source: Sophya/trunk/SophyaLib/NTools/poly.cc@ 2334

Last change on this file since 2334 was 2334, checked in by ansari, 23 years ago

Compil sur SGI-CC avec LANG:std - Reza 10/03/2003

File size: 18.7 KB
RevLine 
[244]1#include "machdefs.h"
[220]2#include "poly.h"
3#include "linfit.h"
[805]4#include "fioarr.h"
[220]5
[958]6////////////////////////////////////////////////////////////
7////////////////////////////////////////////////////////////
8////////////////////////////////////////////////////////////
9////////////////////////////////////////////////////////////
10////////////////////////////////////////////////////////////
11/*!
12 \class SOPHYA::Poly
13 \ingroup NTools
14 One dimensional polynomials class.
15*/
[220]16
[958]17//! Constructor
18/*! Create a 1D polynomial of degre \b degre */
[220]19Poly::Poly(int degre)
[938]20: TVector<r_8>(degre+1), dirty(0), deg(0)
[220]21{
22 END_CONSTRUCTOR
23}
24
[958]25//! Constructor by copy
[514]26Poly::Poly(Poly const& a)
[938]27:TVector<r_8>(a), dirty(a.dirty), deg(a.deg)
[514]28{
29 END_CONSTRUCTOR
30}
[220]31
[958]32//! update degre
33/*! update degre (that could be changed after operations) */
[220]34void Poly::UpdateDeg() const
35{
[514]36 int i = NElts()-1;
37 while (Element(i) == 0 && i>0) i--;
[220]38
39 (int&) deg = i; // bientot mutable dans ANSI C++
40 (int&) dirty = 0;
41}
42
[958]43//! compute value P(\b x)
[220]44double Poly::operator()(double x) const
45{
46 UpdateDegIfDirty();
[514]47 double res = Element(deg);
[220]48 for (int i=deg-1; i>=0; i--) {
49 res *= x;
[514]50 res += Element(i);
[220]51 }
52 return res;
53}
54
[958]55//! Replace p(x) by its derivate
[220]56void Poly::Derivate()
57{
58 UpdateDegIfDirty();
[514]59 if (deg == 0) { Element(0) = 0; return;}
[220]60 for (int i=1; i<=deg; i++)
[514]61 Element(i-1) = Element(i)*i;
62 Element(deg) = 0;
[220]63 deg--;
64}
65
66
[958]67//! Return the derivate in \b der(x)
[220]68void Poly::Derivate(Poly& der) const
69{
70 UpdateDegIfDirty();
71 der.Realloc(deg);
72// der.Zero(); // on sait que Realloc met a zero le reste.
73 for (int i=1; i<=deg; i++)
[514]74 der.Element(i-1) = Element(i)*i;
[220]75}
76
77
[958]78//! Return the roots of the polynomial into \b roots
79/*!
80 This works until degre 2
81 \return the number of roots
82*/
[938]83int Poly::Roots(TVector<r_8>& roots) const
[220]84{
85 UpdateDegIfDirty();
86
87 switch (deg)
88 {
89 case 0 : // degre 0
90 return 0;
91 case 1 : // degre 1
92 roots.Realloc(1);
93 return Root1(roots(0));
94 case 2 : // degre 2
95 roots.Realloc(2);
96 return Root2(roots(0),roots(1));
97 default :
98 THROW(parmErr);
99 }
100}
101
102
[958]103//! Return root \b r for a degre 1 polynomial
104/*! \return return 1 if succes, 0 if not */
[220]105int Poly::Root1(double& r) const
106{
107 UpdateDegIfDirty();
108 if (deg != 1) THROW(sizeMismatchErr);
109
[514]110 if (Element(1) == 0) return 0;
111 r = -Element(0)/Element(1);
[220]112 return 1;
113}
114
[958]115//! Return roots \b r1 and \b r2 for a degre 2 polynomial
116/*! \return return the number of roots found */
[220]117int Poly::Root2(double& r1, double& r2) const
118{
119 UpdateDegIfDirty();
120 if (deg != 2) THROW(sizeMismatchErr);
