 | }
|
|---|
| 210 |
|
|---|
| 211 | //! Compute the transform to be applied to "fftx=FFT(x)" so that "x" and "FFT(x)" have the same energy
|
|---|
| 212 | r_8 FFTServerInterface::TransfEnergyFFT
|
|---|
| 213 | (TVector< r_4 > const & x, TVector< complex<r_4> > const & fftx, r_8& A, r_8& B)
|
|---|
| 214 | {
|
|---|
| 215 | A= 2.;
|
|---|
| 216 | B= - abs(fftx(0)*fftx(0));
|
|---|
| 217 | if(x.Size()%2 == 0) B -= abs(fftx(fftx.Size()-1)*fftx(fftx.Size()-1));
|
|---|
| 218 | if(getNormalize()) {A *= x.Size(); B *= x.Size();}
|
|---|
| 219 | else {A /= x.Size(); B /= x.Size();}
|
|---|
| 220 | r_8 norm = 0.;
|
|---|
| 221 | for(int_4 i=0;i<fftx.Size();i++) norm += abs(fftx(i)*fftx(i));
|
|---|
| 222 | if(norm>0.) norm = (A*norm+B)/norm;
|
|---|
| 223 | return norm;
|
|---|
| 224 | }
|
|---|
| 225 |
|
|---|
| 226 |
|
|---|
| 227 | /* --Methode-- */
|
|---|
| 228 | /*!
|
|---|
| 229 | \class SOPHYA::FFTArrayChecker
|
|---|
| 230 | \ingroup NTools
|
|---|
| 231 | Service class for checking array size and resizing output arrays,
|
|---|
| 232 | to be used by FFTServer classes
|
|---|
| 233 | */
|
|---|
| 234 |
|
|---|
| 235 | template <class T>
|
|---|
| 236 | FFTArrayChecker<T>::FFTArrayChecker(string msg, bool checkpack, bool onedonly)
|
|---|
| 237 | {
|
|---|
| 238 | _msg = msg + " FFTArrayChecker::";
|
|---|
| 239 | _checkpack = checkpack;
|
|---|
| 240 | _onedonly = onedonly;
|
|---|
| 241 | }
|
|---|
| 242 |
|
|---|
| 243 | /* --Methode-- */
|
|---|
| 244 | template <class T>
|
|---|
| 245 | FFTArrayChecker<T>::~FFTArrayChecker()
|
|---|
| 246 | {
|
|---|
| 247 | }
|
|---|
| 248 |
|
|---|
| 249 | template <class T>
|
|---|
| 250 | T FFTArrayChecker<T>::ZeroThreshold()
|
|---|
| 251 | {
|
|---|
| 252 | return(0);
|
|---|
| 253 | }
|
|---|
| 254 |
|
|---|
| 255 | r_8 FFTArrayChecker< r_8 >::ZeroThreshold()
|
|---|
| 256 | {
|
|---|
| 257 | return(1.e-18);
|
|---|
| 258 | }
|
|---|
| 259 |
|
|---|
| 260 | r_4 FFTArrayChecker< r_4 >::ZeroThreshold()
|
|---|
| 261 | {
|
|---|
| 262 | return(1.e-9);
|
|---|
| 263 | }
|
|---|
| 264 |
|
|---|
| 265 | /* --Methode-- */
|
|---|
| 266 | template <class T>
|
|---|
| 267 | int FFTArrayChecker<T>::CheckResize(TArray< complex<T> > const & in, TArray< complex<T> > & out)
|
|---|
| 268 | {
|
|---|
| 269 | int k;
|
|---|
| 270 | string msg;
|
|---|
| 271 | if (in.Size() < 1) {
|
|---|
| 272 | msg = _msg + "CheckResize(complex in, complex out) - Unallocated input array !";
|
|---|
| 273 | throw(SzMismatchError(msg));
|
|---|
| 274 | }
|
|---|
| 275 | if (_checkpack)
|
|---|
| 276 | if ( !in.IsPacked() ) {
|
|---|
| 277 | msg = _msg + "CheckResize(complex in, complex out) - Not packed input array !";
