| 1 | #include "sopnamsp.h"
|
|---|
| 2 | #include "machdefs.h"
|
|---|
| 3 | #include "poly.h"
|
|---|
| 4 | #include "linfit.h"
|
|---|
| 5 | #include "fioarr.h"
|
|---|
| 6 |
|
|---|
| 7 | ////////////////////////////////////////////////////////////
|
|---|
| 8 | ////////////////////////////////////////////////////////////
|
|---|
| 9 | ////////////////////////////////////////////////////////////
|
|---|
| 10 | ////////////////////////////////////////////////////////////
|
|---|
| 11 | ////////////////////////////////////////////////////////////
|
|---|
| 12 | /*!
|
|---|
| 13 | \class SOPHYA::Poly
|
|---|
| 14 | \ingroup NTools
|
|---|
| 15 | One dimensional polynomials class.
|
|---|
| 16 | */
|
|---|
| 17 |
|
|---|
| 18 | //! Constructor
|
|---|
| 19 | /*! Create a 1D polynomial of degre \b degre */
|
|---|
| 20 | Poly::Poly(int degre)
|
|---|
| 21 | : TVector<r_8>(degre+1), dirty(0), deg(0)
|
|---|
| 22 | {
|
|---|
| 23 | }
|
|---|
| 24 |
|
|---|
| 25 | //! Constructor by copy
|
|---|
| 26 | Poly::Poly(Poly const& a)
|
|---|
| 27 | :TVector<r_8>(a), dirty(a.dirty), deg(a.deg)
|
|---|
| 28 | {
|
|---|
| 29 | }
|
|---|
| 30 |
|
|---|
| 31 | //! update degre
|
|---|
| 32 | /*! update degre (that could be changed after operations) */
|
|---|
| 33 | void Poly::UpdateDeg() const
|
|---|
| 34 | {
|
|---|
| 35 | int i = NElts()-1;
|
|---|
| 36 | while (Element(i) == 0 && i>0) i--;
|
|---|
| 37 |
|
|---|
| 38 | (int&) deg = i; // bientot mutable dans ANSI C++
|
|---|
| 39 | (int&) dirty = 0;
|
|---|
| 40 | }
|
|---|
| 41 |
|
|---|
| 42 | //! compute value P(\b x)
|
|---|
| 43 | double Poly::operator()(double x) const
|
|---|
| 44 | {
|
|---|
| 45 | UpdateDegIfDirty();
|
|---|
| 46 | double res = Element(deg);
|
|---|
| 47 | for (int i=deg-1; i>=0; i--) {
|
|---|
| 48 | res *= x;
|
|---|
| 49 | res += Element(i);
|
|---|
| 50 | }
|
|---|
| 51 | return res;
|
|---|
| 52 | }
|
|---|
| 53 |
|
|---|
| 54 | //! Replace p(x) by its derivate
|
|---|
| 55 | void Poly::Derivate()
|
|---|
| 56 | {
|
|---|
| 57 | UpdateDegIfDirty();
|
|---|
| 58 | if (deg == 0) { Element(0) = 0; return;}
|
|---|
| 59 | for (int i=1; i<=deg; i++)
|
|---|
| 60 | Element(i-1) = Element(i)*i;
|
|---|
| 61 | Element(deg) = 0;
|
|---|
| 62 | deg--;
|
|---|
| 63 | }
|
|---|
| 64 |
|
|---|
| 65 |
|
|---|
| 66 | //! Return the derivate in \b der(x)
|
|---|
| 67 | void Poly::Derivate(Poly& der) const
|
|---|
| 68 | {
|
|---|
| 69 | UpdateDegIfDirty();
|
|---|
| 70 | der.Realloc(deg);
|
|---|
| 71 | // der.Zero(); // on sait que Realloc met a zero le reste.
|
|---|
| 72 | for (int i=1; i<=deg; i++)
|
|---|
| 73 | der.Element(i-1) = Element(i)*i;
|
|---|
| 74 | }
|
|---|
| 75 |
|
|---|
| 76 |
|
|---|
| 77 | //! Return the roots of the polynomial into \b roots
|
|---|
| 78 | /*!
