1 | #include "fftservintf.h"
|
---|
2 |
|
---|
3 | namespace SOPHYA {
|
---|
4 |
|
---|
5 | //// VOIR GRAND BLABLA EXPLICATIF A LA FIN DU FICHIER
|
---|
6 |
|
---|
7 | /*!
|
---|
8 | \class FFTServerInterface
|
---|
9 | \ingroup NTools
|
---|
10 | Defines the interface for FFT (Fast Fourier Transform) operations.
|
---|
11 | Definitions :
|
---|
12 | - Sampling period \b T
|
---|
13 | - Sampling frequency \b fs=1/T
|
---|
14 | - Total number of samples \b N
|
---|
15 | - Frequency step in Fourier space \b =fs/N=1/(N*T)
|
---|
16 | - Component frequencies
|
---|
17 | - k=0 -> 0
|
---|
18 | - k=1 -> 1/(N*T)
|
---|
19 | - k -> k/(N*T)
|
---|
20 | - k=N/2 -> 1/(2*T) (Nyquist frequency)
|
---|
21 | - k>N/2 -> k/(N*T) (or negative frequency -(N-k)/(N*T))
|
---|
22 |
|
---|
23 | For a sampling period T=1, the computed Fourier components correspond to :
|
---|
24 | \verbatim
|
---|
25 | 0 1/N 2/N ... 1/2 1/2+1/N 1/2+2/N ... 1-2/N 1-1/N
|
---|
26 | 0 1/N 2/N ... 1/2 ... -2/N -1/N
|
---|
27 | \endverbatim
|
---|
28 |
|
---|
29 | For complex one-dimensional transforms:
|
---|
30 | \f[
|
---|
31 | out(i) = F_{norm} \Sigma_{j} \ e^{-2 \pi \sqrt{-1} \ i \ j} \ {\rm (forward)}
|
---|
32 | \f]
|
---|
33 | \f[
|
---|
34 | out(i) = F_{norm} \Sigma_{j} \ e^{2 \pi \sqrt{-1} \ i \ j} \ {\rm (backward)}
|
---|
35 | \f]
|
---|
36 | i,j= 0..N-1 , where N is the input or the output array size.
|
---|
37 |
|
---|
38 | For complex multi-dimensional transforms:
|
---|
39 | \f[
|
---|
40 | out(i1,i2,...,id) = F_{norm} \Sigma_{j1} \Sigma_{j2} ... \Sigma_{jd} \
|
---|
41 | e^{-2 \pi \sqrt{-1} \ i1 \ j1} ... e^{-2 \pi \sqrt{-1} \ id \ jd} \ {\rm (forward)}
|
---|
42 | \f]
|
---|
43 | \f[
|
---|
44 | out(i1,i2,...,id) = F_{norm} \Sigma_{j1} \Sigma_{j2} ... \Sigma_{jd} \
|
---|
45 | e^{2 \pi \sqrt{-1} \ i1 \ j1} ... e^{2 \pi \sqrt{-1} \ id \ jd} \ {\rm (backward)}
|
---|
46 | \f]
|
---|
47 |
|
---|
48 | For real forward transforms, the input array is real, and
|
---|
49 | the output array complex, with Fourier components up to k=N/2.
|
---|
50 | For real backward transforms, the input array is complex and
|
---|
51 | the output array is real.
|
---|
52 | */
|
---|
53 |
|
---|
54 | /* --Methode-- */
|
---|
55 | FFTServerInterface::FFTServerInterface(string info)
|
---|
56 | {
|
---|
57 | _info = info;
|
---|
58 | _fgnorm = true;
|
---|
59 | }
|
---|
60 |
|
---|
61 | /* --Methode-- */
|
---|
62 | FFTServerInterface::~FFTServerInterface()
|
---|
63 | {
|
---|
64 | }
|
---|
65 |
|
---|
66 | // ----------------- Transforme pour les double -------------------
|
---|
67 |
|
---|
68 | /* --Methode-- */
|
---|
69 | //! Forward Fourier transform for double precision complex data
|
---|
70 | /*!