121
[514]122 double delta = Element(1)*Element(1) - 4*Element(0)*Element(2);
[220]123 if (delta < 0) return 0;
124 if (delta == 0) {
[514]125 r1 = r2 = -Element(1)/2/Element(0);
[220]126 return 1;
127 }
[514]128 r1 = (-Element(1) - sqrt(delta))/2/Element(0);
129 r2 = (-Element(1) + sqrt(delta))/2/Element(0);
[220]130 return 2;
131}
132
[958]133//! Operator P(x) = a(x)
[220]134Poly& Poly::operator = (Poly const& a)
135{
136 if (this == &a) return *this;
[938]137 TVector<r_8>::operator=(a);
[220]138
139 UpdateDeg();
140 return *this;
141}
142
[958]143//! Perform P(x) += b(x)
[220]144Poly& Poly::operator += (Poly const& b)
145{
146 UpdateDegIfDirty();
147 b.UpdateDegIfDirty();
148
[514]149 if (b.deg > deg) Realloc(b.deg);
[220]150
151 int n = (deg > b.deg) ? deg : b.deg;
[514]152 for (int i=0; i<=n; i++) Element(i) += b.Element(i);
[220]153
154 UpdateDeg();
155 return *this;
156}
157
[958]158//! Perform P(x) -= b(x)
[220]159Poly& Poly::operator -= (Poly const& b)
160{
161 UpdateDegIfDirty();
162 b.UpdateDegIfDirty();
163
[514]164 if (b.deg > deg) Realloc(b.deg);
[220]165
166 int n = (deg > b.deg) ? deg : b.deg;
[514]167 for (int i=0; i<=n; i++) Element(i) -= b.Element(i);
[220]168
169 UpdateDeg();
170 return *this;
171}
172
[958]173//! Perform P(x) *= b(x)
[514]174Poly& Poly::operator *= (double a)
[220]175{
[514]176 UpdateDegIfDirty();
177 for (int i=0; i<=deg; i++) Element(i) *= a;
178 return *this;
[220]179}
180
[958]181//! Return P(x) = *this(x) * b(x)
[514]182Poly Poly::Mult(Poly const& b) const
[220]183{
[514]184Poly c(deg + b.deg);
185 UpdateDegIfDirty();
[220]186 b.UpdateDegIfDirty();
187
[514]188 c.deg = deg + b.deg;
[220]189
190 for (int i=0; i<=c.deg; i++) {
191 c[i] = 0;
[514]192 int kmin = (i <= deg) ? 0 : i - deg;
193 int kmax = (i <= deg) ? i : deg;
[220]194 for (int k=kmin; k<=kmax; k++)
[514]195 c[i] += (*this)[k] * b[i-k];
[220]196 }
197return c;
198}
199
[958]200//! Print on stream \b s
[1584]201void Poly::Print(ostream& s, sa_size_t , bool, bool ) const
[220]202{
203 UpdateDegIfDirty();
204 int nz=0;
205 for (int i = deg; i>=0; i--) {
206 if ((*this)[i] != 0) {
207 nz = 1;
208 if (i < deg && (*this)[i] > 0) s << "+";
209 s << (*this)[i];
210 if (i == 1) s << "*X ";
211 if (i > 1) s << "*X^" << i << " ";
212 }
213 }
214 if (!nz) s << " 0 ";
215}
216
[958]217//! Fit datas by a polynomial
218/*!
219 Fit y(x) by a polynimial P(x)
220 \param x : x datas
221 \param y : y datas
222 \param degre : degre of the polynomial P(x) to be fitted
223 \warning result is stored in the current object
224 \return return chisquare
225*/
[938]226double Poly::Fit(TVector<r_8> const& x, TVector<r_8> const& y, int degre)
[220]227{
228 int n = x.NElts();
[960]229 if (n != (int)y.NElts()) THROW(sizeMismatchErr);
[220]230
231 Realloc(degre);
232
[938]233 TMatrix<r_8> a(degre+1, n);
[220]234
235 for (int c=0; c<n; c++) {
236 double xpow = 1.0;
237 for (int l=0; l<=degre; l++) {
238 a(l,c) = xpow;
239 xpow *= x(c);
240 }
241 }
242
[938]243 LinFitter<r_8> lf;
244 double rc = lf.LinFit(a,y,(TVector<r_8>&)*this);
[220]245 UpdateDeg();
246 return rc;
247}
248
[958]249//! Fit datas with errors by a polynomial
250/*!