|
|---|
| 278 | throw(SzMismatchError(msg));
|
|---|
| 279 | }
|
|---|
| 280 | int ndg1 = 0;
|
|---|
| 281 | for(k=0; k<in.NbDimensions(); k++)
|
|---|
| 282 | if (in.Size(k) > 1) ndg1++;
|
|---|
| 283 | if (_onedonly)
|
|---|
| 284 | if (ndg1 > 1) {
|
|---|
| 285 | msg = _msg + "CheckResize(complex in, complex out) - Only 1-D array accepted !";
|
|---|
| 286 | throw(SzMismatchError(msg));
|
|---|
| 287 | }
|
|---|
| 288 | out.ReSize(in);
|
|---|
| 289 | // sa_size_t sz[BASEARRAY_MAXNDIMS];
|
|---|
| 290 | // for(k=0; k<in.NbDimensions(); k++)
|
|---|
| 291 | // sz[k] = in.Size(k);
|
|---|
| 292 | // out.ReSize(in.NbDimensions(), sz);
|
|---|
| 293 |
|
|---|
| 294 | return(ndg1);
|
|---|
| 295 | }
|
|---|
| 296 |
|
|---|
| 297 | /* --Methode-- */
|
|---|
| 298 | template <class T>
|
|---|
| 299 | int FFTArrayChecker<T>::CheckResize(TArray< T > const & in, TArray< complex<T> > & out)
|
|---|
| 300 | {
|
|---|
| 301 | int k;
|
|---|
| 302 | string msg;
|
|---|
| 303 | if (in.Size() < 1) {
|
|---|
| 304 | msg = _msg + "CheckResize(real in, complex out) - Unallocated input array !";
|
|---|
| 305 | throw(SzMismatchError(msg));
|
|---|
| 306 | }
|
|---|
| 307 | if (_checkpack)
|
|---|
| 308 | if ( !in.IsPacked() ) {
|
|---|
| 309 | msg = _msg + "CheckResize(real in, complex out) - Not packed input array !";
|
|---|
| 310 | throw(SzMismatchError(msg));
|
|---|
| 311 | }
|
|---|
| 312 | int ndg1 = 0;
|
|---|
| 313 | for(k=0; k<in.NbDimensions(); k++)
|
|---|
| 314 | if (in.Size(k) > 1) ndg1++;
|
|---|
| 315 | if (_onedonly)
|
|---|
| 316 | if (ndg1 > 1) {
|
|---|
| 317 | msg = _msg + "CheckResize(real in, complex out) - Only 1-D array accepted !";
|
|---|
| 318 | throw(SzMismatchError(msg));
|
|---|
| 319 | }
|
|---|
| 320 | sa_size_t sz[BASEARRAY_MAXNDIMS];
|
|---|
| 321 | //
|
|---|
| 322 | if (ndg1 > 1) {
|
|---|
| 323 | sz[0] = in.Size(0)/2+1;
|
|---|
| 324 | for(k=1; k<in.NbDimensions(); k++)
|
|---|
| 325 | sz[k] = in.Size(k);
|
|---|
| 326 | }
|
|---|
| 327 | else {
|
|---|
| 328 | for(k=0; k<BASEARRAY_MAXNDIMS; k++) sz[k] = 1;
|
|---|
| 329 | sz[in.MaxSizeKA()] = in.Size(in.MaxSizeKA())/2+1;
|
|---|
| 330 | // sz[k] = in.Size(k)/2+1;
|
|---|
| 331 | // sz[k] = (in.Size(k)%2 != 0) ? in.Size(k)/2+1 : in.Size(k)/2;
|
|---|
| 332 | }
|
|---|
| 333 | out.ReSize(in.NbDimensions(), sz);
|
|---|
| 334 |
|
|---|
| 335 | return(ndg1);
|
|---|
| 336 | }
|
|---|
| 337 |
|
|---|
| 338 | /* --Methode-- */
|
|---|
| 339 | template <class T>
|
|---|
| 340 | int FFTArrayChecker<T>::CheckResize(TArray< complex<T> > const & in, TArray< T > & out,
|
|---|
| 341 | bool usoutsz)
|
|---|
| 342 | {
|
|---|
