| 1 | #include "fftservintf.h"
 | 
|---|
| 2 | 
 | 
|---|
| 3 | namespace SOPHYA {
 | 
|---|
| 4 | 
 | 
|---|
| 5 | //// VOIR GRAND BLABLA EXPLICATIF A LA FIN DU FICHIER
 | 
|---|
| 6 | 
 | 
|---|
| 7 | /*!
 | 
|---|
| 8 |   \class FFTServerInterface
 | 
|---|
| 9 |   \ingroup NTools
 | 
|---|
| 10 |   Defines the interface for FFT (Fast Fourier Transform) operations.
 | 
|---|
| 11 |   Definitions : 
 | 
|---|
| 12 |     - Sampling period \b T
 | 
|---|
| 13 |     - Sampling frequency \b fs=1/T
 | 
|---|
| 14 |     - Total number of samples \b N
 | 
|---|
| 15 |     - Frequency step in Fourier space \b =fs/N=1/(N*T)
 | 
|---|
| 16 |     - Component frequencies
 | 
|---|
| 17 |         - k=0      ->  0
 | 
|---|
| 18 |         - k=1      ->  1/(N*T)
 | 
|---|
| 19 |         - k        ->  k/(N*T)
 | 
|---|
| 20 |         - k=N/2    ->  1/(2*T)   (Nyquist frequency)
 | 
|---|
| 21 |         - k>N/2    ->  k/(N*T)   (or negative frequency -(N-k)/(N*T))
 | 
|---|
| 22 | 
 | 
|---|
| 23 |   For a sampling period T=1, the computed Fourier components correspond to :
 | 
|---|
| 24 |   \verbatim
 | 
|---|
| 25 |   0  1/N  2/N  ... 1/2  1/2+1/N  1/2+2/N ... 1-2/N  1-1/N
 | 
|---|
| 26 |   0  1/N  2/N  ... 1/2                   ...  -2/N   -1/N
 | 
|---|
| 27 |   \endverbatim
 | 
|---|
| 28 | 
 | 
|---|
| 29 |   For complex one-dimensional transforms:
 | 
|---|
| 30 |   \f[
 | 
|---|
| 31 |   out(i) = F_{norm} \Sigma_{j} \ e^{-2 \pi \sqrt{-1} \ i \  j} \ {\rm (forward)}
 | 
|---|
| 32 |   \f]
 | 
|---|
| 33 |   \f[
 | 
|---|
| 34 |   out(i) = F_{norm} \Sigma_{j} \ e^{2 \pi \sqrt{-1} \ i \  j} \ {\rm (backward)}
 | 
|---|
| 35 |   \f]
 | 
|---|
| 36 |   i,j= 0..N-1 , where N is the input or the output array size.
 | 
|---|
| 37 | 
 | 
|---|
| 38 |   For complex multi-dimensional transforms:
 | 
|---|
| 39 |   \f[
 | 
|---|
| 40 |   out(i1,i2,...,id) = F_{norm} \Sigma_{j1} \Sigma_{j2} ... \Sigma_{jd} \ 
 | 
|---|
| 41 |   e^{-2 \pi \sqrt{-1} \ i1 \ j1} ... e^{-2 \pi \sqrt{-1} \ id \ jd} \ {\rm (forward)}
 | 
|---|
| 42 |   \f]
 | 
|---|
| 43 |   \f[
 | 
|---|
| 44 |   out(i1,i2,...,id) = F_{norm} \Sigma_{j1} \Sigma_{j2} ... \Sigma_{jd} \ 
 | 
|---|
| 45 |   e^{2 \pi \sqrt{-1} \ i1 \ j1} ... e^{2 \pi \sqrt{-1} \ id \ jd} \ {\rm (backward)}
 | 
|---|
| 46 |   \f]
 | 
|---|
| 47 | 
 | 
|---|
| 48 |   For real forward transforms, the input array is real, and
 | 
|---|
| 49 |   the output array complex, with Fourier components up to k=N/2.
 | 
|---|
| 50 |   For real backward transforms, the input array is complex and
 | 
|---|
| 51 |   the output array is real. 