251 Fit y(x) by a polynimial P(x)
252 \param x : x datas
253 \param y : y datas
254 \param erry2 : errors squared on y
255 \param degre : degre of the polynomial P(x) to be fitted
256 \warning result is stored in the current object
257 \return \b errcoeff : errors on the coefficients
258 \return return chisquare
259*/
[938]260double Poly::Fit(TVector<r_8> const& x, TVector<r_8> const& y,
261 TVector<r_8> const& erry2, int degre,TVector<r_8>& errCoef)
[220]262{
263 int n = x.NElts();
[960]264 if (n != (int)y.NElts()) THROW(sizeMismatchErr);
265 if (n != (int)erry2.NElts()) THROW(sizeMismatchErr);
[220]266
267 Realloc(degre);
268 errCoef.Realloc(degre+1);
269
[938]270 TMatrix<r_8> a(degre+1, n);
[220]271
272 for (int c=0; c<n; c++) {
273 double xpow = 1.0;
274 for (int l=0; l<=degre; l++) {
275 a(l,c) = xpow;
276 xpow *= x(c);
277 }
278 }
279
[938]280 LinFitter<r_8> lf;
281 double rc = lf.LinFit(a,y,erry2,(TVector<r_8>&)*this,errCoef);
[220]282 UpdateDeg();
283 return rc;
284}
285
286
[958]287//! Return the polynomial at power \b n : ( \f$ P(x)^n \f$ )
[220]288Poly Poly::power(int n) const // a accelerer !!!
289{
290 if (n < 0) THROW(rangeCheckErr);
291 if (n == 0) { Poly r(0); r[0] = 1; return r;}
292 if (n == 1) { return *this; }
293 return *this * power(n-1);
294}
295
[958]296//! Substitue polynomial and return P\f$ (b(x)) \f$
[220]297Poly Poly::operator() (Poly const& b) const
298{
299 Poly c(b.Degre()*Degre());
300 for (int i=0; i<= Degre(); i++)
301 c += (*this)[i] * b.power(i);
302 return c;
303}
304
305
[514]306//////////////////////////////////////////////////////////////////////////
[958]307//! For persistance management
[2334]308#if defined(__SGICC__)
309template <>
310#endif
[514]311void ObjFileIO<Poly>::ReadSelf(PInPersist& is)
312{
313if(dobj==NULL) dobj=new Poly;
314int_4 dg;
315is >> dg;
316dobj->Realloc(dg,true);
[938]317is >> *((TVector<r_8> *) dobj);
[514]318dobj->UpdateDeg();
319}
320
[958]321//! For persistance management
[2334]322#if defined(__SGICC__)
323template <>
324#endif
[514]325void ObjFileIO<Poly>::WriteSelf(POutPersist& os) const
326{
327if(dobj == NULL) return;
328dobj->UpdateDegIfDirty();
329dobj->Realloc(dobj->deg,true);
330os << dobj->deg;
[938]331os << *((TVector<r_8> *) dobj);
[514]332}
333
334//////////////////////////////////////////////////////////////////////////
[958]335/*! \ingroup NTools
336 \fn binomial(int,int)
337 Return the binomial coefficient \f$ {C_n}^p \f$.
338*/
[514]339int binomial(int n, int p)
340{
341 int c = 1;
342 for (int i=n-p+1; i<=n; i++) c *= i;
343 for (int j=2; j<=p; j++) c /= j;
344 return c;
345}
346
[220]347
[958]348////////////////////////////////////////////////////////////
349////////////////////////////////////////////////////////////
350////////////////////////////////////////////////////////////
351////////////////////////////////////////////////////////////
352////////////////////////////////////////////////////////////
353/*!