|
|---|
| 79 | This works until degre 2
|
|---|
| 80 | \return the number of roots
|
|---|
| 81 | */
|
|---|
| 82 | int Poly::Roots(TVector<r_8>& roots) const
|
|---|
| 83 | {
|
|---|
| 84 | UpdateDegIfDirty();
|
|---|
| 85 |
|
|---|
| 86 | switch (deg)
|
|---|
| 87 | {
|
|---|
| 88 | case 0 : // degre 0
|
|---|
| 89 | return 0;
|
|---|
| 90 | case 1 : // degre 1
|
|---|
| 91 | roots.Realloc(1);
|
|---|
| 92 | return Root1(roots(0));
|
|---|
| 93 | case 2 : // degre 2
|
|---|
| 94 | roots.Realloc(2);
|
|---|
| 95 | return Root2(roots(0),roots(1));
|
|---|
| 96 | default :
|
|---|
| 97 | throw ParmError("Poly::Roots()") ;
|
|---|
| 98 | }
|
|---|
| 99 | }
|
|---|
| 100 |
|
|---|
| 101 |
|
|---|
| 102 | //! Return root \b r for a degre 1 polynomial
|
|---|
| 103 | /*! \return return 1 if succes, 0 if not */
|
|---|
| 104 | int Poly::Root1(double& r) const
|
|---|
| 105 | {
|
|---|
| 106 | UpdateDegIfDirty();
|
|---|
| 107 | if (deg != 1) ParmError("Poly::Root1() deg!= 1") ;
|
|---|
| 108 |
|
|---|
| 109 | if (Element(1) == 0) return 0;
|
|---|
| 110 | r = -Element(0)/Element(1);
|
|---|
| 111 | return 1;
|
|---|
| 112 | }
|
|---|
| 113 |
|
|---|
| 114 | //! Return roots \b r1 and \b r2 for a degre 2 polynomial
|
|---|
| 115 | /*! \return return the number of roots found */
|
|---|
| 116 | int Poly::Root2(double& r1, double& r2) const
|
|---|
| 117 | {
|
|---|
| 118 | UpdateDegIfDirty();
|
|---|
| 119 | if (deg != 2) throw SzMismatchError("Poly::Root2() deg != 2") ;
|
|---|
| 120 |
|
|---|
| 121 | double delta = Element(1)*Element(1) - 4*Element(0)*Element(2);
|
|---|
| 122 | if (delta < 0) return 0;
|
|---|
| 123 | if (delta == 0) {
|
|---|
| 124 | r1 = r2 = -Element(1)/2/Element(0);
|
|---|
| 125 | return 1;
|
|---|
| 126 | }
|
|---|
| 127 | r1 = (-Element(1) - sqrt(delta))/2/Element(0);
|
|---|
| 128 | r2 = (-Element(1) + sqrt(delta))/2/Element(0);
|
|---|
| 129 | return 2;
|
|---|
| 130 | }
|
|---|
| 131 |
|
|---|
| 132 | //! Operator P(x) = a(x)
|
|---|
| 133 | Poly& Poly::operator = (Poly const& a)
|
|---|
| 134 | {
|
|---|
| 135 | if (this == &a) return *this;
|
|---|
| 136 | TVector<r_8>::operator=(a);
|
|---|
| 137 |
|
|---|
| 138 | UpdateDeg();
|
|---|
| 139 | return *this;
|
|---|
| 140 | }
|
|---|
| 141 |
|
|---|
| 142 | //! Perform P(x) += b(x)
|
|---|
| 143 | Poly& Poly::operator += (Poly const& b)
|
|---|
| 144 | {
|
|---|
| 145 | UpdateDegIfDirty();
|
|---|
| 146 | b.UpdateDegIfDirty();
|
|---|
| 147 |
|
|---|
| 148 | if (b.deg > deg) Realloc(b.deg);
|
|---|
| 149 |
|
|---|
| 150 | int n = (deg > b.deg) ? deg : b.deg;
|
|---|
| 151 | for (int i=0; i<=n; i++) Element(i) += b.Element(i);
|
|---|
| 152 |
|
|---|
| 153 | UpdateDeg();
|
|---|
| 154 | return *this;
|
|---|
| 155 | }
|
|---|
| 156 |
|
|---|
| 157 | //! Perform P(x) -= b(x)
|
|---|
| 158 | Poly& Poly::operator -= (Poly const& b)
|
|---|
| 159 | {
|
|---|
| 160 | UpdateDegIfDirty();
|
|---|
| 161 | b.UpdateDegIfDirty();
|
|---|
| 162 |
|
|---|
| 163 | if (b.deg > deg) Realloc(b.deg);
|
|---|
| 164 |
|
|---|
| 165 | int n = (deg > b.deg) ? deg : b.deg;
|
|---|
| 166 | for (int i=0; i<=n; i++) Element(i) -= b.Element(i);
|
|---|
| 167 |
|
|---|
| 168 | UpdateDeg();
|
|---|
| 169 | return *this;
|
|---|
| 170 | }
|
|---|
| 171 |
|
|---|
| 172 | //! Perform P(x) *= b(x)
|
|---|
| 173 | Poly& Poly::operator *= (double a)
|
|---|
| 174 | {
|
|---|
| 175 | UpdateDegIfDirty();
|
|---|
| 176 | for (int i=0; i<=deg; i++) Element(i) *= a;
|
|---|
| 177 | return *this;
|
|---|
| 178 | }
|
|---|
| 179 |
|
|---|
| 180 | //! Return P(x) = *this(x) * b(x)
|
|---|
| 181 | Poly Poly::Mult(Poly const& b) const
|
|---|
| 182 | {
|
|---|
| 183 | Poly c(deg + b.deg);
|
|---|
| 184 | UpdateDegIfDirty();
|
|---|
| 185 | b.UpdateDegIfDirty();
|
|---|
| 186 |
|
|---|
| 187 | c.deg = deg + b.deg;
|
|---|
| 188 |
|
|---|
| 189 | for (int i=0; i<=c.deg; i++) {
|
|---|
| 190 | c[i] = 0;
|
|---|
| 191 | int kmin = (i <= deg) ? 0 : i - deg;
|
|---|
| 192 | int kmax = (i <= deg) ? i : deg;
|
|---|
| 193 | for (int k=kmin; k<=kmax; k++)
|
|---|
| 194 | c[i] += (*this)[k] * b[i-k];
|
|---|
| 195 | }
|
|---|
| 196 | return c;
|
|---|
| 197 | }
|
|---|
| 198 |
|
|---|
| 199 | //! Print on stream \b s
|
|---|
| 200 | void Poly::Print(ostream& s, sa_size_t , bool, bool ) const
|
|---|
| 201 | {
|
|---|
| 202 | UpdateDegIfDirty();
|
|---|
| 203 | int nz=0;
|
|---|
| 204 | for (int i = deg; i>=0; i--) {
|
|---|
| 205 | if ((*this)[i] != 0) {
|
|---|
| 206 | nz = 1;
|
|---|
| 207 | if (i < deg && (*this)[i] > 0) s << "+";
|
|---|
| 208 | s << (*this)[i];
|
|---|
| 209 | if (i == 1) s << "*X ";
|
|---|
| 210 | if (i > 1) s << "*X^" << i << " ";
|
|---|
| 211 | }
|
|---|
| 212 | }
|
|---|
| 213 | if (!nz) s << " 0 ";
|
|---|
| 214 | }
|
|---|
| 215 |
|
|---|
| 216 | //! Fit datas by a polynomial
|
|---|
| 217 | /*!