|
---|
71 | \param in : Input complex array
|
---|
72 | \param out : Output complex array
|
---|
73 | */
|
---|
74 | void FFTServerInterface::FFTForward(TArray< complex<r_8> > &, TArray< complex<r_8> > &)
|
---|
75 | {
|
---|
76 | throw NotAvailableOperation("FFTServer::FFTForward(TArray...) Unsupported operation !");
|
---|
77 | }
|
---|
78 |
|
---|
79 | /* --Methode-- */
|
---|
80 | //! Backward (inverse) Fourier transform for double precision complex data
|
---|
81 | /*!
|
---|
82 | \param in : Input complex array
|
---|
83 | \param out : Output complex array
|
---|
84 | */
|
---|
85 | void FFTServerInterface::FFTBackward(TArray< complex<r_8> > &, TArray< complex<r_8> > &)
|
---|
86 | {
|
---|
87 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray...) Unsupported operation !");
|
---|
88 | }
|
---|
89 |
|
---|
90 | /* --Methode-- */
|
---|
91 | //! Forward Fourier transform for double precision real input data
|
---|
92 | /*!
|
---|
93 | \param in : Input real array
|
---|
94 | \param out : Output complex array
|
---|
95 | */
|
---|
96 | void FFTServerInterface::FFTForward(TArray< r_8 > &, TArray< complex<r_8> > &)
|
---|
97 | {
|
---|
98 | throw NotAvailableOperation("FFTServer::FFTForward(TArray...) Unsupported operation !");
|
---|
99 | }
|
---|
100 |
|
---|
101 | /* --Methode-- */
|
---|
102 | //! Backward (inverse) Fourier transform for double precision real output data
|
---|
103 | /*!
|
---|
104 | \param in : Input complex array
|
---|
105 | \param out : Output real array
|
---|
106 | \param usoutsz : if true, use the output array size for computing the inverse FFT.
|
---|
107 |
|
---|
108 | In all cases, the input/output array sizes compatibility is checked.
|
---|
109 | if usoutsz == false, the size of the real array is selected based on the
|
---|
110 | the imaginary part of the input complex array at the nyquist frequency.
|
---|
111 | size_out_real = 2*size_in_complex - ( 1 or 2)
|
---|
112 | */
|
---|
113 | void FFTServerInterface::FFTBackward(TArray< complex<r_8> > &, TArray< r_8 > &, bool)
|
---|
114 | {
|
---|
115 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray...) Unsupported operation !");
|
---|
116 | }
|
---|
117 |
|
---|
118 |
|
---|
119 | // ----------------- Transforme pour les float -------------------
|
---|
120 |
|
---|
121 | /* --Methode-- */
|
---|
122 | //! Forward Fourier transform for complex data
|
---|
123 | /*!
|
---|
124 | \param in : Input complex array
|
---|
125 | \param out : Output complex array
|
---|
126 | */
|
---|
127 | void FFTServerInterface::FFTForward(TArray< complex<r_4> > &, TArray< complex<r_4> > &)
|
---|
128 | {
|
---|
129 | throw NotAvailableOperation("FFTServer::FFTForward(TArray r_4 ... ) Unsupported operation !");
|
---|
130 | }
|
---|
131 |
|
---|
132 | /* --Methode-- */
|
---|
133 | //! Backward (inverse) Fourier transform for complex data
|
---|
134 | /*!
|
---|
135 | \param in : Input complex array
|
---|
136 | \param out : Output complex array
|
---|
137 | */
|
---|
138 | void FFTServerInterface::FFTBackward(TArray< complex<r_4> > &, TArray< complex<r_4> > &)
|
---|
139 | {
|
---|
140 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray r_4 ... ) Unsupported operation !");
|
---|
141 | }
|
---|
142 |
|
---|
143 | /* --Methode-- */
|
---|
144 | //! Forward Fourier transform for real input data
|
---|
145 | /*!