354 \class SOPHYA::Poly2
355 \ingroup NTools
356 Two dimensional polynomials class.
357*/
[220]358
[958]359//! Constructor of 2D polynomial of degres \b degreX \b degreY
[220]360Poly2::Poly2(int degreX, int degreY)
[938]361:TVector<r_8>((degreX+1)*(degreY+1)), dirty(0),
[220]362 maxDegX(degreX), maxDegY(degreY), degX(0), degY(0), deg(0)
363{
364 END_CONSTRUCTOR
365}
366
[958]367//! Constructor of 2D polynomial \f$ P(x,y) = px(x) * py(y) \f$
[220]368Poly2::Poly2(Poly const& polX, Poly const& polY)
[938]369:TVector<r_8>((polX.Degre()+1)*(polY.Degre()+1)), dirty(0),
[220]370 maxDegX(polX.Degre()), maxDegY(polY.Degre()),
371 degX(polX.Degre()), degY(polY.Degre()), deg(degX+degY)
372{
373 for (int i=0; i<=degX; i++)
374 for (int j=0; j<=degY; j++)
375 Coef(i,j) = polX[i]*polY[j];
376 END_CONSTRUCTOR
377}
378
[958]379//! Constructor by copy
[220]380Poly2::Poly2(Poly2 const& a)
[938]381:TVector<r_8>(a), dirty(a.dirty),
[220]382 maxDegX(a.maxDegX), maxDegY(a.maxDegY),
383 degX(a.degX), degY(a.degY), deg(a.deg)
384{
385 END_CONSTRUCTOR
386}
387
[958]388//! Operator P(x) = a(x)
[220]389Poly2& Poly2::operator = (Poly2 const& a)
390{
391 if (this == &a) return *this;
392 if (maxDegX < a.DegX() || maxDegY < a.DegY())
393 Realloc(a.DegX(), a.DegY());
394
395
396 for (int i=0; i<= maxDegX; i++)
397 for (int j=0; j<= maxDegY; j++)
398 Coef(i,j) = a.Coef(i,j);
399
400 UpdateDeg();
401 return *this;
402}
403
[958]404//! Re-allocate space for 2D polynomial with partial degres \b degreX \b degreY
[220]405void Poly2::Realloc(int degreX, int degreY)
406{
407 UpdateDegIfDirty();
408 Poly2 tmp(*this);
[938]409 TVector<r_8>::Realloc((degreX+1)*(degreY+1));
[805]410 DataBlock().Reset();
[220]411 maxDegX = degreX;
412 maxDegY = degreY;
413
[490]414// Attention - Reza 30/09/99
415// il faut prendre le min en degre du polynome de depart et le nouveau
416 int cdegx = (tmp.degX < degreX) ? tmp.degX : degreX;
417 int cdegy = (tmp.degY < degreY) ? tmp.degY : degreY;
418 for (int i=0; i<= cdegx; i++)
419 for (int j=0; j<= cdegy; j++)
[220]420 Coef(i,j) = tmp.Coef(i,j);
421}
422
423
[958]424//! update degres
425/*! update degres (that could be changed after operations) */
[220]426void Poly2::UpdateDeg() const
427{
428 (int&)degX=(int&)degY=(int&)deg=0;
429
430 for (int dx=0; dx<=maxDegX; dx++)
431 for (int dy=0; dy<=maxDegY; dy++)
432 if (Coef(dx,dy) != 0) {
433 if (dx > degX) (int&)degX = dx;
434 if (dy > degY) (int&)degY = dy;
435 if (dx+dy > deg) (int&)deg = dx+dy;
436 }
437
438 (int&)dirty = 0;
439}
440
[958]441//! Return P(\b x, \b y)
[220]442double Poly2::operator()(double x, double y) const
443{
444 UpdateDegIfDirty();
445 double res = 0;
446 double xPow = 1;
447 for (int dx=0; dx<=maxDegX; dx++) {
448 double yPow = 1;
449 for (int dy=0; dy<=maxDegY; dy++) {
450 res += Coef(dx,dy) * xPow * yPow;
451 yPow *= y;
452 }
453 xPow *= x;
454 }
455 return res;
456}
457
[958]458//! Fit datas by a polynomial
459/*!