|
|---|
| 218 | Fit y(x) by a polynimial P(x)
|
|---|
| 219 | \param x : x datas
|
|---|
| 220 | \param y : y datas
|
|---|
| 221 | \param degre : degre of the polynomial P(x) to be fitted
|
|---|
| 222 | \warning result is stored in the current object
|
|---|
| 223 | \return return chisquare
|
|---|
| 224 | */
|
|---|
| 225 | double Poly::Fit(TVector<r_8> const& x, TVector<r_8> const& y, int degre)
|
|---|
| 226 | {
|
|---|
| 227 | int n = x.NElts();
|
|---|
| 228 | if (n != (int)y.NElts()) throw SzMismatchError("Poly::Fit() ");
|
|---|
| 229 |
|
|---|
| 230 | Realloc(degre);
|
|---|
| 231 |
|
|---|
| 232 | TMatrix<r_8> a(degre+1, n);
|
|---|
| 233 |
|
|---|
| 234 | for (int c=0; c<n; c++) {
|
|---|
| 235 | double xpow = 1.0;
|
|---|
| 236 | for (int l=0; l<=degre; l++) {
|
|---|
| 237 | a(l,c) = xpow;
|
|---|
| 238 | xpow *= x(c);
|
|---|
| 239 | }
|
|---|
| 240 | }
|
|---|
| 241 |
|
|---|
| 242 | LinFitter<r_8> lf;
|
|---|
| 243 | double rc = lf.LinFit(a,y,(TVector<r_8>&)*this);
|
|---|
| 244 | UpdateDeg();
|
|---|
| 245 | return rc;
|
|---|
| 246 | }
|
|---|
| 247 |
|
|---|
| 248 | //! Fit datas with errors by a polynomial
|
|---|
| 249 | /*!
|
|---|
| 250 | Fit y(x) by a polynimial P(x)
|
|---|
| 251 | \param x : x datas
|
|---|
| 252 | \param y : y datas
|
|---|
| 253 | \param erry2 : errors squared on y
|
|---|
| 254 | \param degre : degre of the polynomial P(x) to be fitted
|
|---|
| 255 | \warning result is stored in the current object
|
|---|
| 256 | \return \b errcoeff : errors on the coefficients
|
|---|
| 257 | \return return chisquare
|
|---|
| 258 | */
|
|---|
| 259 | double Poly::Fit(TVector<r_8> const& x, TVector<r_8> const& y,
|
|---|
| 260 | TVector<r_8> const& erry2, int degre,TVector<r_8>& errCoef)
|
|---|
| 261 | {
|
|---|
| 262 | int n = x.NElts();
|
|---|
| 263 | if (n != (int)y.NElts()) throw SzMismatchError("Poly::Fit() ");
|
|---|
| 264 | if (n != (int)erry2.NElts()) throw SzMismatchError("Poly::Fit() ") ;
|
|---|
| 265 |
|
|---|
| 266 | Realloc(degre);
|
|---|
| 267 | errCoef.Realloc(degre+1);
|
|---|
| 268 |
|
|---|
| 269 | TMatrix<r_8> a(degre+1, n);
|
|---|
| 270 |
|
|---|
| 271 | for (int c=0; c<n; c++) {
|
|---|
| 272 | double xpow = 1.0;
|
|---|
| 273 | for (int l=0; l<=degre; l++) {
|
|---|
| 274 | a(l,c) = xpow;
|
|---|
| 275 | xpow *= x(c);
|
|---|
| 276 | }
|
|---|
| 277 | }
|
|---|
| 278 |
|
|---|
| 279 | LinFitter<r_8> lf;
|
|---|
| 280 | double rc = lf.LinFit(a,y,erry2,(TVector<r_8>&)*this,errCoef);
|
|---|
| 281 | UpdateDeg();
|
|---|
| 282 | return rc;
|
|---|
| 283 | }
|
|---|
| 284 |
|
|---|
| 285 |
|
|---|
| 286 | //! Return the polynomial at power \b n : ( \f$ P(x)^n \f$ )
|
|---|
| 287 | Poly Poly::power(int n) const // a accelerer !!!
|
|---|
| 288 | {
|
|---|
| 289 | if (n < 0) throw RangeCheckError("Poly::power() n<0 ");
|
|---|
| 290 | if (n == 0) { Poly r(0); r[0] = 1; return r;}
|
|---|
| 291 | if (n == 1) { return *this; }
|
|---|
| 292 | return *this * power(n-1);
|
|---|
| 293 | }
|
|---|
| 294 |
|
|---|
| 295 | //! Substitue polynomial and return P\f$ (b(x)) \f$
|
|---|
| 296 | Poly Poly::operator() (Poly const& b) const
|
|---|
| 297 | {
|
|---|
| 298 | Poly c(b.Degre()*Degre());
|
|---|
| 299 | for (int i=0; i<= Degre(); i++)
|
|---|
| 300 | c += (*this)[i] * b.power(i);
|
|---|
| 301 | return c;
|
|---|
| 302 | }
|
|---|
| 303 |
|
|---|
| 304 |
|
|---|
| 305 | //////////////////////////////////////////////////////////////////////////
|
|---|
| 306 | //! For persistance management
|
|---|
| 307 | DECL_TEMP_SPEC /* equivalent a template <> , pour SGI-CC en particulier */
|
|---|
| 308 | void ObjFileIO<Poly>::ReadSelf(PInPersist& is)
|
|---|
| 309 | {
|
|---|
| 310 | if(dobj==NULL) dobj=new Poly;
|
|---|
| 311 | int_4 dg;
|
|---|
| 312 | is >> dg;
|
|---|
| 313 | dobj->Realloc(dg,true);
|
|---|
| 314 | is >> *((TVector<r_8> *) dobj);
|
|---|
| 315 | dobj->UpdateDeg();
|
|---|
| 316 | }
|
|---|
| 317 |
|
|---|
| 318 | //! For persistance management
|
|---|
| 319 | DECL_TEMP_SPEC /* equivalent a template <> , pour SGI-CC en particulier */
|
|---|
| 320 | void ObjFileIO<Poly>::WriteSelf(POutPersist& os) const
|
|---|
| 321 | {
|
|---|
| 322 | if(dobj == NULL) return;
|
|---|
| 323 | dobj->UpdateDegIfDirty();
|
|---|
| 324 | dobj->Realloc(dobj->deg,true);
|
|---|
| 325 | os << dobj->deg;
|
|---|
| 326 | os << *((TVector<r_8> *) dobj);
|
|---|
| 327 | }
|
|---|
| 328 |
|
|---|
| 329 | //////////////////////////////////////////////////////////////////////////
|
|---|
| 330 | /*! \ingroup NTools
|
|---|
| 331 | \fn binomial(int,int)
|
|---|
| 332 | Return the binomial coefficient \f$ {C_n}^p \f$.