|
---|
146 | \param in : Input real array
|
---|
147 | \param out : Output complex array
|
---|
148 | */
|
---|
149 | void FFTServerInterface::FFTForward(TArray< r_4 > &, TArray< complex<r_4> > &)
|
---|
150 | {
|
---|
151 | throw NotAvailableOperation("FFTServer::FFTForward(TArray r_4 ... ) Unsupported operation !");
|
---|
152 | }
|
---|
153 |
|
---|
154 | /* --Methode-- */
|
---|
155 | //! Backward (inverse) Fourier transform for real output data
|
---|
156 | /*!
|
---|
157 | \param in : Input complex array
|
---|
158 | \param out : Output real array
|
---|
159 | \param usoutsz : if true, use the output array size for computing the inverse FFT.
|
---|
160 |
|
---|
161 | In all cases, the input/output array sizes compatibility is checked.
|
---|
162 | if usoutsz == false, the size of the real array is selected based on the
|
---|
163 | the imaginary part of the input complex array at the nyquist frequency.
|
---|
164 | size_out_real = 2*size_in_complex - ( 1 or 2)
|
---|
165 | */
|
---|
166 | void FFTServerInterface::FFTBackward(TArray< complex<r_4> > &, TArray< r_4 > &, bool)
|
---|
167 | {
|
---|
168 | throw NotAvailableOperation("FFTServer::FFTBackward(TArray r_4 ... ) Unsupported operation !");
|
---|
169 | }
|
---|
170 |
|
---|
171 | /* --Methode-- */
|
---|
172 | /*!
|
---|
173 | \class FFTArrayChecker
|
---|
174 | \ingroup NTools
|
---|
175 | Service class for checking array size and resizing output arrays,
|
---|
176 | to be used by FFTServer classes
|
---|
177 | */
|
---|
178 |
|
---|
179 | template <class T>
|
---|
180 | FFTArrayChecker<T>::FFTArrayChecker(string msg, bool checkpack, bool onedonly)
|
---|
181 | {
|
---|
182 | _msg = msg + " FFTArrayChecker::";
|
---|
183 | _checkpack = checkpack;
|
---|
184 | _onedonly = onedonly;
|
---|
185 | }
|
---|
186 |
|
---|
187 | /* --Methode-- */
|
---|
188 | template <class T>
|
---|
189 | FFTArrayChecker<T>::~FFTArrayChecker()
|
---|
190 | {
|
---|
191 | }
|
---|
192 |
|
---|
193 | template <class T>
|
---|
194 | T FFTArrayChecker<T>::ZeroThreshold()
|
---|
195 | {
|
---|
196 | return(0);
|
---|
197 | }
|
---|
198 |
|
---|
199 | DECL_TEMP_SPEC /* equivalent a template <> , pour SGI-CC en particulier */
|
---|
200 | r_8 FFTArrayChecker< r_8 >::ZeroThreshold()
|
---|
201 | {
|
---|
202 | return(1.e-39);
|
---|
203 | }
|
---|
204 |
|
---|
205 | DECL_TEMP_SPEC /* equivalent a template <> , pour SGI-CC en particulier */
|
---|
206 | r_4 FFTArrayChecker< r_4 >::ZeroThreshold()
|
---|
207 | {
|
---|
208 | return(1.e-19);
|
---|
209 | }
|
---|
210 |
|
---|
211 | /* --Methode-- */
|
---|
212 | template <class T>
|
---|
213 | int FFTArrayChecker<T>::CheckResize(TArray< complex<T> > const & in, TArray< complex<T> > & out)
|
---|
214 | {
|
---|
215 | int k;
|
---|
216 | string msg;
|
---|
217 | if (in.Size() < 1) {
|
---|
218 | msg = _msg + "CheckResize(complex in, complex out) - Unallocated input array !";
|
---|