| 343 | int k;
|
|---|
| 344 | string msg;
|
|---|
| 345 | if (in.Size() < 1) {
|
|---|
| 346 | msg = _msg + "CheckResize(complex in, real out) - Unallocated input array !";
|
|---|
| 347 | throw(SzMismatchError(msg));
|
|---|
| 348 | }
|
|---|
| 349 | if (_checkpack)
|
|---|
| 350 | if ( !in.IsPacked() ) {
|
|---|
| 351 | msg = _msg + "CheckResize(complex in, real out) - Not packed input array !";
|
|---|
| 352 | throw(SzMismatchError(msg));
|
|---|
| 353 | }
|
|---|
| 354 | int ndg1 = 0;
|
|---|
| 355 | for(k=0; k<in.NbDimensions(); k++)
|
|---|
| 356 | if (in.Size(k) > 1) ndg1++;
|
|---|
| 357 | if (_onedonly)
|
|---|
| 358 | if (ndg1 > 1) {
|
|---|
| 359 | msg = _msg + "CheckResize(complex in, real out) - Only 1-D array accepted !";
|
|---|
| 360 | throw(SzMismatchError(msg));
|
|---|
| 361 | }
|
|---|
| 362 | if (usoutsz) { // We have to use output array size
|
|---|
| 363 | bool fgerr = false;
|
|---|
| 364 | if (ndg1 > 1) {
|
|---|
| 365 | if (in.Size(0) != out.Size(0)/2+1) fgerr = true;
|
|---|
| 366 | }
|
|---|
| 367 | else {
|
|---|
| 368 | if (in.Size(in.MaxSizeKA()) != out.Size(in.MaxSizeKA())/2+1) fgerr = true;
|
|---|
| 369 | }
|
|---|
| 370 | if (fgerr) {
|
|---|
| 371 | msg = _msg + "CheckResize(complex in, real out) - Incompatible in-out sizes !";
|
|---|
| 372 | throw(SzMismatchError(msg));
|
|---|
| 373 | }
|
|---|
| 374 | }
|
|---|
| 375 | else { // We have to resize the output array
|
|---|
| 376 | sa_size_t sz[BASEARRAY_MAXNDIMS];
|
|---|
| 377 | if (ndg1 > 1) {
|
|---|
| 378 | sz[0] = 2*in.Size(0)-1;
|
|---|
| 379 | for(k=1; k<in.NbDimensions(); k++)
|
|---|
| 380 | sz[k] = in.Size(k);
|
|---|
| 381 | // sz[k] = in.Size(k)*2-1;
|
|---|
| 382 | }
|
|---|
| 383 | else {
|
|---|
| 384 | for(k=0; k<BASEARRAY_MAXNDIMS; k++) sz[k] = 1;
|
|---|
| 385 | T thr = ZeroThreshold();
|
|---|
| 386 | sa_size_t n = in.Size(in.MaxSizeKA());
|
|---|
| 387 | sa_size_t ncs = ( (in[n-1].imag() < -thr) || (in[n-1].imag() > thr) )
|
|---|
| 388 | ? 2*n-1 : 2*n-2;
|
|---|
| 389 | sz[in.MaxSizeKA()] = ncs;
|
|---|
| 390 | }
|
|---|
| 391 | out.ReSize(in.NbDimensions(), sz);
|
|---|
| 392 | }
|
|---|
| 393 |
|
|---|
| 394 | return(ndg1);
|
|---|
| 395 |
|
|---|
| 396 | }
|
|---|
| 397 |
|
|---|
| 398 |
|
|---|
| 399 | #ifdef __CXX_PRAGMA_TEMPLATES__
|
|---|
| 400 | #pragma define_template FFTArrayChecker<r_4>
|
|---|
| 401 | #pragma define_template FFTArrayChecker<r_8>
|
|---|
| 402 | #endif
|
|---|
| 403 |
|
|---|
| 404 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
|
|---|
| 405 | template class FFTArrayChecker<r_4>;
|
|---|
| 406 | template class FFTArrayChecker<r_8>;
|
|---|
| 407 | #endif
|
|---|