|
|---|
| 333 | */
|
|---|
| 334 | int binomial(int n, int p)
|
|---|
| 335 | {
|
|---|
| 336 | int c = 1;
|
|---|
| 337 | for (int i=n-p+1; i<=n; i++) c *= i;
|
|---|
| 338 | for (int j=2; j<=p; j++) c /= j;
|
|---|
| 339 | return c;
|
|---|
| 340 | }
|
|---|
| 341 |
|
|---|
| 342 |
|
|---|
| 343 | ////////////////////////////////////////////////////////////
|
|---|
| 344 | ////////////////////////////////////////////////////////////
|
|---|
| 345 | ////////////////////////////////////////////////////////////
|
|---|
| 346 | ////////////////////////////////////////////////////////////
|
|---|
| 347 | ////////////////////////////////////////////////////////////
|
|---|
| 348 | /*!
|
|---|
| 349 | \class SOPHYA::Poly2
|
|---|
| 350 | \ingroup NTools
|
|---|
| 351 | Two dimensional polynomials class.
|
|---|
| 352 | */
|
|---|
| 353 |
|
|---|
| 354 | //! Constructor of 2D polynomial of degres \b degreX \b degreY
|
|---|
| 355 | Poly2::Poly2(int degreX, int degreY)
|
|---|
| 356 | :TVector<r_8>((degreX+1)*(degreY+1)), dirty(0),
|
|---|
| 357 | maxDegX(degreX), maxDegY(degreY), degX(0), degY(0), deg(0)
|
|---|
| 358 | {
|
|---|
| 359 | }
|
|---|
| 360 |
|
|---|
| 361 | //! Constructor of 2D polynomial \f$ P(x,y) = px(x) * py(y) \f$
|
|---|
| 362 | Poly2::Poly2(Poly const& polX, Poly const& polY)
|
|---|
| 363 | :TVector<r_8>((polX.Degre()+1)*(polY.Degre()+1)), dirty(0),
|
|---|
| 364 | maxDegX(polX.Degre()), maxDegY(polY.Degre()),
|
|---|
| 365 | degX(polX.Degre()), degY(polY.Degre()), deg(degX+degY)
|
|---|
| 366 | {
|
|---|
| 367 | for (int i=0; i<=degX; i++)
|
|---|
| 368 | for (int j=0; j<=degY; j++)
|
|---|
| 369 | Coef(i,j) = polX[i]*polY[j];
|
|---|
| 370 | }
|
|---|
| 371 |
|
|---|
| 372 | //! Constructor by copy
|
|---|
| 373 | Poly2::Poly2(Poly2 const& a)
|
|---|
| 374 | :TVector<r_8>(a), dirty(a.dirty),
|
|---|
| 375 | maxDegX(a.maxDegX), maxDegY(a.maxDegY),
|
|---|
| 376 | degX(a.degX), degY(a.degY), deg(a.deg)
|
|---|
| 377 | {
|
|---|
| 378 | }
|
|---|
| 379 |
|
|---|
| 380 | //! Operator P(x) = a(x)
|
|---|
| 381 | Poly2& Poly2::operator = (Poly2 const& a)
|
|---|
| 382 | {
|
|---|
| 383 | if (this == &a) return *this;
|
|---|
| 384 | if (maxDegX < a.DegX() || maxDegY < a.DegY())
|
|---|
| 385 | Realloc(a.DegX(), a.DegY());
|
|---|
| 386 |
|
|---|
| 387 |
|
|---|
| 388 | for (int i=0; i<= maxDegX; i++)
|
|---|
| 389 | for (int j=0; j<= maxDegY; j++)
|
|---|
| 390 | Coef(i,j) = a.Coef(i,j);
|
|---|
| 391 |
|
|---|
| 392 | UpdateDeg();
|
|---|
| 393 | return *this;
|
|---|
| 394 | }
|
|---|
| 395 |
|
|---|
| 396 | //! Re-allocate space for 2D polynomial with partial degres \b degreX \b degreY
|
|---|
| 397 | void Poly2::Realloc(int degreX, int degreY)
|
|---|
| 398 | {
|
|---|
| 399 | UpdateDegIfDirty();
|
|---|
| 400 | Poly2 tmp(*this);
|
|---|
| 401 | TVector<r_8>::Realloc((degreX+1)*(degreY+1));
|
|---|
| 402 | DataBlock().Reset();
|
|---|
| 403 | maxDegX = degreX;
|
|---|
| 404 | maxDegY = degreY;
|
|---|
| 405 |
|
|---|
| 406 | // Attention - Reza 30/09/99
|
|---|
| 407 | // il faut prendre le min en degre du polynome de depart et le nouveau
|
|---|