 | 
|---|
| 52 | */
 | 
|---|
| 53 | 
 | 
|---|
| 54 | /* --Methode-- */
 | 
|---|
| 55 | FFTServerInterface::FFTServerInterface(string info)
 | 
|---|
| 56 | {
 | 
|---|
| 57 |   _info = info;
 | 
|---|
| 58 |   _fgnorm = true;
 | 
|---|
| 59 | }
 | 
|---|
| 60 | 
 | 
|---|
| 61 | /* --Methode-- */
 | 
|---|
| 62 | FFTServerInterface::~FFTServerInterface()
 | 
|---|
| 63 | {
 | 
|---|
| 64 | }
 | 
|---|
| 65 | 
 | 
|---|
| 66 | // ----------------- Transforme pour les double -------------------
 | 
|---|
| 67 | 
 | 
|---|
| 68 | /* --Methode-- */
 | 
|---|
| 69 | //! Forward Fourier transform for double precision complex data 
 | 
|---|
| 70 | /*!
 | 
|---|
| 71 |   \param in : Input complex array
 | 
|---|
| 72 |   \param out : Output complex array
 | 
|---|
| 73 |  */
 | 
|---|
| 74 | void FFTServerInterface::FFTForward(TArray< complex<r_8> > &, TArray< complex<r_8> > &)
 | 
|---|
| 75 | {
 | 
|---|
| 76 |   throw NotAvailableOperation("FFTServer::FFTForward(TArray...) Unsupported operation !");
 | 
|---|
| 77 | }
 | 
|---|
| 78 | 
 | 
|---|
| 79 | /* --Methode-- */
 | 
|---|
| 80 | //! Backward (inverse) Fourier transform for double precision complex data 
 | 
|---|
| 81 | /*!
 | 
|---|
| 82 |   \param in : Input complex array
 | 
|---|
| 83 |   \param out : Output complex array
 | 
|---|
| 84 |  */
 | 
|---|
| 85 | void FFTServerInterface::FFTBackward(TArray< complex<r_8> > &, TArray< complex<r_8> > &)
 | 
|---|
| 86 | {
 | 
|---|
| 87 |   throw NotAvailableOperation("FFTServer::FFTBackward(TArray...) Unsupported operation !");
 | 
|---|
| 88 | }
 | 
|---|
| 89 | 
 | 
|---|
| 90 | /* --Methode-- */
 | 
|---|
| 91 | //! Forward Fourier transform for double precision real input data
 | 
|---|
| 92 | /*!
 | 
|---|
| 93 |   \param in : Input real array
 | 
|---|
| 94 |   \param out : Output complex array
 | 
|---|
| 95 |  */
 | 
|---|
| 96 | void FFTServerInterface::FFTForward(TArray< r_8 > &, TArray< complex<r_8> > &)
 | 
|---|
| 97 | {
 | 
|---|
| 98 |   throw NotAvailableOperation("FFTServer::FFTForward(TArray...) Unsupported operation !");
 | 
|---|
| 99 | }
 | 
|---|
| 100 | 
 | 
|---|
| 101 | /* --Methode-- */
 | 
|---|
| 102 | //! Backward (inverse) Fourier transform for double precision real output data 
 | 
|---|
| 103 | /*!
 | 
|---|
| 104 |   \param in : Input complex array
 | 
|---|
| 105 |   \param out : Output real array
 | 
|---|
| 106 |   \param usoutsz : if true, use the output array size for computing the inverse FFT.
 | 
|---|
| 107 | 
 | 
|---|
| 108 |   In all cases, the input/output array sizes compatibility is checked.
 | 
|---|
| 109 |   if usoutsz == false, the size of the real array is selected based on the 
 | 
|---|
| 110 |   the imaginary part of the input complex array at the nyquist frequency.
 | 
|---|
| 111 |   size_out_real = 2*size_in_complex - ( 1 or 2)   
 | 
|---|
| 112 |  */
 | 
|---|
| 113 | void FFTServerInterface::FFTBackward(TArray< complex<r_8> > &, TArray< r_8 > &, bool)
 | 
|---|
| 114 | {
 | 
|---|
| 115 |   throw NotAvailableOperation("FFTServer::FFTBackward(TArray...) Unsupported operation !");
 | 
|---|
| 116 | }
 | 
|---|
| 117 | 
 | 
|---|
| 118 | 
 | 
|---|
| 119 | // ----------------- Transforme pour les float -------------------
 | 
|---|
| 120 | 
 | 
|---|
| 121 | /* --Methode-- */
 | 
|---|
| 122 | //! Forward Fourier transform for complex data 
 | 
|---|
| 123 | /*!