460 Fit z(x,y) by a polynimial P(x,y)
461 \param x : x datas
462 \param y : y datas
463 \param z : z datas
464 \param degreX : partial degre on X
465 \param degreY : partial degre on Y
466 \warning result is stored in the current object
467 \return return chisquare
468*/
[938]469double Poly2::Fit(TVector<r_8> const& x, TVector<r_8> const& y,
470 TVector<r_8> const& z, int degreX, int degreY)
[220]471{
472 int n = x.NElts();
[960]473 if (n != (int)y.NElts()) THROW(sizeMismatchErr);
474 if (n != (int)z.NElts()) THROW(sizeMismatchErr);
[220]475
476 Realloc(degreX, degreY);
477
[938]478 TMatrix<r_8> a((degreX+1)*(degreY+1), n);
[220]479
480 for (int c=0; c<n; c++) {
481 double xPow = 1.0;
482 for (int dx = 0; dx <= degreX; dx++) {
483 double yPow = 1.0;
484 for (int dy = 0; dy <= degreY; dy++) {
485 a(IndCoef(dx,dy), c) = xPow*yPow;
486 yPow *= y(c);
487 }
488 xPow *= x(c);
489 }
490 }
491
[938]492 LinFitter<r_8> lf;
493 double rc = lf.LinFit(a,z,(TVector<r_8>&)*this);
[220]494 UpdateDeg();
495 return rc;
496}
497
[958]498//! Fit datas with errors by a polynomial
499/*!
500 Fit z(x,y) by a polynimial P(x,y)
501 \param x : x datas
502 \param y : y datas
503 \param z : z datas
504 \param errz2 : errors squared on z
505 \param degreX : partial degre on X
506 \param degreY : partial degre on Y
507 \warning result is stored in the current object
508 \return \b errcoeff : errors on the coefficients
509 \return return chisquare
510*/
[938]511double Poly2::Fit(TVector<r_8> const& x, TVector<r_8> const& y, TVector<r_8> const& z,
512 TVector<r_8> const& errz2, int degreX, int degreY,
513 TVector<r_8>& errCoef)
[220]514{
515 int n = x.NElts();
[960]516 if (n != (int)y.NElts()) THROW(sizeMismatchErr);
517 if (n != (int)z.NElts()) THROW(sizeMismatchErr);
518 if (n != (int)errz2.NElts()) THROW(sizeMismatchErr);
[220]519
520 Realloc(degreX, degreY);
521 errCoef.Realloc((degreX+1)*(degreY+1));
522
[938]523 TMatrix<r_8> a((degreX+1)*(degreY+1), n);
[220]524
525 for (int c=0; c<n; c++) {
526 double xPow = 1.0;
527 for (int dx = 0; dx <= degreX; dx++) {
528 double yPow = 1.0;
529 for (int dy = 0; dy <= degreY; dy++) {
530 a(IndCoef(dx,dy), c) = xPow*yPow;
531 yPow *= y(c);
532 }
533 xPow *= x(c);
534 }
535 }
536
[938]537 LinFitter<r_8> lf;
538 double rc = lf.LinFit(a,z,errz2,(TVector<r_8>&)*this,errCoef);
[220]539 UpdateDeg();
540 return rc;
541}
542
[958]543//! Fit datas by a polynomial
544/*!
545 Fit z(x,y) by a polynimial P(x,y)
546 \param x : x datas
547 \param y : y datas
548 \param z : z datas
549 \param degre : total degre
550 \warning result is stored in the current object
551 \return return chisquare
552*/
[938]553double Poly2::Fit(TVector<r_8> const& x, TVector<r_8> const& y,
554 TVector<r_8> const& z, int degre)
[220]555{
556 int n = x.NElts();
[960]557 if (n != (int)y.NElts()) THROW(sizeMismatchErr);
558 if (n != (int)z.NElts()) THROW(sizeMismatchErr);
[220]559
560 Realloc(degre, degre); // certains vaudront 0, impose.
561
[938]562 TMatrix<r_8> a((degre+1)*(degre+2)/2, n);
563 TVector<r_8> cf((degre+1)*(degre+2)/2);
[220]564#define C_INDEX(i,j) ((i) + (j)*(2*degre+3-(j))/2)
565
566 for (int c=0; c<n; c++) {
567 double xPow = 1.0;
568 for (int dx = 0; dx <= degre; dx++) {
569 double yPow = 1.0;
570 for (int dy = 0; dy <= degre; dy++) {
571 if (dy+dx <= degre)
572 a(C_INDEX(dx,dy), c) = xPow*yPow;
573 yPow *= y(c);
574 }
575 xPow *= x(c);
576 }
577 }
578
[938]579 LinFitter<r_8> lf;
[540]580 double rc = lf.LinFit(a,z,cf);
[220]581
582 for (int dx = 0; dx <= degre; dx++)
583 for (int dy = 0; dy <= degre; dy++)
584 if (dx+dy <= degre)
585 Coef(dx,dy) = cf(C_INDEX(dx,dy));
586 else
587 Coef(dx,dy) = 0;
588
589 UpdateDeg();
590 return rc;
591}
592
[958]593//! Fit datas with errors by a polynomial
594/*!