| 408 | int cdegx = (tmp.degX < degreX) ? tmp.degX : degreX;
|
|---|
| 409 | int cdegy = (tmp.degY < degreY) ? tmp.degY : degreY;
|
|---|
| 410 | for (int i=0; i<= cdegx; i++)
|
|---|
| 411 | for (int j=0; j<= cdegy; j++)
|
|---|
| 412 | Coef(i,j) = tmp.Coef(i,j);
|
|---|
| 413 | }
|
|---|
| 414 |
|
|---|
| 415 |
|
|---|
| 416 | //! update degres
|
|---|
| 417 | /*! update degres (that could be changed after operations) */
|
|---|
| 418 | void Poly2::UpdateDeg() const
|
|---|
| 419 | {
|
|---|
| 420 | (int&)degX=(int&)degY=(int&)deg=0;
|
|---|
| 421 |
|
|---|
| 422 | for (int dx=0; dx<=maxDegX; dx++)
|
|---|
| 423 | for (int dy=0; dy<=maxDegY; dy++)
|
|---|
| 424 | if (Coef(dx,dy) != 0) {
|
|---|
| 425 | if (dx > degX) (int&)degX = dx;
|
|---|
| 426 | if (dy > degY) (int&)degY = dy;
|
|---|
| 427 | if (dx+dy > deg) (int&)deg = dx+dy;
|
|---|
| 428 | }
|
|---|
| 429 |
|
|---|
| 430 | (int&)dirty = 0;
|
|---|
| 431 | }
|
|---|
| 432 |
|
|---|
| 433 | //! Return P(\b x, \b y)
|
|---|
| 434 | double Poly2::operator()(double x, double y) const
|
|---|
| 435 | {
|
|---|
| 436 | UpdateDegIfDirty();
|
|---|
| 437 | double res = 0;
|
|---|
| 438 | double xPow = 1;
|
|---|
| 439 | for (int dx=0; dx<=maxDegX; dx++) {
|
|---|
| 440 | double yPow = 1;
|
|---|
| 441 | for (int dy=0; dy<=maxDegY; dy++) {
|
|---|
| 442 | res += Coef(dx,dy) * xPow * yPow;
|
|---|
| 443 | yPow *= y;
|
|---|
| 444 | }
|
|---|
| 445 | xPow *= x;
|
|---|
| 446 | }
|
|---|
| 447 | return res;
|
|---|
| 448 | }
|
|---|
| 449 |
|
|---|
| 450 | //! Fit datas by a polynomial
|
|---|
| 451 | /*!
|
|---|
| 452 | Fit z(x,y) by a polynimial P(x,y)
|
|---|
| 453 | \param x : x datas
|
|---|
| 454 | \param y : y datas
|
|---|
| 455 | \param z : z datas
|
|---|
| 456 | \param degreX : partial degre on X
|
|---|
| 457 | \param degreY : partial degre on Y
|
|---|
| 458 | \warning result is stored in the current object
|
|---|
| 459 | \return return chisquare
|
|---|
| 460 | */
|
|---|
| 461 | double Poly2::Fit(TVector<r_8> const& x, TVector<r_8> const& y,
|
|---|
| 462 | TVector<r_8> const& z, int degreX, int degreY)
|
|---|
| 463 | {
|
|---|
| 464 | int n = x.NElts();
|
|---|
| 465 | if (n != (int)y.NElts()) throw SzMismatchError("Poly2::Fit() - 1");
|
|---|
| 466 | if (n != (int)z.NElts()) throw SzMismatchError("Poly2::Fit() - 2");
|
|---|
| 467 |
|
|---|
| 468 | Realloc(degreX, degreY);
|
|---|
| 469 |
|
|---|
| 470 | TMatrix<r_8> a((degreX+1)*(degreY+1), n);
|
|---|
| 471 |
|
|---|
| 472 | for (int c=0; c<n; c++) {
|
|---|
| 473 | double xPow = 1.0;
|
|---|
| 474 | for (int dx = 0; dx <= degreX; dx++) {
|
|---|
| 475 | double yPow = 1.0;
|
|---|
| 476 | for (int dy = 0; dy <= degreY; dy++) {
|
|---|
| 477 | a(IndCoef(dx,dy), c) = xPow*yPow;
|
|---|
| 478 | yPow *= y(c);
|
|---|
| 479 | }
|
|---|
| 480 | xPow *= x(c);
|
|---|
| 481 | }
|
|---|
| 482 | }
|
|---|
| 483 |
|
|---|
| 484 | LinFitter<r_8> lf;
|
|---|
| 485 | double rc = lf.LinFit(a,z,(TVector<r_8>&)*this);
|
|---|
| 486 | UpdateDeg();
|
|---|
| 487 | return rc;
|
|---|
| 488 | }
|
|---|
| 489 |
|
|---|
| 490 | //! Fit datas with errors by a polynomial
|
|---|
| 491 | /*!