 | 
|---|
| 124 |   \param in : Input complex array
 | 
|---|
| 125 |   \param out : Output complex array
 | 
|---|
| 126 |  */
 | 
|---|
| 127 | void FFTServerInterface::FFTForward(TArray< complex<r_4> > &, TArray< complex<r_4> > &)
 | 
|---|
| 128 | {
 | 
|---|
| 129 |   throw NotAvailableOperation("FFTServer::FFTForward(TArray r_4 ... ) Unsupported operation !");
 | 
|---|
| 130 | }
 | 
|---|
| 131 | 
 | 
|---|
| 132 | /* --Methode-- */
 | 
|---|
| 133 | //! Backward (inverse) Fourier transform for complex data 
 | 
|---|
| 134 | /*!
 | 
|---|
| 135 |   \param in : Input complex array
 | 
|---|
| 136 |   \param out : Output complex array
 | 
|---|
| 137 |  */
 | 
|---|
| 138 | void FFTServerInterface::FFTBackward(TArray< complex<r_4> > &, TArray< complex<r_4> > &)
 | 
|---|
| 139 | {
 | 
|---|
| 140 |   throw NotAvailableOperation("FFTServer::FFTBackward(TArray r_4 ... ) Unsupported operation !");
 | 
|---|
| 141 | }
 | 
|---|
| 142 | 
 | 
|---|
| 143 | /* --Methode-- */
 | 
|---|
| 144 | //! Forward Fourier transform for real input data
 | 
|---|
| 145 | /*!
 | 
|---|
| 146 |   \param in : Input real array
 | 
|---|
| 147 |   \param out : Output complex array
 | 
|---|
| 148 |  */
 | 
|---|
| 149 | void FFTServerInterface::FFTForward(TArray< r_4 > &, TArray< complex<r_4> > &)
 | 
|---|
| 150 | {
 | 
|---|
| 151 |   throw NotAvailableOperation("FFTServer::FFTForward(TArray r_4 ... ) Unsupported operation !");
 | 
|---|
| 152 | }
 | 
|---|
| 153 | 
 | 
|---|
| 154 | /* --Methode-- */
 | 
|---|
| 155 | //! Backward (inverse) Fourier transform for real output data 
 | 
|---|
| 156 | /*!
 | 
|---|
| 157 |   \param in : Input complex array
 | 
|---|
| 158 |   \param out : Output real array
 | 
|---|
| 159 |   \param usoutsz : if true, use the output array size for computing the inverse FFT.
 | 
|---|
| 160 | 
 | 
|---|
| 161 |   In all cases, the input/output array sizes compatibility is checked.
 | 
|---|
| 162 |   if usoutsz == false, the size of the real array is selected based on the 
 | 
|---|
| 163 |   the imaginary part of the input complex array at the nyquist frequency.
 | 
|---|
| 164 |   size_out_real = 2*size_in_complex - ( 1 or 2)   
 | 
|---|
| 165 | */
 | 
|---|
| 166 | void FFTServerInterface::FFTBackward(TArray< complex<r_4> > &, TArray< r_4 > &, bool)
 | 
|---|
| 167 | {
 | 
|---|
| 168 |   throw NotAvailableOperation("FFTServer::FFTBackward(TArray r_4 ... ) Unsupported operation !");
 | 
|---|
| 169 | }
 | 
|---|
| 170 | 
 | 
|---|
| 171 | /* --Methode-- */
 | 
|---|
| 172 | /*!