595 Fit z(x,y) by a polynimial P(x,y)
596 \param x : x datas
597 \param y : y datas
598 \param z : z datas
599 \param errz2 : errors squared on z
600 \param degre : total degre
601 \warning result is stored in the current object
602 \return \b errcoeff : errors on the coefficients
603 \return return chisquare
604*/
[938]605double Poly2::Fit(TVector<r_8> const& x, TVector<r_8> const& y,
606 TVector<r_8> const& z,TVector<r_8> const& errz2,
607 int degre, TVector<r_8>& errCoef)
[220]608{
609 int n = x.NElts();
[960]610 if (n != (int)y.NElts()) THROW(sizeMismatchErr);
611 if (n != (int)z.NElts()) THROW(sizeMismatchErr);
612 if (n != (int)errz2.NElts()) THROW(sizeMismatchErr);
[220]613
614 Realloc(degre, degre);
615 errCoef.Realloc((degre+1)*(degre+1));
616#define C_INDEX(i,j) ((i) + (j)*(2*degre+3-(j))/2)
617
[938]618 TMatrix<r_8> a((degre+1)*(degre+2)/2, n);
619 TVector<r_8> cf((degre+1)*(degre+2)/2);
620 TVector<r_8> ecf((degre+1)*(degre+2)/2);
[220]621
622 for (int c=0; c<n; c++) {
623 double xPow = 1.0;
624 for (int dx = 0; dx <= degre; dx++) {
625 double yPow = 1.0;
626 for (int dy = 0; dy <= degre; dy++) {
627 if (dy+dx <= degre)
628 a(C_INDEX(dx,dy), c) = xPow*yPow;
629 yPow *= y(c);
630 }
631 xPow *= x(c);
632 }
633 }
634
[938]635 LinFitter<r_8> lf;
[540]636 double rc = lf.LinFit(a,z,errz2,cf,ecf);
[220]637
638
639 for (int dx = 0; dx <= degre; dx++)
640 for (int dy = 0; dy <= degre; dy++)
641 if (dx+dy <= degre) {
642 Coef(dx,dy) = cf(C_INDEX(dx,dy));
643 errCoef(IndCoef(dx,dy)) = ecf(C_INDEX(dx,dy));
644 } else {
645 Coef(dx,dy) = 0;
646 errCoef(IndCoef(dx,dy)) = 0;
647 }
648 UpdateDeg();
649 return rc;
650}
651
[958]652//! Print on stream \b s
[1584]653void Poly2::Print(ostream& s, sa_size_t , bool, bool ) const
[220]654{
655 UpdateDegIfDirty();
656 int nz=0;
657 int notfirst=0;
658 for (int dx = degX; dx>=0; dx--)
659 for (int dy= degY; dy>=0; dy--) {
660 double c = Coef(dx,dy);
661 if (c != 0) {
662 nz = 1;
663 if (notfirst && c > 0) {
664 s << "+";
665 notfirst = 1;
666 }
667 s << c << " ";
668 if (dx == 1) s << "* X ";
669 if (dx > 1) s << "* X^" << dx << " ";
670 if (dy == 1) s << "* Y ";
671 if (dy > 1) s << "* Y^" << dy << " ";
672 s << endl;
673 }
674 }
675 if (!nz) s << " 0 ";
676}
677
[958]678//! Operator: return P(x) = *this(x) + b(x)
[220]679Poly2& Poly2::operator += (Poly2 const& b)
680{
681 if (maxDegX < b.DegX() || maxDegY < b.DegY())
682 Realloc(b.DegX(),b.DegY());
683
684 UpdateDegIfDirty();
685
686 int mx = b.DegX();
687 int my = b.DegY();
688 for (int i=0; i<= mx; i++)
689 for (int j=0; j<= my; j++)
690 Coef(i,j) += b.Coef(i,j);
691
692 UpdateDeg();
693 return *this;
694}
695
[958]696//! Operator: return P(x) = *this(x) - b(x)
[220]697Poly2& Poly2::operator -= (Poly2 const& b)
698{
699 if (maxDegX < b.DegX() || maxDegY < b.DegY())
700 Realloc(b.DegX(),b.DegY());
701
702 UpdateDegIfDirty();
703