219 | throw(SzMismatchError(msg));
|
---|
220 | }
|
---|
221 | if (_checkpack)
|
---|
222 | if ( !in.IsPacked() ) {
|
---|
223 | msg = _msg + "CheckResize(complex in, complex out) - Not packed input array !";
|
---|
224 | throw(SzMismatchError(msg));
|
---|
225 | }
|
---|
226 | int ndg1 = 0;
|
---|
227 | for(k=0; k<in.NbDimensions(); k++)
|
---|
228 | if (in.Size(k) > 1) ndg1++;
|
---|
229 | if (_onedonly)
|
---|
230 | if (ndg1 > 1) {
|
---|
231 | msg = _msg + "CheckResize(complex in, complex out) - Only 1-D array accepted !";
|
---|
232 | throw(SzMismatchError(msg));
|
---|
233 | }
|
---|
234 | out.ReSize(in);
|
---|
235 | // sa_size_t sz[BASEARRAY_MAXNDIMS];
|
---|
236 | // for(k=0; k<in.NbDimensions(); k++)
|
---|
237 | // sz[k] = in.Size(k);
|
---|
238 | // out.ReSize(in.NbDimensions(), sz);
|
---|
239 |
|
---|
240 | return(ndg1);
|
---|
241 | }
|
---|
242 |
|
---|
243 | /* --Methode-- */
|
---|
244 | template <class T>
|
---|
245 | int FFTArrayChecker<T>::CheckResize(TArray< T > const & in, TArray< complex<T> > & out)
|
---|
246 | {
|
---|
247 | int k;
|
---|
248 | string msg;
|
---|
249 | if (in.Size() < 1) {
|
---|
250 | msg = _msg + "CheckResize(real in, complex out) - Unallocated input array !";
|
---|
251 | throw(SzMismatchError(msg));
|
---|
252 | }
|
---|
253 | if (_checkpack)
|
---|
254 | if ( !in.IsPacked() ) {
|
---|
255 | msg = _msg + "CheckResize(real in, complex out) - Not packed input array !";
|
---|
256 | throw(SzMismatchError(msg));
|
---|
257 | }
|
---|
258 | int ndg1 = 0;
|
---|
259 | for(k=0; k<in.NbDimensions(); k++)
|
---|
260 | if (in.Size(k) > 1) ndg1++;
|
---|
261 | if (_onedonly)
|
---|
262 | if (ndg1 > 1) {
|
---|
263 | msg = _msg + "CheckResize(real in, complex out) - Only 1-D array accepted !";
|
---|
264 | throw(SzMismatchError(msg));
|
---|
265 | }
|
---|
266 | sa_size_t sz[BASEARRAY_MAXNDIMS];
|
---|
267 | //
|
---|
268 | if (ndg1 > 1) {
|
---|
269 | sz[0] = in.Size(0)/2+1;
|
---|
270 | for(k=1; k<in.NbDimensions(); k++)
|
---|
271 | sz[k] = in.Size(k);
|
---|
272 | }
|
---|
273 | else {
|
---|
274 | for(k=0; k<BASEARRAY_MAXNDIMS; k++) sz[k] = 1;
|
---|
275 | sz[in.MaxSizeKA()] = in.Size(in.MaxSizeKA())/2+1;
|
---|
276 | // sz[k] = in.Size(k)/2+1;
|
---|
277 | // sz[k] = (in.Size(k)%2 != 0) ? in.Size(k)/2+1 : in.Size(k)/2;
|
---|
278 | }
|
---|
279 | out.ReSize(in.NbDimensions(), sz);
|
---|
280 |
|
---|
281 | return(ndg1);
|
---|
282 | }
|
---|
283 |
|
---|
284 | /* --Methode-- */
|
---|
285 | template <class T>
|
---|
286 | int FFTArrayChecker<T>::CheckResize(TArray< complex<T> > const & in, TArray< T > & out,
|
---|
287 | bool usoutsz)
|
---|
288 | {
|
---|
289 | int k;
|
---|
290 | string msg;
|
---|
291 | if (in.Size() < 1) {
|
---|
292 | msg = _msg + "CheckResize(complex in, real out) - Unallocated input array !";
|
---|
293 | throw(SzMismatchError(msg));
|
---|
294 | }
|
---|
295 | if (_checkpack)
|
---|
296 | if ( !in.IsPacked() ) {