 | 
|---|
| 173 |   \class FFTArrayChecker
 | 
|---|
| 174 |   \ingroup NTools
 | 
|---|
| 175 |   Service class for checking array size and resizing output arrays,
 | 
|---|
| 176 |   to be used by FFTServer classes
 | 
|---|
| 177 | */
 | 
|---|
| 178 | 
 | 
|---|
| 179 | template <class T>
 | 
|---|
| 180 | FFTArrayChecker<T>::FFTArrayChecker(string msg, bool checkpack, bool onedonly)
 | 
|---|
| 181 | {
 | 
|---|
| 182 |   _msg = msg + " FFTArrayChecker::";
 | 
|---|
| 183 |   _checkpack = checkpack;
 | 
|---|
| 184 |   _onedonly = onedonly;
 | 
|---|
| 185 | }
 | 
|---|
| 186 | 
 | 
|---|
| 187 | /* --Methode-- */
 | 
|---|
| 188 | template <class T>
 | 
|---|
| 189 | FFTArrayChecker<T>::~FFTArrayChecker()
 | 
|---|
| 190 | {
 | 
|---|
| 191 | }
 | 
|---|
| 192 | 
 | 
|---|
| 193 | template <class T>
 | 
|---|
| 194 | T FFTArrayChecker<T>::ZeroThreshold()
 | 
|---|
| 195 | {
 | 
|---|
| 196 |   return(0);
 | 
|---|
| 197 | }
 | 
|---|
| 198 | 
 | 
|---|
| 199 | DECL_TEMP_SPEC  /* equivalent a template <> , pour SGI-CC en particulier */
 | 
|---|
| 200 | r_8 FFTArrayChecker< r_8 >::ZeroThreshold()
 | 
|---|
| 201 | {
 | 
|---|
| 202 |   return(1.e-39);
 | 
|---|
| 203 | }
 | 
|---|
| 204 | 
 | 
|---|
| 205 | DECL_TEMP_SPEC  /* equivalent a template <> , pour SGI-CC en particulier */
 | 
|---|
| 206 | r_4 FFTArrayChecker< r_4 >::ZeroThreshold()
 | 
|---|
| 207 | {
 | 
|---|
| 208 |   return(1.e-19);
 | 
|---|
| 209 | }
 | 
|---|
| 210 | 
 | 
|---|
| 211 | /* --Methode-- */
 | 
|---|
| 212 | template <class T>
 | 
|---|
| 213 | int FFTArrayChecker<T>::CheckResize(TArray< complex<T> > const & in, TArray< complex<T> > & out)
 | 
|---|
| 214 | {
 | 
|---|
| 215 |   int k;
 | 
|---|
| 216 |   string msg;
 | 
|---|
| 217 |   if (in.Size() < 1) {
 | 
|---|
| 218 |     msg = _msg + "CheckResize(complex in, complex out) - Unallocated input array !";
 | 
|---|
| 219 |     throw(SzMismatchError(msg));
 | 
|---|
| 220 |   }
 | 
|---|
| 221 |   if (_checkpack) 
 | 
|---|
| 222 |     if ( !in.IsPacked() ) {
 | 
|---|
| 223 |       msg = _msg + "CheckResize(complex in, complex out) - Not packed input array !";
 | 
|---|
| 224 |       throw(SzMismatchError(msg));
 | 
|---|
| 225 |     }
 | 
|---|
| 226 |   int ndg1 = 0;
 | 
|---|
| 227 |   for(k=0; k<in.NbDimensions(); k++) 
 | 
|---|
| 228 |     if (in.Size(k) > 1)  ndg1++;
 | 
|---|
| 229 |   if (_onedonly) 
 | 
|---|
| 230 |     if (ndg1 > 1) {
 | 
|---|
| 231 |       msg = _msg + "CheckResize(complex in, complex out) - Only 1-D array accepted !";
 | 
|---|
| 232 |       throw(SzMismatchError(msg));
 | 
|---|
| 233 |     }
 | 
|---|
| 234 |   out.ReSize(in);
 | 
|---|
| 235 |   //  sa_size_t sz[BASEARRAY_MAXNDIMS];
 | 
|---|
| 236 |   //  for(k=0; k<in.NbDimensions(); k++) 
 | 
|---|
| 237 |   //    sz[k] = in.Size(k);
 | 
|---|
| 238 |   //  out.ReSize(in.NbDimensions(), sz);
 | 
|---|
| 239 | 
 | 
|---|
| 240 |   return(ndg1);
 | 
|---|
| 241 | }
 | 
|---|
| 242 | 
 | 
|---|
| 243 | /* --Methode-- */
 | 
|---|
| 244 | template <class T>
 | 
|---|
| 245 | int FFTArrayChecker<T>::CheckResize(TArray< T > const & in, TArray< complex<T> > & out)
 | 
|---|
| 246 | {
 | 
|---|
| 247 |   int k;
 | 
|---|
| 248 |   string msg;