704 int mx = b.DegX();
705 int my = b.DegY();
706 for (int i=0; i<= mx; i++)
707 for (int j=0; j<= my; j++)
708 Coef(i,j) -= b.Coef(i,j);
709
710 UpdateDeg();
711 return *this;
712}
713
[958]714//! Operator: return P(x) = *this(x) * a
[220]715Poly2& Poly2::operator *= (double a)
716{
[960]717 for (uint_4 i=0; i<NElts(); i++) Element(i) *= a;
[220]718 return *this;
719}
720
[958]721//! Operator: return P(x) = *this(x) * b(x)
[514]722Poly2 Poly2::Mult(Poly2 const& b) const
[220]723{
[514]724 Poly2 c(DegX() + b.DegX(), DegY() + b.DegY());
725 UpdateDegIfDirty();
[220]726 b.UpdateDegIfDirty();
727
[514]728 for (int i=0; i<=DegX(); i++)
729 for (int j=0; j<=DegY(); j++)
[220]730 for (int k=0; k<=b.DegX(); k++)
731 for (int l=0; l<=b.DegY(); l++)
[514]732 c.Coef(i+k,j+l) += Coef(i,j)*b.Coef(k,l);
[220]733 return c;
734}
735
[958]736//! Return \f$ P(x,y)^n \f$
[220]737Poly2 Poly2::power(int n) const
738{
739 if (n < 0) THROW(rangeCheckErr);
740 if (n == 0) { Poly2 r(0); r.Coef(0,0) = 1; return r;}
741 if (n == 1) { return *this; }
742 return *this * power(n-1);
743}
744
745
[958]746//! substitute and return \f$ P(a(x),b(x)) \f$
[220]747Poly2 Poly2::operator() (Poly const& a, Poly const& b) const
748{
749 UpdateDegIfDirty();
750 Poly2 c(maxDegX*a.Degre(), maxDegY*b.Degre());
751
752 for (int i=0; i<= degX; i++)
753 for (int j=0; j<= degY; j++) {
754 Poly2 d(a.power(i), b.power(j));
755 c += Coef(i,j) * d;
756 }
757
758 return c;
759}
760
[958]761//! substitute and return 2D polynomial \f$ P(a(x,y)) \f$, P is a 1D polynomial
[220]762Poly2 Poly::operator() (Poly2 const& a) const
763{
764 Poly2 c(a.MaxDegX()*Degre(), a.MaxDegY()*Degre());
765
766 for (int i=0; i<= Degre(); i++)
767 c += (*this)[i] * a.power(i);
768 return c;
769}
770
[514]771//////////////////////////////////////////////////////////////////////////
[958]772//! For persistance management
[2334]773#if defined(__SGICC__)
774template <>
775#endif
[514]776void ObjFileIO<Poly2>::ReadSelf(PInPersist& is)
777{
778if(dobj==NULL) dobj=new Poly2;
779int_4 dgx, dgy;
780is >> dgx >> dgy;
781dobj->Realloc(dgx,dgy);
[938]782is >> *((TVector<r_8> *) dobj);
[514]783dobj->UpdateDeg();
784}
[220]785
[958]786//! For persistance management
[2334]787#if defined(__SGICC__)
788template <>
789#endif
[514]790void ObjFileIO<Poly2>::WriteSelf(POutPersist& os) const
791{
792if(dobj == NULL) return;
793os << dobj->maxDegX << dobj->maxDegY;
[938]794os << *((TVector<r_8> *) dobj);
[514]795}
796
797
798//////////////////////////////////////////////////////////////////////////
799#ifdef __CXX_PRAGMA_TEMPLATES__
800#pragma define_template ObjFileIO<Poly>
801#pragma define_template ObjFileIO<Poly2>
802#endif
803
804#if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
805template class ObjFileIO<Poly>;
806template class ObjFileIO<Poly2>;
807#endif
Note: See TracBrowser for help on using the repository browser.