|
---|
297 | msg = _msg + "CheckResize(complex in, real out) - Not packed input array !";
|
---|
298 | throw(SzMismatchError(msg));
|
---|
299 | }
|
---|
300 | int ndg1 = 0;
|
---|
301 | for(k=0; k<in.NbDimensions(); k++)
|
---|
302 | if (in.Size(k) > 1) ndg1++;
|
---|
303 | if (_onedonly)
|
---|
304 | if (ndg1 > 1) {
|
---|
305 | msg = _msg + "CheckResize(complex in, real out) - Only 1-D array accepted !";
|
---|
306 | throw(SzMismatchError(msg));
|
---|
307 | }
|
---|
308 | if (usoutsz) { // We have to use output array size
|
---|
309 | bool fgerr = false;
|
---|
310 | if (ndg1 > 1) {
|
---|
311 | if (in.Size(0) != out.Size(0)/2+1) fgerr = true;
|
---|
312 | }
|
---|
313 | else {
|
---|
314 | if (in.Size(in.MaxSizeKA()) != out.Size(in.MaxSizeKA())/2+1) fgerr = true;
|
---|
315 | }
|
---|
316 | if (fgerr) {
|
---|
317 | msg = _msg + "CheckResize(complex in, real out) - Incompatible in-out sizes !";
|
---|
318 | throw(SzMismatchError(msg));
|
---|
319 | }
|
---|
320 | }
|
---|
321 | else { // We have to resize the output array
|
---|
322 | T thr = ZeroThreshold(); // Seuil pour tester Imag(Nyquist) == 0
|
---|
323 | sa_size_t sz[BASEARRAY_MAXNDIMS];
|
---|
324 | if (ndg1 > 1) {
|
---|
325 | T imnyq = in(in.Size(0)-1,0,0).imag();
|
---|
326 | // Rz+cmc/Nov07 :
|
---|
327 | // Calcul de la taille SizeX/Sz[0] paire/impaire en fonction de Imag(Nyquist)
|
---|
328 | sz[0] = ((imnyq < -thr)||(imnyq > thr)) ? 2*in.Size(0)-1 : 2*in.Size(0)-2;
|
---|
329 | if (sz[0] < 1) sz[0] = 1;
|
---|
330 | for(k=1; k<in.NbDimensions(); k++)
|
---|
331 | sz[k] = in.Size(k);
|
---|
332 | // sz[k] = in.Size(k)*2-1;
|
---|
333 | }
|
---|
334 | else {
|
---|
335 | for(k=0; k<BASEARRAY_MAXNDIMS; k++) sz[k] = 1;
|
---|
336 | sa_size_t n = in.Size(in.MaxSizeKA());
|
---|
337 | sa_size_t ncs = ( (in[n-1].imag() < -thr) || (in[n-1].imag() > thr) )
|
---|
338 | ? 2*n-1 : 2*n-2;
|
---|
339 | if (ncs < 1) ncs = 1;
|
---|
340 | sz[in.MaxSizeKA()] = ncs;
|
---|
341 | }
|
---|
342 | out.ReSize(in.NbDimensions(), sz);
|
---|
343 | }
|
---|
344 |
|
---|
345 | return(ndg1);
|
---|
346 |
|
---|
347 | }
|
---|
348 |
|
---|
349 |
|
---|
350 | #ifdef __CXX_PRAGMA_TEMPLATES__
|
---|
351 | #pragma define_template FFTArrayChecker<r_4>
|
---|
352 | #pragma define_template FFTArrayChecker<r_8>
|
---|
353 | #endif
|
---|
354 |
|
---|
355 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
|
---|
356 | template class FFTArrayChecker<r_4>;
|
---|
357 | template class FFTArrayChecker<r_8>;
|
---|
358 | #endif
|
---|
359 |
|
---|
360 | } // FIN namespace SOPHYA
|
---|
361 |
|
---|
362 |
|
---|
363 |
|
---|
364 | /**********************************************************************
|
---|
365 |
|
---|
366 | Memo uniquement destine aux programmeurs: (cmv 03/05/04)
|
---|
367 | -- cf programme de tests explicatif: cmvtfft.cc
|
---|
368 |
|
---|
369 | =====================================================================