 | 
|---|
| 249 |   if (in.Size() < 1) {
 | 
|---|
| 250 |     msg = _msg + "CheckResize(real in, complex out) - Unallocated input array !";
 | 
|---|
| 251 |     throw(SzMismatchError(msg));
 | 
|---|
| 252 |   }
 | 
|---|
| 253 |   if (_checkpack) 
 | 
|---|
| 254 |     if ( !in.IsPacked() ) {
 | 
|---|
| 255 |       msg = _msg + "CheckResize(real in, complex out) - Not packed input array !";
 | 
|---|
| 256 |       throw(SzMismatchError(msg));
 | 
|---|
| 257 |     }
 | 
|---|
| 258 |   int ndg1 = 0;
 | 
|---|
| 259 |   for(k=0; k<in.NbDimensions(); k++) 
 | 
|---|
| 260 |     if (in.Size(k) > 1)  ndg1++;
 | 
|---|
| 261 |   if (_onedonly) 
 | 
|---|
| 262 |     if (ndg1 > 1) {
 | 
|---|
| 263 |       msg = _msg + "CheckResize(real in, complex out) - Only 1-D array accepted !";
 | 
|---|
| 264 |       throw(SzMismatchError(msg));
 | 
|---|
| 265 |     }
 | 
|---|
| 266 |   sa_size_t sz[BASEARRAY_MAXNDIMS];
 | 
|---|
| 267 |   // 
 | 
|---|
| 268 |   if (ndg1 > 1) {
 | 
|---|
| 269 |     sz[0] = in.Size(0)/2+1; 
 | 
|---|
| 270 |     for(k=1; k<in.NbDimensions(); k++) 
 | 
|---|
| 271 |       sz[k] = in.Size(k); 
 | 
|---|
| 272 |   }
 | 
|---|
| 273 |   else {
 | 
|---|
| 274 |     for(k=0; k<BASEARRAY_MAXNDIMS; k++)  sz[k] = 1; 
 | 
|---|
| 275 |     sz[in.MaxSizeKA()] = in.Size(in.MaxSizeKA())/2+1;
 | 
|---|
| 276 |     //    sz[k] = in.Size(k)/2+1; 
 | 
|---|
| 277 |     //    sz[k] = (in.Size(k)%2 != 0) ? in.Size(k)/2+1 : in.Size(k)/2;
 | 
|---|
| 278 |   }
 | 
|---|
| 279 |   out.ReSize(in.NbDimensions(), sz);
 | 
|---|
| 280 | 
 | 
|---|
| 281 |   return(ndg1);
 | 
|---|
| 282 | }
 | 
|---|
| 283 | 
 | 
|---|
| 284 | /* --Methode-- */
 | 
|---|
| 285 | template <class T>
 | 
|---|
| 286 | int FFTArrayChecker<T>::CheckResize(TArray< complex<T> > const & in, TArray< T > & out, 
 | 
|---|
| 287 |                                     bool usoutsz)
 | 
|---|
| 288 | {
 | 
|---|
| 289 |   int k;
 | 
|---|
| 290 |   string msg;
 | 
|---|
| 291 |   if (in.Size() < 1) {
 | 
|---|
| 292 |     msg = _msg + "CheckResize(complex in, real out) - Unallocated input array !";
 | 
|---|
| 293 |     throw(SzMismatchError(msg));
 | 
|---|
| 294 |   }
 | 
|---|
| 295 |   if (_checkpack) 
 | 
|---|
| 296 |     if ( !in.IsPacked() ) {
 | 
|---|
| 297 |       msg = _msg + "CheckResize(complex in, real out) - Not packed input array !";
 | 
|---|
| 298 |       throw(SzMismatchError(msg));
 | 
|---|
| 299 |     }
 | 
|---|
| 300 |   int ndg1 = 0;
 | 
|---|
| 301 |   for(k=0; k<in.NbDimensions(); k++) 
 | 
|---|
| 302 |     if (in.Size(k) > 1)  ndg1++;
 | 
|---|
| 303 |   if (_onedonly) 
 | 
|---|
| 304 |     if (ndg1 > 1) {
 | 
|---|
| 305 |       msg = _msg + "CheckResize(complex in, real out) - Only 1-D array accepted !";
 | 
|---|
| 306 |       throw(SzMismatchError(msg));
 | 
|---|
| 307 |     }
 | 
|---|
| 308 |   if (usoutsz) { // We have to use output array size 
 | 
|---|
| 309 |     bool fgerr = false;
 | 
|---|
| 310 |     if (ndg1 > 1) {
 | 
|---|
| 311 |       if (in.Size(0) != out.Size(0)/2+1) fgerr = true;
 | 
|---|
| 312 |     }      
 | 
|---|
| 313 |     else {
 | 
|---|
| 314 |       if (in.Size(in.MaxSizeKA()) != out.Size(in.MaxSizeKA())/2+1) fgerr = true;