|
|---|
| 492 | Fit z(x,y) by a polynimial P(x,y)
|
|---|
| 493 | \param x : x datas
|
|---|
| 494 | \param y : y datas
|
|---|
| 495 | \param z : z datas
|
|---|
| 496 | \param errz2 : errors squared on z
|
|---|
| 497 | \param degreX : partial degre on X
|
|---|
| 498 | \param degreY : partial degre on Y
|
|---|
| 499 | \warning result is stored in the current object
|
|---|
| 500 | \return \b errcoeff : errors on the coefficients
|
|---|
| 501 | \return return chisquare
|
|---|
| 502 | */
|
|---|
| 503 | double Poly2::Fit(TVector<r_8> const& x, TVector<r_8> const& y, TVector<r_8> const& z,
|
|---|
| 504 | TVector<r_8> const& errz2, int degreX, int degreY,
|
|---|
| 505 | TVector<r_8>& errCoef)
|
|---|
| 506 | {
|
|---|
| 507 | int n = x.NElts();
|
|---|
| 508 | if (n != (int)y.NElts()) throw SzMismatchError("Poly2::Fit() - 3");
|
|---|
| 509 | if (n != (int)z.NElts()) throw SzMismatchError("Poly2::Fit() - 4");
|
|---|
| 510 | if (n != (int)errz2.NElts()) throw SzMismatchError("Poly2::Fit() - 5");
|
|---|
| 511 |
|
|---|
| 512 | Realloc(degreX, degreY);
|
|---|
| 513 | errCoef.Realloc((degreX+1)*(degreY+1));
|
|---|
| 514 |
|
|---|
| 515 | TMatrix<r_8> a((degreX+1)*(degreY+1), n);
|
|---|
| 516 |
|
|---|
| 517 | for (int c=0; c<n; c++) {
|
|---|
| 518 | double xPow = 1.0;
|
|---|
| 519 | for (int dx = 0; dx <= degreX; dx++) {
|
|---|
| 520 | double yPow = 1.0;
|
|---|
| 521 | for (int dy = 0; dy <= degreY; dy++) {
|
|---|
| 522 | a(IndCoef(dx,dy), c) = xPow*yPow;
|
|---|
| 523 | yPow *= y(c);
|
|---|
| 524 | }
|
|---|
| 525 | xPow *= x(c);
|
|---|
| 526 | }
|
|---|
| 527 | }
|
|---|
| 528 |
|
|---|
| 529 | LinFitter<r_8> lf;
|
|---|
| 530 | double rc = lf.LinFit(a,z,errz2,(TVector<r_8>&)*this,errCoef);
|
|---|
| 531 | UpdateDeg();
|
|---|
| 532 | return rc;
|
|---|
| 533 | }
|
|---|
| 534 |
|
|---|
| 535 | //! Fit datas by a polynomial
|
|---|
| 536 | /*!
|
|---|
| 537 | Fit z(x,y) by a polynimial P(x,y)
|
|---|
| 538 | \param x : x datas
|
|---|
| 539 | \param y : y datas
|
|---|
| 540 | \param z : z datas
|
|---|
| 541 | \param degre : total degre
|
|---|
| 542 | \warning result is stored in the current object
|
|---|
| 543 | \return return chisquare
|
|---|
| 544 | */
|
|---|
| 545 | double Poly2::Fit(TVector<r_8> const& x, TVector<r_8> const& y,
|
|---|
| 546 | TVector<r_8> const& z, int degre)
|
|---|
| 547 | {
|
|---|
| 548 | int n = x.NElts();
|
|---|
| 549 | if (n != (int)y.NElts()) throw SzMismatchError("Poly2::Fit() - 6");
|
|---|
| 550 | if (n != (int)z.NElts()) throw SzMismatchError("Poly2::Fit() - 7");
|
|---|
| 551 |
|
|---|
| 552 | Realloc(degre, degre); // certains vaudront 0, impose.
|
|---|
| 553 |
|
|---|
| 554 | TMatrix<r_8> a((degre+1)*(degre+2)/2, n);
|
|---|
| 555 | TVector<r_8> cf((degre+1)*(degre+2)/2);
|
|---|
| 556 | #define C_INDEX(i,j) ((i) + (j)*(2*degre+3-(j))/2)
|
|---|
| 557 |
|
|---|
| 558 | for (int c=0; c<n; c++) {
|
|---|
| 559 | double xPow = 1.0;
|
|---|
| 560 | for (int dx = 0; dx <= degre; dx++) {
|
|---|
| 561 | double yPow = 1.0;
|
|---|
| 562 | for (int dy = 0; dy <= degre; dy++) {
|
|---|
| 563 | if (dy+dx <= degre)
|
|---|
| 564 | a(C_INDEX(dx,dy), c) = xPow*yPow;
|
|---|
| 565 | yPow *= y(c);
|
|---|
| 566 | }
|
|---|
| 567 | xPow *= x(c);
|
|---|
| 568 | }
|
|---|
| 569 | }
|
|---|
| 570 |
|
|---|
| 571 | LinFitter<r_8> lf;
|
|---|
| 572 | double rc = lf.LinFit(a,z,cf);
|
|---|
| 573 |
|
|---|
| 574 | for (int dx = 0; dx <= degre; dx++)
|
|---|
| 575 | for (int dy = 0; dy <= degre; dy++)
|
|---|
| 576 | if (dx+dy <= degre)
|
|---|
| 577 | Coef(dx,dy) = cf(C_INDEX(dx,dy));
|
|---|
| 578 | else
|
|---|
| 579 | Coef(dx,dy) = 0;
|
|---|
| 580 |
|
|---|
| 581 | UpdateDeg();
|
|---|
| 582 | return rc;
|
|---|
| 583 | }
|
|---|
| 584 |
|
|---|
| 585 | //! Fit datas with errors by a polynomial
|
|---|
| 586 | /*!