|
---|
370 | =====================================================================
|
---|
371 | ============== Transformees de Fourier et setNormalize ==============
|
---|
372 | =====================================================================
|
---|
373 | =====================================================================
|
---|
374 |
|
---|
375 | - si setNormalize(true): invTF{TF{S}} = S
|
---|
376 | - si setNormalize(false): invTF{TF{S}} = N * S
|
---|
377 |
|
---|
378 | =====================================================================
|
---|
379 | =====================================================================
|
---|
380 | ============== Transformees de Fourier de signaux REELS =============
|
---|
381 | =====================================================================
|
---|
382 | =====================================================================
|
---|
383 |
|
---|
384 | -------
|
---|
385 | --- FFT d'un signal REEL S ayant un nombre pair d'elements N=2p
|
---|
386 | -------
|
---|
387 | taille de la FFT: Nfft = N/2 + 1 = p + 1
|
---|
388 | abscisses de la fft: | 0 | 1/N | 2/N | ..... | p/N=1/2 |
|
---|
389 | ^continu ^frequence de Nyquist
|
---|
390 |
|
---|
391 | ... Ex: N=6 -> Nfft = 6/3+1 = 4
|
---|
392 |
|
---|
393 | le signal a N elements reels, la fft a Nfft elements complexes
|
---|
394 | cad 2*Nfft reels = 2*(p+1) reels = 2p + 2 reels = N + 2 reels
|
---|
395 | soit 2 reels en trop:
|
---|
396 | ce sont les phases du continu et de la frequence de Nyquist
|
---|
397 |
|
---|
398 | relations:
|
---|
399 | - si setNormalize(true) : fac = N
|
---|
400 | setNormalize(false) : fac = 1/N
|
---|
401 | sum(i=0,N-1){S(i)^2}
|
---|
402 | = fac* [[ 2* sum(j=0,Nfft-1){|TF{S}(j)|^2}
|
---|
403 | - |TF{S}(0)|^2 - |TF{S}(Nfft-1)|^2 ]]
|
---|
404 | (On ne compte pas deux fois le continu et la freq de Nyquist)
|
---|
405 |
|
---|
406 |
|
---|
407 | -------
|
---|
408 | --- FFT d'un signal REEL ayant un nombre impair d'elements N=2p+1
|
---|
409 | -------
|
---|
410 | taille de la FFT: Nfft = N/2 + 1 = p + 1
|
---|
411 | abscisses de la fft: | 0 | 1/N | 2/N | ..... | p/N |
|
---|
412 | ^continu
|
---|
413 | (la frequence de Nyquist n'y est pas)
|
---|
414 |
|
---|
415 | ... Ex: N=7 -> Nfft = 7/3+1 = 4
|
---|
416 |
|
---|
417 | le signal a N elements reels, la fft a Nfft elements complexes
|
---|
418 | cad 2*Nfft reels = 2*(p+1) reels = 2p + 2 reels = N + 1 reels
|
---|
419 | soit 1 reel en trop: c'est la phase du continu
|
---|
420 |
|
---|
421 | relations:
|
---|
422 | - si setNormalize(true) : fac = N
|
---|
423 | setNormalize(false) : fac = 1/N
|
---|
424 | sum(i=0,N-1){S(i)^2}
|
---|
425 | = fac* [[ 2* sum(j=0,Nfft-1){|TF{S}(j)|^2}
|
---|
426 | - |TF{S}(0)|^2 ]]
|
---|
427 | (On ne compte pas deux fois le continu)
|
---|
428 |
|
---|
429 |
|
---|
430 | ------------
|
---|
431 | --- FFT-BACK d'un signal F=TF{S} ayant un nombre d'elements Nfft