 | 
|---|
| 315 |     }
 | 
|---|
| 316 |     if (fgerr) {
 | 
|---|
| 317 |         msg = _msg + "CheckResize(complex in, real out) - Incompatible in-out sizes !";
 | 
|---|
| 318 |         throw(SzMismatchError(msg));
 | 
|---|
| 319 |     }
 | 
|---|
| 320 |   }
 | 
|---|
| 321 |   else {  // We have to resize the output array 
 | 
|---|
| 322 |     T thr = ZeroThreshold();   // Seuil pour tester Imag(Nyquist) == 0 
 | 
|---|
| 323 |     sa_size_t sz[BASEARRAY_MAXNDIMS];
 | 
|---|
| 324 |     if (ndg1 > 1) {
 | 
|---|
| 325 |       T imnyq = in(in.Size(0)-1,0,0).imag();
 | 
|---|
| 326 |       // Rz+cmc/Nov07 : 
 | 
|---|
| 327 |       // Calcul de la taille SizeX/Sz[0]  paire/impaire en fonction de Imag(Nyquist)
 | 
|---|
| 328 |       sz[0] = ((imnyq < -thr)||(imnyq > thr)) ? 2*in.Size(0)-1 : 2*in.Size(0)-2;
 | 
|---|
| 329 |       if (sz[0] < 1) sz[0] = 1;
 | 
|---|
| 330 |       for(k=1; k<in.NbDimensions(); k++) 
 | 
|---|
| 331 |         sz[k] = in.Size(k);
 | 
|---|
| 332 |     //      sz[k] = in.Size(k)*2-1;
 | 
|---|
| 333 |     }
 | 
|---|
| 334 |     else {
 | 
|---|
| 335 |       for(k=0; k<BASEARRAY_MAXNDIMS; k++)  sz[k] = 1; 
 | 
|---|
| 336 |       sa_size_t n = in.Size(in.MaxSizeKA());
 | 
|---|
| 337 |       sa_size_t ncs = ( (in[n-1].imag() < -thr) || (in[n-1].imag() > thr) )
 | 
|---|
| 338 |                       ? 2*n-1 : 2*n-2;
 | 
|---|
| 339 |       if (ncs < 1)  ncs = 1;
 | 
|---|
| 340 |       sz[in.MaxSizeKA()] = ncs;
 | 
|---|
| 341 |     }
 | 
|---|
| 342 |   out.ReSize(in.NbDimensions(), sz);
 | 
|---|
| 343 |   }
 | 
|---|
| 344 | 
 | 
|---|
| 345 |   return(ndg1);
 | 
|---|
| 346 | 
 | 
|---|
| 347 | }
 | 
|---|
| 348 | 
 | 
|---|
| 349 | 
 | 
|---|
| 350 | #ifdef __CXX_PRAGMA_TEMPLATES__
 | 
|---|
| 351 | #pragma define_template FFTArrayChecker<r_4>
 | 
|---|
| 352 | #pragma define_template FFTArrayChecker<r_8>
 | 
|---|
| 353 | #endif
 | 
|---|
| 354 | 
 | 
|---|
| 355 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
 | 
|---|
| 356 | template class FFTArrayChecker<r_4>;
 | 
|---|
| 357 | template class FFTArrayChecker<r_8>;
 | 
|---|
| 358 | #endif
 | 
|---|
| 359 | 
 | 
|---|
| 360 | } // FIN namespace SOPHYA 
 | 
|---|
| 361 | 
 | 
|---|
| 362 | 
 | 
|---|
| 363 | 
 | 
|---|
| 364 | /**********************************************************************
 | 
|---|
| 365 | 
 | 
|---|
| 366 | Memo uniquement destine aux programmeurs:    (cmv 03/05/04)
 | 
|---|
| 367 | -- cf programme de tests explicatif: cmvtfft.cc
 | 
|---|
| 368 | 
 | 
|---|
| 369 | =====================================================================
 | 
|---|
| 370 | =====================================================================
 | 
|---|
| 371 | ============== Transformees de Fourier et setNormalize ==============
 | 
|---|
| 372 | =====================================================================
 | 
|---|
| 373 | =====================================================================
 | 
|---|
| 374 | 
 | 
|---|
| 375 | - si setNormalize(true):  invTF{TF{S}} = S
 | 
|---|
| 376 | - si setNormalize(false): invTF{TF{S}} = N * S
 | 
|---|
| 377 | 
 | 
|---|
| 378 | =====================================================================