|
|---|
| 587 | Fit z(x,y) by a polynimial P(x,y)
|
|---|
| 588 | \param x : x datas
|
|---|
| 589 | \param y : y datas
|
|---|
| 590 | \param z : z datas
|
|---|
| 591 | \param errz2 : errors squared on z
|
|---|
| 592 | \param degre : total degre
|
|---|
| 593 | \warning result is stored in the current object
|
|---|
| 594 | \return \b errcoeff : errors on the coefficients
|
|---|
| 595 | \return return chisquare
|
|---|
| 596 | */
|
|---|
| 597 | double Poly2::Fit(TVector<r_8> const& x, TVector<r_8> const& y,
|
|---|
| 598 | TVector<r_8> const& z,TVector<r_8> const& errz2,
|
|---|
| 599 | int degre, TVector<r_8>& errCoef)
|
|---|
| 600 | {
|
|---|
| 601 | int n = x.NElts();
|
|---|
| 602 | if (n != (int)y.NElts()) throw SzMismatchError("Poly2::Fit() - 8");
|
|---|
| 603 | if (n != (int)z.NElts()) throw SzMismatchError("Poly2::Fit() - 9");
|
|---|
| 604 | if (n != (int)errz2.NElts()) throw SzMismatchError("Poly2::Fit() - 10");
|
|---|
| 605 |
|
|---|
| 606 | Realloc(degre, degre);
|
|---|
| 607 | errCoef.Realloc((degre+1)*(degre+1));
|
|---|
| 608 | #define C_INDEX(i,j) ((i) + (j)*(2*degre+3-(j))/2)
|
|---|
| 609 |
|
|---|
| 610 | TMatrix<r_8> a((degre+1)*(degre+2)/2, n);
|
|---|
| 611 | TVector<r_8> cf((degre+1)*(degre+2)/2);
|
|---|
| 612 | TVector<r_8> ecf((degre+1)*(degre+2)/2);
|
|---|
| 613 |
|
|---|
| 614 | for (int c=0; c<n; c++) {
|
|---|
| 615 | double xPow = 1.0;
|
|---|
| 616 | for (int dx = 0; dx <= degre; dx++) {
|
|---|
| 617 | double yPow = 1.0;
|
|---|
| 618 | for (int dy = 0; dy <= degre; dy++) {
|
|---|
| 619 | if (dy+dx <= degre)
|
|---|
| 620 | a(C_INDEX(dx,dy), c) = xPow*yPow;
|
|---|
| 621 | yPow *= y(c);
|
|---|
| 622 | }
|
|---|
| 623 | xPow *= x(c);
|
|---|
| 624 | }
|
|---|
| 625 | }
|
|---|
| 626 |
|
|---|
| 627 | LinFitter<r_8> lf;
|
|---|
| 628 | double rc = lf.LinFit(a,z,errz2,cf,ecf);
|
|---|
| 629 |
|
|---|
| 630 |
|
|---|
| 631 | for (int dx = 0; dx <= degre; dx++)
|
|---|
| 632 | for (int dy = 0; dy <= degre; dy++)
|
|---|
| 633 | if (dx+dy <= degre) {
|
|---|
| 634 | Coef(dx,dy) = cf(C_INDEX(dx,dy));
|
|---|
| 635 | errCoef(IndCoef(dx,dy)) = ecf(C_INDEX(dx,dy));
|
|---|
| 636 | } else {
|
|---|
| 637 | Coef(dx,dy) = 0;
|
|---|
| 638 | errCoef(IndCoef(dx,dy)) = 0;
|
|---|
| 639 | }
|
|---|
| 640 | UpdateDeg();
|
|---|
| 641 | return rc;
|
|---|
| 642 | }
|
|---|
| 643 |
|
|---|
| 644 | //! Print on stream \b s
|
|---|
| 645 | void Poly2::Print(ostream& s, sa_size_t , bool, bool ) const
|
|---|
| 646 | {
|
|---|
| 647 | UpdateDegIfDirty();
|
|---|
| 648 | int nz=0;
|
|---|
| 649 | int notfirst=0;
|
|---|
| 650 | for (int dx = degX; dx>=0; dx--)
|
|---|
| 651 | for (int dy= degY; dy>=0; dy--) {
|
|---|
| 652 | double c = Coef(dx,dy);
|
|---|
| 653 | if (c != 0) {
|
|---|
| 654 | nz = 1;
|
|---|
| 655 | if (notfirst && c > 0) {
|
|---|
| 656 | s << "+";
|
|---|
| 657 | notfirst = 1;
|
|---|
| 658 | }
|
|---|
| 659 | s << c << " ";
|
|---|
| 660 | if (dx == 1) s << "* X ";
|
|---|
| 661 | if (dx > 1) s << "* X^" << dx << " ";
|
|---|
| 662 | if (dy == 1) s << "* Y ";
|
|---|
| 663 | if (dy > 1) s << "* Y^" << dy << " ";
|
|---|
| 664 | s << endl;
|
|---|
| 665 | }
|
|---|
| 666 | }
|
|---|
| 667 | if (!nz) s << " 0 ";
|
|---|
| 668 | }
|
|---|
| 669 |
|
|---|
| 670 | //! Operator: return P(x) = *this(x) + b(x)
|
|---|
| 671 | Poly2& Poly2::operator += (Poly2 const& b)
|
|---|
| 672 | {
|
|---|
| 673 | if (maxDegX < b.DegX() || maxDegY < b.DegY())
|
|---|
| 674 | Realloc(b.DegX(),b.DegY());
|
|---|
| 675 |
|
|---|
| 676 | UpdateDegIfDirty();
|
|---|
| 677 |
|
|---|
| 678 | int mx = b.DegX();
|
|---|
| 679 | int my = b.DegY();
|
|---|
| 680 | for (int i=0; i<= mx; i++)
|
|---|
| 681 | for (int j=0; j<= my; j++)
|
|---|
| 682 | Coef(i,j) += b.Coef(i,j);
|
|---|
| 683 |
|
|---|
| 684 | UpdateDeg();
|
|---|
| 685 | return *this;
|
|---|
| 686 | }
|
|---|
| 687 |
|
|---|
| 688 | //! Operator: return P(x) = *this(x) - b(x)
|
|---|
| 689 | Poly2& Poly2::operator -= (Poly2 const& b)
|
|---|
| 690 | {
|
|---|
| 691 | if (maxDegX < b.DegX() || maxDegY < b.DegY())
|
|---|