|
---|
432 | ------------
|
---|
433 | Sback = invTF{TF{S}}
|
---|
434 |
|
---|
435 | Remarque: Nfft a la meme valeur pour N=2p et N=2p+1
|
---|
436 | donc Nfft conduit a 2 possibilites:
|
---|
437 | { N = 2*(Nfft-1) signal back avec nombre pair d'elements
|
---|
438 | { N = 2*Nfft-1 signal back avec nombre impair d'elements
|
---|
439 |
|
---|
440 | Pour savoir quel est la longueur N du signal TF^(-1){F} on regarde
|
---|
441 | si F(Nfft-1) est reel ou complexe
|
---|
442 | (la frequence de Nyquist d'un signal reel est reelle)
|
---|
443 |
|
---|
444 | - Si F(Nfft-1) reel cad Im{F(Nfft-1)}=0: N = 2*(Nfft-1)
|
---|
445 | - Si F(Nfft-1) complexe cad Im{F(Nfft-1)}#0: N = 2*Nfft-1
|
---|
446 |
|
---|
447 | Si setNormalize(true): invTF{TF{S}} = S
|
---|
448 | setNormalize(false): invTF{TF{S}} = N * S
|
---|
449 |
|
---|
450 | =========================================================================
|
---|
451 | =========================================================================
|
---|
452 | ============== Transformees de Fourier de signaux COMPLEXES =============
|
---|
453 | =========================================================================
|
---|
454 | =========================================================================
|
---|
455 |
|
---|
456 | -------
|
---|
457 | --- FFT d'un signal COMPLEXE S ayant un nombre d'elements N
|
---|
458 | -------
|
---|
459 | taille de la FFT: Nfft = N
|
---|
460 | abscisses de la fft: | 0 | 1/N | 2/N | ..... | (N-1)/N |
|
---|
461 | ^continu
|
---|
462 |
|
---|
463 | Frequence de Nyquist:
|
---|
464 | si N est pair: la frequence de Nyquist est l'absicce d'un des bins
|
---|
465 | abscisses de TF{S}: Nfft = N = 2p
|
---|
466 | | 0 | 1/N | 2/N | ... | (N/2)/N=p/N=0.5 | ... | (N-1)/N |
|
---|
467 | ^frequence de Nyquist
|
---|
468 | si N est impair: la frequence de Nyquist N'est PAS l'absicce d'un des bins
|
---|
469 | abscisses de TF{S}: Nfft = N = 2p+1
|
---|
470 | | 0 | 1/N | 2/N | ... | (N/2)/N=p/N | ((N+1)/2)/N=(p+1)/N | ... | (N-1)/N |
|
---|
471 |
|
---|
472 | ... Ex: N = 2p =6 -> Nfft = 2p = 6
|
---|
473 | abscisses de TF{S}: | 0 | 1/6 | 2/6 | 3/6=0.5 | 4/6 | 5/6 |
|
---|
474 | ... Ex: N = 2p+1 = 7 -> Nfft = 2p+1 = 7
|
---|
475 | abscisses de TF{S}: | 0 | 1/7 | 2/7 | 3/7 | 4/7 | 5/7 | 6/7 |
|
---|
476 |
|
---|
477 | relations:
|
---|
478 | - si setNormalize(true) : fac = N
|
---|
479 | setNormalize(false) : fac = 1/N
|
---|
480 | sum(i=0,N-1){S(i)^2} = fac* [[ sum(j=0,Nfft-1){|TF{S}(j)|^2} ]]
|
---|
481 |
|
---|
482 | ------------
|
---|
483 | --- FFT-BACK d'un signal F=TF{S} ayant un nombre d'elements Nfft
|
---|
484 | ------------
|
---|
485 | taille du signal: N = Nfft
|
---|
486 |
|
---|
487 | Si setNormalize(true): invTF{TF{S}} = S
|
---|
488 | setNormalize(false): invTF{TF{S}} = N * S
|
---|
489 |
|
---|
490 | **********************************************************************/
|
---|