 | 
|---|
| 379 | =====================================================================
 | 
|---|
| 380 | ============== Transformees de Fourier de signaux REELS =============
 | 
|---|
| 381 | =====================================================================
 | 
|---|
| 382 | =====================================================================
 | 
|---|
| 383 | 
 | 
|---|
| 384 | -------
 | 
|---|
| 385 | --- FFT d'un signal REEL S ayant un nombre pair d'elements N=2p
 | 
|---|
| 386 | -------
 | 
|---|
| 387 |   taille de la FFT: Nfft = N/2 + 1 = p + 1
 | 
|---|
| 388 |   abscisses de la fft: | 0 | 1/N | 2/N | ..... | p/N=1/2 |
 | 
|---|
| 389 |                          ^continu                 ^frequence de Nyquist
 | 
|---|
| 390 | 
 | 
|---|
| 391 |   ... Ex:  N=6 -> Nfft = 6/3+1 = 4
 | 
|---|
| 392 | 
 | 
|---|
| 393 |   le signal a N elements reels, la fft a Nfft elements complexes
 | 
|---|
| 394 |     cad 2*Nfft reels = 2*(p+1) reels = 2p + 2 reels = N + 2 reels
 | 
|---|
| 395 |     soit 2 reels en trop:
 | 
|---|
| 396 |     ce sont les phases du continu et de la frequence de Nyquist
 | 
|---|
| 397 | 
 | 
|---|
| 398 |   relations:
 | 
|---|
| 399 |     - si setNormalize(true)  : fac = N
 | 
|---|
| 400 |          setNormalize(false) : fac = 1/N
 | 
|---|
| 401 |     sum(i=0,N-1){S(i)^2}
 | 
|---|
| 402 |                         = fac* [[ 2* sum(j=0,Nfft-1){|TF{S}(j)|^2} 
 | 
|---|
| 403 |                                  - |TF{S}(0)|^2 - |TF{S}(Nfft-1)|^2 ]]
 | 
|---|
| 404 |     (On ne compte pas deux fois le continu et la freq de Nyquist)
 | 
|---|
| 405 |      
 | 
|---|
| 406 | 
 | 
|---|
| 407 | -------
 | 
|---|
| 408 | --- FFT d'un signal REEL ayant un nombre impair d'elements N=2p+1
 | 
|---|
| 409 | -------
 | 
|---|
| 410 |   taille de la FFT: Nfft = N/2 + 1 = p + 1
 | 
|---|
| 411 |   abscisses de la fft: | 0 | 1/N | 2/N | ..... | p/N |
 | 
|---|
| 412 |                          ^continu                 
 | 
|---|
| 413 |                        (la frequence de Nyquist n'y est pas)
 | 
|---|
| 414 | 
 | 
|---|
| 415 |   ... Ex:  N=7 -> Nfft = 7/3+1 = 4
 | 
|---|
| 416 | 
 | 
|---|
| 417 |   le signal a N elements reels, la fft a Nfft elements complexes
 | 
|---|
| 418 |     cad 2*Nfft reels = 2*(p+1) reels = 2p + 2 reels = N + 1 reels
 | 
|---|
| 419 |     soit 1 reel en trop: c'est la phase du continu
 | 
|---|
| 420 | 
 | 
|---|
| 421 |   relations:
 | 
|---|
| 422 |     - si setNormalize(true)  : fac = N
 | 
|---|
| 423 |          setNormalize(false) : fac = 1/N
 | 
|---|
| 424 |     sum(i=0,N-1){S(i)^2}
 | 
|---|
| 425 |                         = fac* [[ 2* sum(j=0,Nfft-1){|TF{S}(j)|^2} 
 | 
|---|
| 426 |                                  - |TF{S}(0)|^2 ]]
 | 
|---|
| 427 |     (On ne compte pas deux fois le continu)
 | 
|---|
| 428 | 
 | 
|---|
| 429 | 
 | 
|---|
| 430 | ------------
 | 
|---|
| 431 | --- FFT-BACK d'un signal F=TF{S} ayant un nombre d'elements Nfft
 | 
|---|
| 432 | ------------
 | 
|---|
| 433 |   Sback = invTF{TF{S}}
 | 
|---|
| 434 | 
 | 
|---|
| 435 |   Remarque: Nfft a la meme valeur pour N=2p et N=2p+1
 | 
|---|
| 436 |             donc Nfft conduit a 2 possibilites:
 | 
|---|