| 692 | Realloc(b.DegX(),b.DegY());
|
|---|
| 693 |
|
|---|
| 694 | UpdateDegIfDirty();
|
|---|
| 695 |
|
|---|
| 696 | int mx = b.DegX();
|
|---|
| 697 | int my = b.DegY();
|
|---|
| 698 | for (int i=0; i<= mx; i++)
|
|---|
| 699 | for (int j=0; j<= my; j++)
|
|---|
| 700 | Coef(i,j) -= b.Coef(i,j);
|
|---|
| 701 |
|
|---|
| 702 | UpdateDeg();
|
|---|
| 703 | return *this;
|
|---|
| 704 | }
|
|---|
| 705 |
|
|---|
| 706 | //! Operator: return P(x) = *this(x) * a
|
|---|
| 707 | Poly2& Poly2::operator *= (double a)
|
|---|
| 708 | {
|
|---|
| 709 | for (uint_4 i=0; i<NElts(); i++) Element(i) *= a;
|
|---|
| 710 | return *this;
|
|---|
| 711 | }
|
|---|
| 712 |
|
|---|
| 713 | //! Operator: return P(x) = *this(x) * b(x)
|
|---|
| 714 | Poly2 Poly2::Mult(Poly2 const& b) const
|
|---|
| 715 | {
|
|---|
| 716 | Poly2 c(DegX() + b.DegX(), DegY() + b.DegY());
|
|---|
| 717 | UpdateDegIfDirty();
|
|---|
| 718 | b.UpdateDegIfDirty();
|
|---|
| 719 |
|
|---|
| 720 | for (int i=0; i<=DegX(); i++)
|
|---|
| 721 | for (int j=0; j<=DegY(); j++)
|
|---|
| 722 | for (int k=0; k<=b.DegX(); k++)
|
|---|
| 723 | for (int l=0; l<=b.DegY(); l++)
|
|---|
| 724 | c.Coef(i+k,j+l) += Coef(i,j)*b.Coef(k,l);
|
|---|
| 725 | return c;
|
|---|
| 726 | }
|
|---|
| 727 |
|
|---|
| 728 | //! Return \f$ P(x,y)^n \f$
|
|---|
| 729 | Poly2 Poly2::power(int n) const
|
|---|
| 730 | {
|
|---|
| 731 | if (n < 0) throw RangeCheckError("Poly2::power(n<0) ");
|
|---|
| 732 | if (n == 0) { Poly2 r(0); r.Coef(0,0) = 1; return r;}
|
|---|
| 733 | if (n == 1) { return *this; }
|
|---|
| 734 | return *this * power(n-1);
|
|---|
| 735 | }
|
|---|
| 736 |
|
|---|
| 737 |
|
|---|
| 738 | //! substitute and return \f$ P(a(x),b(x)) \f$
|
|---|
| 739 | Poly2 Poly2::operator() (Poly const& a, Poly const& b) const
|
|---|
| 740 | {
|
|---|
| 741 | UpdateDegIfDirty();
|
|---|
| 742 | Poly2 c(maxDegX*a.Degre(), maxDegY*b.Degre());
|
|---|
| 743 |
|
|---|
| 744 | for (int i=0; i<= degX; i++)
|
|---|
| 745 | for (int j=0; j<= degY; j++) {
|
|---|
| 746 | Poly2 d(a.power(i), b.power(j));
|
|---|
| 747 | c += Coef(i,j) * d;
|
|---|
| 748 | }
|
|---|
| 749 |
|
|---|
| 750 | return c;
|
|---|
| 751 | }
|
|---|
| 752 |
|
|---|
| 753 | //! substitute and return 2D polynomial \f$ P(a(x,y)) \f$, P is a 1D polynomial
|
|---|
| 754 | Poly2 Poly::operator() (Poly2 const& a) const
|
|---|
| 755 | {
|
|---|
| 756 | Poly2 c(a.MaxDegX()*Degre(), a.MaxDegY()*Degre());
|
|---|
| 757 |
|
|---|
| 758 | for (int i=0; i<= Degre(); i++)
|
|---|
| 759 | c += (*this)[i] * a.power(i);
|
|---|
| 760 | return c;
|
|---|
| 761 | }
|
|---|
| 762 |
|
|---|
| 763 | //////////////////////////////////////////////////////////////////////////
|
|---|
| 764 | //! For persistance management
|
|---|
| 765 | DECL_TEMP_SPEC /* equivalent a template <> , pour SGI-CC en particulier */
|
|---|
| 766 | void ObjFileIO<Poly2>::ReadSelf(PInPersist& is)
|
|---|
| 767 | {
|
|---|
| 768 | if(dobj==NULL) dobj=new Poly2;
|
|---|
| 769 | int_4 dgx, dgy;
|
|---|
| 770 | is >> dgx >> dgy;
|
|---|
| 771 | dobj->Realloc(dgx,dgy);
|
|---|
| 772 | is >> *((TVector<r_8> *) dobj);
|
|---|
| 773 | dobj->UpdateDeg();
|
|---|
| 774 | }
|
|---|
| 775 |
|
|---|
| 776 | //! For persistance management
|
|---|
| 777 | DECL_TEMP_SPEC /* equivalent a template <> , pour SGI-CC en particulier */
|
|---|
| 778 | void ObjFileIO<Poly2>::WriteSelf(POutPersist& os) const
|
|---|
| 779 | {
|
|---|
| 780 | if(dobj == NULL) return;
|
|---|
| 781 | os << dobj->maxDegX << dobj->maxDegY;
|
|---|
| 782 | os << *((TVector<r_8> *) dobj);
|
|---|
| 783 | }
|
|---|
| 784 |
|
|---|
| 785 |
|
|---|
| 786 | //////////////////////////////////////////////////////////////////////////
|
|---|
| 787 | #ifdef __CXX_PRAGMA_TEMPLATES__
|
|---|
| 788 | #pragma define_template ObjFileIO<Poly>
|
|---|
| 789 | #pragma define_template ObjFileIO<Poly2>
|
|---|
| 790 | #endif
|
|---|
| 791 |
|
|---|
| 792 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
|
|---|
| 793 | template class ObjFileIO<Poly>;
|
|---|
| 794 | template class ObjFileIO<Poly2>;
|
|---|
| 795 | #endif
|
|---|