| 437 |                  { N = 2*(Nfft-1)  signal back avec nombre pair d'elements
 | 
|---|
| 438 |                  { N = 2*Nfft-1    signal back avec nombre impair d'elements
 | 
|---|
| 439 | 
 | 
|---|
| 440 |   Pour savoir quel est la longueur N du signal TF^(-1){F} on regarde
 | 
|---|
| 441 |     si F(Nfft-1) est reel ou complexe
 | 
|---|
| 442 |        (la frequence de Nyquist d'un signal reel est reelle)
 | 
|---|
| 443 | 
 | 
|---|
| 444 |     - Si F(Nfft-1) reel      cad  Im{F(Nfft-1)}=0:  N = 2*(Nfft-1)
 | 
|---|
| 445 |     - Si F(Nfft-1) complexe  cad  Im{F(Nfft-1)}#0:  N = 2*Nfft-1
 | 
|---|
| 446 | 
 | 
|---|
| 447 |   Si setNormalize(true):  invTF{TF{S}} = S
 | 
|---|
| 448 |      setNormalize(false): invTF{TF{S}} = N * S
 | 
|---|
| 449 | 
 | 
|---|
| 450 | =========================================================================
 | 
|---|
| 451 | =========================================================================
 | 
|---|
| 452 | ============== Transformees de Fourier de signaux COMPLEXES =============
 | 
|---|
| 453 | =========================================================================
 | 
|---|
| 454 | =========================================================================
 | 
|---|
| 455 | 
 | 
|---|
| 456 | -------
 | 
|---|
| 457 | --- FFT d'un signal COMPLEXE S ayant un nombre d'elements N
 | 
|---|
| 458 | -------
 | 
|---|
| 459 |   taille de la FFT: Nfft = N
 | 
|---|
| 460 |   abscisses de la fft: | 0 | 1/N | 2/N | ..... | (N-1)/N |
 | 
|---|
| 461 |                          ^continu
 | 
|---|
| 462 | 
 | 
|---|
| 463 |   Frequence de Nyquist:
 | 
|---|
| 464 |     si N est pair: la frequence de Nyquist est l'absicce d'un des bins
 | 
|---|
| 465 |       abscisses de TF{S}: Nfft = N = 2p
 | 
|---|
| 466 |       | 0 | 1/N | 2/N | ... | (N/2)/N=p/N=0.5 | ... | (N-1)/N |
 | 
|---|
| 467 |                                      ^frequence de Nyquist
 | 
|---|
| 468 |     si N est impair: la frequence de Nyquist N'est PAS l'absicce d'un des bins
 | 
|---|
| 469 |       abscisses de TF{S}: Nfft = N = 2p+1
 | 
|---|
| 470 |       | 0 | 1/N | 2/N | ... | (N/2)/N=p/N | ((N+1)/2)/N=(p+1)/N  | ... | (N-1)/N |
 | 
|---|
| 471 | 
 | 
|---|
| 472 |   ... Ex: N = 2p =6  ->  Nfft = 2p = 6
 | 
|---|
| 473 |       abscisses de TF{S}: | 0 | 1/6 | 2/6 | 3/6=0.5 | 4/6 | 5/6 |
 | 
|---|
| 474 |   ... Ex: N = 2p+1 = 7   ->  Nfft = 2p+1 = 7
 | 
|---|
| 475 |       abscisses de TF{S}: | 0 | 1/7 | 2/7 | 3/7 | 4/7 | 5/7 | 6/7 |
 | 
|---|
| 476 | 
 | 
|---|
| 477 |   relations:
 | 
|---|
| 478 |     - si setNormalize(true)  : fac = N
 | 
|---|
| 479 |          setNormalize(false) : fac = 1/N
 | 
|---|
| 480 |     sum(i=0,N-1){S(i)^2} = fac* [[ sum(j=0,Nfft-1){|TF{S}(j)|^2} ]]
 | 
|---|
| 481 | 
 | 
|---|
| 482 | ------------
 | 
|---|
| 483 | --- FFT-BACK d'un signal F=TF{S} ayant un nombre d'elements Nfft
 | 
|---|
| 484 | ------------
 | 
|---|
| 485 |   taille du signal: N = Nfft
 | 
|---|
| 486 | 
 | 
|---|
| 487 |   Si setNormalize(true):  invTF{TF{S}} = S
 | 
|---|
| 488 |      setNormalize(false): invTF{TF{S}} = N * S
 | 
|---|
| 489 | 
 | 
|---|
| 490 | **********************************************************************/
 | 
|---|